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Abstract. We propose an extension of SROIQ with nominal schemas

which can be used like “variable nominal concepts” within axioms. This
feature allows us to express arbitrary DL-safe rules in description logic
syntax. We show that adding nominal schemas to SROIQ does not
increase its worst-case reasoning complexity, and we identify a family
of tractable DLs SROELVn that allow for restricted use of nominal
schemas.

1 Introduction

A significant body of work has developed investigating the integration of descrip-
tion logics (DLs) and rule languages (typically Datalog). Conceptually, one can
distinguish two approaches. On the one hand, description logics have been ex-
tended with additional “description-logic-style” expressive features which make
it possible to express certain types of rules. For instance, SROIQ role inclusion
axioms (RIAs) can be viewed as a type of rule. By combining RIAs with local
reflexivity (Self) and the universal role U , many rules with a tree-shaped body
can be expressed indirectly [10]. The restriction to tree-shaped rules ensures de-
cidability, but it also excludes many rules. An example is the following rule that
defines a concept C of children whose parents are married:

hasParent(x,y) ∧ hasParent(x,z) ∧ married(y,z) → C(x). (1)

On the other hand, there are approaches of a hybrid nature, in the sense
that both DL axioms and rules are syntactically allowed, and a combined formal
semantics defines how the hybrid language is to be understood. Unfortunately,
such a combination often leads to undecidability. This is the case for the Se-
mantic Web Rule Language SWRL [5,6], which is the most straightforward rule
extension of OWL, and for the combination of OWL DL ontologies and the Rule
Interchange Format RIF (even when restricted to RIF Core) [1,2]. A prominently
discussed idea for retaining decidability is to restrict the applicability of rules
to named individuals, i.e., to logical constants that are explicitly mentioned in
the ontology. Rules that are understood in this sense are called DL-safe, and the
combination of OWL DL and DL-safe rules is indeed decidable [5,14].



A generalization of DL-safe rules, based on DL-safe variables, has been intro-
duced [11] as part of the definition of the tractable rule language ELP. Rather
than restricting all variables in a (DL-safe) rule to binding only to known indi-
viduals, DL-safe variables allow the ontology engineer to explicitly specify the
variables to be treated this way. This approach was subsequently generalized to
obtain DL+safe Rules as a class of expressive rule languages for which reasoning
is still decidable [9].

In this paper, we expand on the above idea and improve it in several ways.
The key technical innovation is the introduction of nominal schemas as new
elements of DL syntax. While the semantic intuition behind nominal schemas
is the same as that behind DL-safe variables, the difference lies in the fact that
DL-safe variables are tied to rule languages, while nominal schemas integrate
seamlessly with DL syntax. As a consequence, the language which we propose
encompasses DL-safe variable SWRL while staying within the DL/OWL language
paradigm. It thus achieves within the DL framework what has hitherto only been
achieved by hybrid approaches.

To give an initial example, consider again the rule (1) extended by the axioms

hasParent(mary, john) (2)

(∃hasParent.∃married.{john})(mary) (3)

Axiom (2) asserts that John is a parent of Mary, while axiom (3) states that
Mary belongs to the class of individuals with some (unnamed) parent who is
married to John. Using a first-order logic semantics as in SWRL, rule (1) would
thus entail that Mary belongs to the class C. Interpreting rule (1) as DL-safe,
however, does not allow this conclusion, since John’s spouse is not named by
any constant in the ontology. To retain the conclusion, one can weaken this
restriction to require only z to be DL-safe, while x and y can still take arbitrary
values. This is possible in the rule-based approach of DL+safe Rules, but cannot
be captured in an axiom of existing description logics.

In contrast, using nominal schemas, rule (1) can be expressed as

∃hasParent.{z} ⊓ ∃hasParent.∃married.{z} ⊑ C. (4)

The desired conclusion again follows. The expression {z} is a nominal schema,
which is to be read as a variable nominal that can only represent nominals (i.e.,
z binds to known individuals), where the binding is the same for all occurrences
of the nominal schema in an axiom.

The main contributions of this paper are as follows:

1. We introduce nominal schemas as a new general constructor for descrip-
tion logics, denoted by the letter V in the DL nomenclature, and define the
expressive DL SROIQV as an extension of SROIQ.

2. We establish the worst-case complexity of reasoning in SROIQV to be
N2ExpTime-complete, and thus not harder than for SROIQ.



3. We define SROELVn (n ≥ 0) as a new family of DLs with nominal schemas
for which reasoning is possible in polynomial time.

The expressivity of nominal schemas is also witnessed by the fact that it
allows DLs to incorporate arbitrary DL-safe rules, given that concept intersec-
tions, existential role restrictions, and the universal (top) role are available. Since
such rules preclude polytime reasoning, our tractable DLs SROELVn employ
restrictions on the number of certain occurrences of nominal schemas in each
axiom.

The close relationship to nominals suggests simple ways of introducing nom-
inal schemas into concrete syntactic forms of OWL 2, e.g. by using the existing
syntax for nominal classes with special individual names that represent variables
(using some suitable naming convention). This opens a path for introducing this
feature into practical applications. While the above worst-case complexity result
for SROIQV may seem encouraging, we believe that the tractable ontology
languages SROELVn are the most promising candidates for implementations.

This paper is a condensed presentation of the main results of [13] where we
develop all results for the slightly more general case of DLs with Boolean role
constructors and concept products [18]. Moreover, [13] also explains how DL-safe
rules (and hence DLs with nominal schemas) can be used to express OWL RL
ontologies, and provides an extended discussion of related approaches which
include description graphs, existential rules and tuple-generating dependencies
(TGDs) in Datalog, and DL Rules.

In this paper, we introduce the syntax and semantics of nominal schemas for
SROIQV , and establish the worst-case complexity of reasoning in Section 2. The
DLs SROELVn are introduced in Section 3, and their tractability is established
in Section 4. In Section 5 we show how DL-safe rules can be expressed with
nominal schemas, and Section 6 concludes.

2 Nominal Schemas in SROIQ

We start by introducing nominal schemas as an extension of existing description
logics. We first generally introduce the feature for SROIQ to obtain the very
expressive DL SROIQV .

A signature of SROIQV is a tuple Σ = 〈NI , NC , NR, NV 〉 of mutually dis-
joint sets of individual names, concept names, role names, and variables. Vari-
ables can be used like individuals in nominal expressions, and concept expressions
of SROIQV are thus defined as follows:

C ::= ⊤ | ⊥ | NC | {NI} | {NV } | ¬C | C ⊓C | C ⊔C |

∃R.C | ∀R.C | ∃S.Self | 6k S.C | >k S.C

where k is a natural number, and R (S) is a (simple) SROIQ role as usual.
We use U to denote the universal role. The common axiom types are defined as
usual, but with the extended set of concept expressions. Herein, we restrict our



attention to SROIQV knowledge bases with regular RBoxes, which are defined
as in SROIQ.

Axiom (4) above is an example of a SROIQV TBox axiom, where {z} is
a nominal schema. Intuitively, each nominal schema appearing in an axiom is
universally quantified, but ranges only over elements that are referred to by an
individual name. We note that it would also be straightforward to introduce
nominal schemas into the normative RDF syntax for OWL 2 [16]. One way to
do this would be to provide URIs for variables in the OWL namespace, used
instead of individuals in owl:oneOf statements (which are used for the RDF
syntax for nominals in OWL 2). Attaching the semantics of nominal schemas to
“reserved” variable URIs would allow the reuse of existing tools for representa-
tion, manipulation, parsing, and serialization.

The semantics of SROIQV is defined by interpreting variables as placehold-
ers for named individuals, i.e. elements of the interpretation domain that are
represented by individual names in NI . This can be accomplished by using a
suitably restricted form of variable assignment. Equivalently, one can eliminate
nominal schemas by replacing them with the (finitely many) nominals that they
can represent, and apply the standard SROIQ semantics to the result [13].

Definition 1. The grounding ground(α) of a SROIQV axiom α is the set of
all axioms that can be obtained by uniformly replacing nominal schemas in α

with nominals of the given signature. Given a SROIQV knowledge base KB, we
define ground(KB) :=

⋃
α∈KB

ground(α).

A DL interpretation I is a model of a SROIQV axiom α, written I |= α,
if and only if I is a model of the knowledge base ground(α). Satisfaction and
entailment of SROIQV axioms and knowledge bases is defined as usual.

Note that grounding does not affect the structural restrictions of simplic-
ity and regularity. Definition 1 provides a direct approach for reasoning with
SROIQV , though not necessarily a very practical one given that each SROIQV
axiom represents an exponential number of SROIQ axioms obtained by ground-
ing. However, this observation already yields an upper bound for the complexity
of reasoning with SROIQV that is exponentially larger than that of SROIQ,
i.e. N3ExpTime. In the remainder of this section, we prove that this result can
be refined to obtain an N2ExpTime upper complexity bound, showing that
this reasoning problem must be N2ExpTime-complete. To accomplish this, we
extend the original proof for the worst-case complexity of SROIQ [8].

We first recall the complexity proof of [8] which is based on an exponential
reduction of DL knowledge bases to theories of C2, the two-variable fragment of
first-order logic with counting quantifiers, for which satisfiability can be checked
in NExpTime [17]. The reduction proceeds in three steps: (1) axioms are trans-
formed into a simplified normal form, (2) complex RIAs are eliminated, and (3)
the resulting axioms are expressed as formulae of C2.

Step (1) yields an equisatisfiable knowledge base that contains only axioms
of the following forms:



A ⊑ ∀R.B

A ⊑ >nS.B

A ⊑ 6nS.B

d
Ai ⊑

⊔
Bj

A ≡ {a}
A ≡ ∃S.Self

S1 ⊑ S2

R1 ⊑ R−

R1 ◦ · · · ◦Rn ⊑ R

where R(i), S1, S2 ∈ NR with S1, S2 simple, and C ≡ D is short for {C ⊑
D,D ⊑ C}. This normalization can be done in linear time; see [8] for details.
The only axioms that are not readily expressed in C2 are complex RIAs. They
are eliminated next, with exponential effort.

Step (2) applies a technique from [3] using nondeterministic finite automata
(NFA) to represent RIAs that entail non-simple roles. Suitable NFA for SROIQ
were defined in [4,7]. We do not repeat the details of this construction here, and
merely quote the essential results. Proofs for the following facts can be found in
[4] and the accompanying technical report.

Fact 1 Consider a SROIQ knowledge base KB. For each (possibly inverse)
non-simple role R ∈ R, there is an NFA AR over the alphabet NR such that for
every model I of KB, and for every word S1 . . . Sn accepted by AR:

If 〈δi, δi+1〉 ∈ SI

i for all i = 1, . . . , n, then 〈δ1, δn+1〉 ∈ RI .

Moreover, let ≺ denote a strict linear order that witnesses regularity of KB as
required in [4]. For each non-simple R ∈ NR, the number of states of AR is
bounded exponentially in the depth of KB that is defined as:

max{n | there are S1 ≺ . . . ≺ Sn such that
Ti1 ◦ . . . ◦ Si ◦ . . . ◦ Timi

⊑ Si+1 ∈ KB}

It suffices to construct the respective NFA for non-simple roles. Now step (2)
proceeds by replacing every axiom of the form A ⊑ ∀R.B by the following set
of axioms, where AR is the NFA as introduced above, and Xq are fresh concept
names for each state q of AR:

A ⊑ Xq q is the initial state of AR

Xq ⊑ ∀S.Xq′ AR has a transition q
S
→ q′

Xq ⊑ B q is a final state of AR

Moreover, all complex RIAs of the form R1 ◦ . . .◦Rn ⊑ R with n ≥ 2 are deleted.
The number of new axioms (and fresh concept names) that are introduced for
each axiom of the form A ⊑ ∀R.B is bounded by the sum of the number of
states and transitions in AR, and the number of transitions in turn is linear
in the number of role names and states. According to Fact 1, the number of
axioms introduced for each axiom A ⊑ ∀R.B is exponentially bounded in the
depth of the knowledge base. The overall size of the knowledge base after step
(2) therefore is bounded by a function that is linear in the size of the knowledge
base and exponential in the depth of the knowledge base.

Step (3), finally, is a simple rewriting to C2 that does not increase the size
of the knowledge base. To obtain the main result of this section, it suffices to
observe that grounding does not increase the depth of the knowledge base:

Theorem 1. The problem of deciding the satisfiability of SROIQV knowledge
bases is N2ExpTime-complete.



Proof. The depth of KB is only affected by RBox axioms. RBox axioms are not
affected by grounding, hence the depth of ground(KB) is equal to the depth of
KB.

Since ground(KB) is in SROIQ, one can apply the transformation steps
(1)–(3). This yields a C2 theory T that is equisatisfiable to ground(KB) [8] and
thus to KB. The size of T is linear in the size of ground(KB) and exponential
in the depth of KB. Both measures are exponential in the size of KB, and so
is T . Deciding satisfiability of T can be done in NExpTime [17], thus deciding
satisfiability of KB in N2ExpTime.

Hardness follows since SROIQV includes SROIQ, for which deciding sat-
isfiability is N2ExpTime-hard [8]. ⊓⊔

3 A Tractable Fragment

The result that reasoning in SROIQV has the same worst-case complexity as
SROIQ is encouraging, yet we are far from a practical reasoning procedure for
this DL. In particular, Theorem 1 is based on a procedure that still takes expo-
nentially longer than the original approach for SROIQ, without this affecting
the worst-case complexity. In this section, we therefore focus on identifying cases
where inferencing is possible in polynomial time. This still leads to a rather ex-
pressive tractable DL. In [13], we also further discuss the relationship to the
tractable profiles of OWL 2.

Concretely, we define DLs SROELVn for each integer n ≥ 0, n restricting
the number of “problematic” occurrences of nominal schemas detailed below. The
DLs are based on the tractable DL SROEL(×), introduced as an extension of
OWL EL [12]. In essence, SROEL(×) is an extension of EL with ⊤, ⊥, nominals,
complex role inclusions, Self, and concept products [18]. Here, we only need the
special concept product ⊤ × ⊤, denoted as the universal role U . In particular,
we also omit range restrictions R ⊑ ⊤ × C since they do not contribute to our
treatment.

To preserve tractability when adding nominal schemas, we must avoid the
increase in the number of axioms during grounding, which is exponential in
the number of nominal schemas per axiom. Unfortunately, one cannot reduce
the number of nominal schemas by normal form transformations in general,
since they represent complex dependencies that cannot be simplified. But there
are special cases where nominal schemas on the left-hand side of TBox axioms
can be eliminated, or separated using independent axioms. One such case was
identified in [11] for the rule language ELP: if the dependencies expressed in a
rule body are tree-shaped then the rule can always be reduced to a small set
of normalized rules with a limited number of variables in each. For example, a
rule body that consists of a conjunction A(x)∧R(x, z)∧S(x, y)∧B(y)∧T (y, z)

is not tree-shaped since there are parallel paths x
R
→ z and x

S
→ y

T
→ z in

the corresponding dependency structure. In our case, binary predicates are role
names, unary predicates are concept names, and constant symbols correspond
to nominals. Variables can either be “hidden” in the structure of the DL concept



expression, or occur explicitly as nominal schemas (the latter are called DL-
safe variables in ELP). For example, the above rule body can be expressed as a
concept A ⊓ ∃R.{z} ⊓ ∃S.(B ⊓ ∃T.{z}).

Here, we do not introduce tree-shaped dependency structures as a general
mechanism for ensuring that normal form transformations are possible, and
merely identify sufficient conditions for which this is the case. An obvious con-
dition that implies tree-shaped dependencies is that a nominal schema occurs
only once, and only on the left-hand side of a TBox axiom. As in [11], the tree-
shape only refers to variables (DL-safe or not), not to constants, in rule bodies.
This means that nominals (our syntax for constants) disconnect a concept’s de-
pendency structure. For instance, if B in the above rule body is replaced by a
nominal {a}, then the concept would be tree-shaped. In such a case, we say that
the nominal {z} occurs in a safe environment, as defined next.

Definition 2. An occurrence of a nominal schema {x} in a concept C is safe
if C has a sub-concept of the form {a} ⊓ ∃R.D for some a ∈ NI , such that D

contains the occurrence of {x} but no other occurrence of any nominal schema.
In this case, {a}⊓∃R.D is a safe environment for this occurrence of {x}. S(a, x)
will sometimes be used to denote an expression of the form {a} ⊓ ∃R.D within
which {x} occurs safely.

A nominal schema {x} is safe for a SROIQV TBox axiom C ⊑ D if {x}
does not occur in D, and at most one occurrence of {x} in C is not safe.

Definition 3. Let n ≥ 0. A SROELVn concept is a SROIQV concept that
may contain ⊤, ⊥, ⊓, ∃, Self, the universal role, nominals and nominal schemas,
but which does not contain ⊔, ¬, ∀, 6k , >k , or inverse roles.

A SROELVn TBox axiom is a SROIQV TBox axiom α that uses SROELVn

concepts only, and where at most n nominal schemas are not safe for α. An RBox
axiom of SROELVn is an RBox axiom of SROIQV that does not contain in-
verse roles. A SROELVn knowledge base is a SROIQV knowledge base that
contains only SROELVn axioms.

Restricting to at most n non-safe nominal schemas per axiom ensures that at
most |NI |

n axioms are introduced during grounding. We will fix n at a constant
small value, so this increase is polynomial. When viewing nominal schemas as a
way of augmenting DL expressivity in existing applications, it seems plausible
that this number remains small. Axiom (4) is an example of a SROELV1 axiom.

4 Reasoning with SROELVn

If n is constant, the problem of checking satisfiability in SROELVn is possible in
polynomial time w.r.t. the size of the knowledge base. To show this, we provide
a polynomial transformation to the DL SROEL(×) [12].

Let KB be a SROELVn knowledge base. We define a SROEL(×) knowledge
base ground

+(KB) as follows. The RBox and ABox of ground
+(KB) are the same

as the RBox and ABox of KB. For each TBox axiom α = C ⊑ D ∈ KB, the
following axioms are added to ground

+(KB):



1. For each nominal schema {x} safe for α, with safe occurrences in environ-
ments Si(ai, x) for i = 1, . . . , l, introduce a fresh concept name Ox,α. For
every individual b ∈ NI in KB, ground

+(KB) contains an axiom

ll

i=1

∃U.Si(ai, b) ⊑ ∃U.({b} ⊓Ox,α),

where Si(ai, b) denotes Si(ai, x) with {x} replaced by {b}, and the empty
conjunction (l = 0) denotes ⊤.

2. A concept C′ is obtained from C as follows. Initialize C′ := C. For each
nominal schema {x} that is safe for α: (a) replace all safe occurrences S(a, x)
in C′ by {a}; (b) replace the non-safe occurrence (if any) of {x} in C′ by
Ox,α; (c) set C′ := C′⊓∃U.Ox,α. After these steps, C′ contains only nominal
schemas that are not safe for α, and neither for C′ ⊑ D.
Now add axioms ground(C′ ⊑ D) to ground

+(KB).

Theorem 2. Given a SROELVn knowledge base KB, the size of ground
+(KB)

is exponential in n and polynomial in the size of KB.

Proof. The size of the RBox and ABox of ground
+(KB) is linear in the size of

KB and does not depend on n. If m is the number of individual names in KB,
then step 1 above introduces at most mk axioms for each axiom α with k nom-
inal schemas. This is polynomial in the size of KB. The second step introduces
|ground(C′ ⊑ D)| many axioms, and hence at most mn axioms for each α. ⊓⊔

As shown in [13], a SROELVn knowledge base KB is satisfiable if and only
if ground

+(KB) is satisfiable. A knowledge base is unsatisfiable if and only if
it entails {a} ⊑ ⊥ for arbitrary a ∈ NI . This reduces satisfiability testing to
instance retrieval (checking if a is an instance of ⊥). Using the polynomial time
instance retrieval method for SROEL(×) from [12], we thus obtain the following
result. Hardness for P follows from the hardness of SROEL(×).

Theorem 3. If KB is a SROELVn knowledge base of size s, satisfiability of
KB can be reduced to instance retrieval w.r.t. a set of Datalog rules of size
proportional to sn and at most 4 variables per rule. If n is constant, the problem
is P-complete.

5 DL-Safe Rules

An interesting feature of nominal schemas is that they can be used to express
arbitrary DL-safe rules [14]. These are Datalog rules with unary and binary
predicates that are restricted – just like nominal schemas – to apply to domain
elements that are represented by individual names. Identifying unary predicates
with concept names, binary predicates with role names, constants with individual
names, and (DL-safe) variables with the variables in nominal schemas, the syntax
of DL-safe rules can be based on a DL signature. As before, we assume the
signature Σ = 〈NI , NC , NR, NV 〉 to be fixed and omit explicit references to it.
The set of terms T of Σ is NI ∪NV .



Definition 4. A concept atom is an expression of the form A(t) with t ∈ T and
A ∈ NC ∪ {⊤,⊥}. A role atom is an expression of the form R(s, t) with s, t ∈ T

and R ∈ NR. An atom is a concept or role atom.
If B is a finite and non-empty conjunction of atoms and H is an atom, then

B → H is a DL-safe rule. B is called the body, and H is called the head. A
DL-safe rule that contains at most n distinct variables is called an n-variable
rule. A 0-variable rule is a ground rule. The grounding ground(B → H) of a
DL-safe rule B → H is the set of all rules that can be obtained by uniformly
replacing variables in B → H with individual names of the signature.

An interpretation I satisfies a ground DL-safe rule B → H, written I |=
B → H, if either I |= H or I 6|= B. An interpretation I satisfies a DL-safe rule
B → H if it satisfies all rules in ground(B → H). A set of rules is satisfied if all
of its elements are. Models, satisfiability, and entailment are defined as usual.

Since DL-safe rules use the same models as SROIQV , it is easy to combine
DL-safe rules and DL knowledge bases. The entailment relation is immediate: a
DL-safe rule or DL axiom ϕ is entailed by a DL knowledge base KB extended
with a set of rules RB if ϕ is satisfied by all interpretations that satisfy both KB
and RB.

Definition 5. A syntactic transformation dl from atoms and DL-safe rules to
SROIQV concepts and TBox axioms is defined as follows. For a unary atom
A(t) and binary atom R(s, t), we set

dl(A(t)) := ∃U.({t} ⊓ A) and dl(R(s, t)) := ∃U.({s} ⊓ ∃R.{t}).

Given a DL-safe rule B → H, we set dl(B → H) :=
d

F∈B dl(F ) ⊑ dl(H), and
for a set of DL-safe rules RB we define dl(RB) :=

⋃
B→H∈RB

dl(B → H).

The function dl transforms rules into SROELVn TBox axioms, where n is
the number of variables in the rule. This ensures that none of the restrictions on
simple and non-simple roles or regularity are violated. In consequence, dl(RB)
is a SROELVn knowledge base if RB is a set of n-variable rules. The following
result of [13] is not hard to show:

Theorem 4. The models of a set RB of DL-safe rules are the same as the
models of dl(RB), i.e. RB and dl(RB) are semantically equivalent.

Importantly, this result confirms that nominal schemas are powerful enough
to express arbitrary DL-safe rules. The use of nominal schemas, however, in
SROIQV is more general than the extension of SROIQ with DL-safe rules,
since the latter correspond to a special form of SROIQV axioms only. Combin-
ing Theorem 3 with the observation that dl(RB) is linear in the size of RB, we
can state the following:

Theorem 5. The problem of deciding whether a knowledge base RB ∪ KB is
satisfiable, where RB is a set of n-variable rules with n constant, and KB is a
SROELVn knowledge base, is P-complete.



6 Conclusions and Future Work

We have introduced nominal schemas as an extension to description logics, giving
DLs sufficient expressivity to incorporate rule-based modeling. In particular,
the use of nominal schemas supports the integration of DL-safe rules into DL
knowledge bases. An important next step is to realize these ideas for the concrete
serialization formats of these languages, and to make the corresponding modeling
features available in practice.

The latter task especially includes the implementation of inference algorithms
to handle nominal schemas more efficiently. We have shown that our extension
does not increase the worst-case complexity of reasoning in SROIQ, and that
versatile tractable sublanguages exist. Whether and how these theoretical re-
sults can be put into efficient reasoning algorithms is an open research question.
Two different approaches to addressing this problem appear viable. On the one
hand, nominal schemas could be implemented by modifying/extending exist-
ing SROIQ implementations that have good support for nominals, such as the
OWL 2 reasoner HermiT [15]. This can be accomplished by treating nominal
schemas like nominals in the deduction procedure, instantiating them with con-
crete individuals only when this enables relevant deduction steps. This can be
viewed as a method of deferred grounding.

On the other hand, our light-weight description logics could be implemented
using rule-based procedures as proposed for SROEL [12]. In this setting, nomi-
nal schemas can be treated like DL-safe variables. Thus, the rule-based deduction
remains similar with the only modification that some variables can only be in-
stantiated with certain constants. Specifically, the approach in [12] introduces
new constant symbols for eliminating existentials, and DL-safe variables must
not be allowed to represent these auxiliary symbols.

In conclusion, the close relationship to nominals is not merely of syntactic
convenience but prepares a path for the further practical adoption of this fea-
ture. Instead of a paradigm shift from ontologies to rules, existing applications
could be augmented with bits of rule-based modeling to overcome restrictions
of classical DLs. Nominal schemas thus may provide an opportunity for enhanc-
ing the expressive power of ontologies without giving up on established tools,
formats, or methodologies.
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