
Efficient Data Redistribution to Speedup Big Data Analytics in Large Systems

Long Cheng1 and Tao Li2
1Department of Mathematics and Computer Science, Eindhoven University of Technology, The Netherlands

2Faculty of Computer Science, TU Dresden, Germany
l.cheng@tue.nl tao.li@tu-dresden.de

Abstract—The performance of parallel data analytics sys-
tems becomes increasingly important with the rise of Big Data.
An essential operation in such environment is parallel join,
which always incurs significant cost on network communica-
tion. State-of-the-art approaches have achieved performance
improvements over conventional implementations through min-
imizing network traffic or communication time. However, these
approaches still face performance issues in the presence of big
data and/or large-scale systems, due to their heavy overhead
of data redistribution scheduling. In this paper, we propose
near-join, a network-aware redistribution approach targeting
to efficiently reduce both network traffic and communication
time of join executions. Particularly, near-join is lightweight
and adaptable to processing large datasets over large systems.
We present the details of our algorithm and its implementation.
The experiments performed on a cluster of up to 400 nodes
and datasets of about 100GB have demonstrated that our
scheduling algorithm is much faster than the state-of-the-art
methods. Moreover, our join implementation can also achieve
speedups over the conventional approaches.

Keywords-data analytics; parallel joins; data locality; data-
intensive computing; high performance computing

I. INTRODUCTION

With growing of Big Data, a large quantity of data-
intensive, high-performance computing applications are
challenging current data processing algorithms and systems.
One of the most common operations in data analytic applica-
tions is parallel join. This operation facilitates combination
of two relations based on a common key, and always incurs
heavy cost on network communication within a distributed
system. As reported in [1], expensive queries could spend
more than 65% of their completion time on transferring tu-
ples over networks. Improving efficiency of data transferring
will bring in significant performance enhancement for big
data analytic applications.

A typical parallel join implementation can be, in general,
decomposed into an initial redistribution stage followed by a
local join process. As the latter process has been extensively
studied [2] and its cost does not contain any inter-machine
communication, for the purpose of this work, we mainly fo-
cus on the redistribution process over a distributed system1.
For a single join operation between two input relations R
and S over a system consisting of n nodes, we assume that

1For local join analysis, we have selected the commonly used hash join
(i.e., hash table building & probing) approach in this work.

tuples in R and S are in the form of <key, payload> and
|R| < |S| in the following.

The hash redistribution approach [3] is a widely used
method (we use the term hash-join in the following) for
parallel join executions. In hash-join, the initially partitioned
relation Ri and Si on each node i are firstly partitioned
into distinct sets Rik and Sik respectively, based on hash
values of their join key attributes. Then, each of these sets
is distributed to remote nodes for final local processing [4].
An example of such data redistribution scheme is shown in
Figure 1. There, the tuples with the key 3 (assuming its hash
value is 3) in R and S will be moved to node 3 to complete
local join. If we quantify the cost of network communication
by the number of tuples moved to remote nodes2, then the
cost in this example will be 11.

Node0 Node1 Node2 Node3 Node4

S

R

(3,1)
(3,2)
(3,3)
(3,4)

(3,5)
(...)
(3,9)

(3,10)
(3,11)

Figure 1. An example of data redistribution in a hash join.

The hash-join is far from optimal network cost due to
transmission of almost all input tuples. To overcome this
inefficiency, various approaches have been proposed and
one of them is partial duplication [3]. In this scheme, a
part of tuples in the set of small relation are broadcast
to all nodes. For instance, the two tuples of R at node 2
in the above example will be broadcast so that network
cost can be reduced from 11 to 8 compared to the hash-
join implementation. Because of its efficiency, the approach
partial duplication [3] has been adopted by many commercial
systems (e.g., Teradata [3], Microsoft [5] and Oracle [6]).

Compared to hash-join and partial duplication, the state-
of-the-art track-join [1] is able to minimize network traffic
by employing a more fine-grained method based on data

2Actually, the cost should be quantified by the data volume of transferred
tuples. For simplicity, we assume the size of each tuple remains same for
both algorithm design and experiments.

locality assignment. To reduce communication time, another
approach named neo-join [7] uses techniques of commu-
nication scheduling to avoid network congestion in data
redistribution. These two approaches have been shown to be
efficient on join executions and outperform the conventional
hash-join. However, as we will discuss later in Section II,
both methods still face performance issues in the presence
of big data and/or large data systems because of their heavy
scheduling overhead for data redistribution, .

In this paper, we present an efficient algorithm for data
redistribution, with targets to reduce both network traffic and
communication time in parallel join operations. We have
provided the detailed implementation of our approach and
conducted a performance evaluation using 100GB data over
up to 400 computing nodes. We summarize the contributions
of this work as following:
• We introduce the state-of-the-art data redistribution

approaches in parallel joins and analyze their possible
performance issues in processing big datasets on large-
scale systems.

• We present a new approach named near-join, a
network-aware redistribution approach for efficient
data transferring by exploring data partitioning and
locality assignment.

• We compare near-join with state-of-the-art techniques
and show that our approach is lightweight and much
faster to process big data on large systems. Addition-
ally, our algorithm is shown to significantly outperform
hash-join in the aspect of join execution time.

The rest of this paper is organized as following. In
Section II, we introduce the state-of-the-art techniques and
discuss their performance issues. We present our near-join
algorithm and its implementation details in Section III. We
carry out extensive evaluation of our approach in Section IV.
We report the related work in Section V and conclude this
paper in Section VI.

II. BACKGROUND

In this section, we first introduce two state-of-the-art
techniques, track-join and neo-join, which aim to minimize
network traffic and communication time. Then, we discuss
their potential performance issues in the presence of large
datasets and large systems.

A. Optimization on Network Traffic

Large amount of data movement operations always con-
sume tremendous network resources and result in long com-
munication time. Thus, reducing the volume of transferred
data over networks would bring in performance improve-
ment on join executions. Compared to hash-join and partial
duplication approaches, track-join [1] uses a more advanced
approach that can reduce network traffic.

Based on the complete knowledge of location and fre-
quency of each join key, the analysis on network cost for a

key in track-join is generally composed of two operations.
(1) Select broadcast: tuples in a relation are selected to
broadcast to all other nodes, except of the nodes with no
matching key. In Figure 1, the two tuples in R at node
2 will be only broadcast to the node 1, 2 and 4, and the
network traffic in this case is 4. (2) Migration: for the other
relation, tuples on each node will be migrated to another
node or just stay in their place, depending on whether the
overall network cost is reduced. For instance, starting with
the tuple <3,1> at node 1, if this tuple is moved to node
1, the communication cost will increase to 7. Therefore,
another migration to node 2 will be probed. In this case, the
communication cost is reduced from 4 to 3 (i.e., the cost
is 4+1-2, since the two tuples in R do not need to move
to node 2 anymore), thus the tuple will be moved to node
2. Following by this, the analysis on migration of the data
at node 3 (note that there will be four tuples on this node
now) is commenced and the whole process terminates until
the data migration at the last node n finishes.

It can be seen that the implementation of track-join is very
efficient on reducing communication cost. The reason is that
it adopts a backward way to search all possible opportunities
on reducing network traffic. Knowing the destination(s)
of all keys, input tuples will be transferred based on the
redistribution plan during join executions. Actually, track-
join can be considered as an approach which extensively
uses the philosophy of moving small data chunks instead of
large data chunks in a join implementation.

B. Optimization on Network Communication Time

Network congestion. In a distributed system, reducing
network traffic can significantly reduce communication time.
However, minimizing the communication traffic does not
necessarily lead to minimal communication time. The reason
is that when computing nodes use the network without any
coordination, utilization of network bandwidth could be very
poor. For example, in a common hash-join implementation,
all nodes firstly send their tuples to the first node, then to
the second node, and so on. This would lead to significant
network congestion, because the nodes compete for the
bandwidth of a single link while other links are not fully
utilized [7].

Communication scheduling. Dividing network communi-
cation between nodes into distinct phases is an efficient way
to avoid network congestion. In such a scheme, for each
phase, a node has a single destination to send data, and
likewise a single source to receive data. It is very similar to
a parallel peer-to-peer communication pattern in networks.
The round-robin scheduling is one of such approaches, in
which each node sends a data chunk to its neighboring
node in each phase. However, the sizes of transferred data
among nodes could be different in each phase, thus this
approach still can not fully utilize link bandwidth. In order
to maximize bandwidth utilization and consequently reduce

communication time, we need a schedule on data transfer-
ring among nodes in each phase.

Actually, the above problem has been studied as the
open-shop scheduling problem [7], [8], and the optimal
solution always guarantees that the communication time with
duration t can be achieved, where t is the maximum value
of the sum of data sending/receiving time in each phase
for each node. If the bandwidth between each pair of node
is same3, then the time t can be represented by number
of received tuples at a node with the maximum received
tuples. For example, with the track-join implementation, the
number of sent/received tuples at the five nodes in Figure 1
is {0,1,2,0,0}/{0,0,1,0,2}. Then, the minimal network com-
munication time will be 2, because 2 is the maximum value
in this case.

Minimize communication time. We denote the data trans-
ferring (i.e., sending/receiving) cost at each node i as ti.
To achieve minimal communication time, our target is to
minimize the following expression, the value of which highly
relies on the locality assignment (i.e., destinations) of the
initially partitioned data (e.g., hash partitioned) at each node.

max{ti} = max{si, ri} ∀i ∈ [0, n) (1)

The same cost model in [7] is used: each node has p data
partitions, the size of partition j at node i is denoted as hij

and the decision variables xij ∈ {0, 1} are used to indicate
whether a partition j at each node is assigned to node i.
Namely, xij = 1 represents that partition j is assigned to
node i, and xij = 0 means not. The constraint that each
partition is assigned to only one node should be fulfilled
and we compute the receiving cost ri as following4:

n∑
i=0

xij = 1 j ∈ [0, p) (2)

and

ri =

p−1∑
j=0

(
xij

n−1∑
k=0,i6=k

hkj

)
i ∈ [0, n) (3)

As presented in [7], the above cost analysis on data
assignment can be reformulated as a mixed integer linear
programming problem and an optimal solution can be com-
puted by using an optimizer (e.g., Gurobi5). With the open-
shop scheduling, the network communication time of a join
execution can be efficiently reduced.

3The method can be extended to the case with different bandwidth,
regardless, this is out the scope of this work. Also, we do not enforce
it in our experiments.

4Note that the analysis on the cost of sent tuple si is very similar as the
received tuples ri, for the sake of the simplification of our presentation in
this paper, we just focus on ri in our discussion and implementation in the
following. Namely, when we refer to ri, we actually mean the transferring
cost ri as we have described.

5www.gurobi.com

C. Discussion

The experimental results presented in [1] and [7] show
that track-join and neo-join can efficiently speedup join ex-
ecutions compared to hash-join. However, both approaches
would have performance bottlenecks for processing big data
on large-scale systems.

The reason is that the overhead of scheduling in these
two approaches could be heavy: (1) track-join uses four-
phase scheduling to track the locality of all join keys. The
first phase is done by a pre-join of all the unique keys,
which is expensive when the number of unique keys is huge.
Moreover, differently from a simple local join, the pre-join
process has to build a more complex hash table at each
node, which is in the form of

(
key, (list[N r], list[N s])

)
to

record the key’s frequency and location at each node, and
this could bring in more overheads; and (2) the data locality
assignment in neo-join relies on solving NP-complete opti-
mization problems and its solving time will increase sharply
with increasing the number of computing nodes (and also
the number of partitions). Such computational complexity
makes this approach not suitable for nowadays large data
systems with hundreds or thousands of nodes.

Additionally, track-join focuses on reducing the whole
network traffic in a distributed environment. It neglects
the fact that the overall transmission time actually depends
on completion time of each node. On the other hand,
patterns of join operations used in neo-join are still based on
the conventional redistribution and broadcasting approaches
lacking a fine-grained data movement control such as select
broadcast as we have described6.

In comparison, as we will show later that our near-
join considers both the network traffic volume and network
transmission time. Most importantly, we keep our schedule
process lightweight for processing big data on large data
systems.

III. OUR APPROACH

In this section, we present the design of the near-join
algorithm and its implementation details. Additionally, we
compare near-join with multiple techniques, including two
state-of-the-art approaches, to show its advantages.

A. Overview

To achieve low overheads on the scheduling process,
we follow two basic design principles for our near-join:
(1) network traffic minimization techniques should be only
applied to part of the data that can greatly reduce network
traffic instead of the whole input set, so as to make the

6Note that the authors of neo-join also use the term select broadcast in
their paper, regardless, they actually mean the partial duplication approach
as described in Section I. The reason is that the former operation only
broadcasts data to some specified nodes and the latter one broadcasts to all
the nodes. The partial just means part data of the full relation but rather
than part of the nodes in current literature [3], [4].

approach applicable to big datasets; and (2) more practical
and simple approach should be applied to reduce the value of
max{ri} during data assignment, so as to efficiently reduce
network communication time and also make the method
applicable to large systems.

Based on these two design principles, the main process
of our near-join implementation can be divided into the
following three main phases:
• Data partitioning: Input tuples in both R and S are

partitioned into two groups, skew ones and non-skew
ones.

• Schedule processing: This phase contains the following
three steps:

– step 1. Use track-join [1] to maximize the data
locality for the skewed tuples to minimize the
network traffic in this step.

– step 2. Based on data volume received at each node
in step 1, use an optimized approach (e.g., neo-
join [7]) to redistribute the rest non-skew tuples,
so as to reduce the final max{ri}.

– step 3. Based on the number of transferred tuples
between all the nodes (i.e., an n×n matrix) in the
above two steps, use the open-shop solution [8] to
schedule the data transfer among nodes to guaran-
tee that the minimal network communication time
can be achieved.

• Join implementation: Tuples in both R and S will
be redistributed based on the transfer plan created in
the second phase. The local join implementation will
commence once the redistribution is done and the entire
join process terminates when all individual computation
at nodes finishes.

Our method is different from current approaches: we
consider both network traffic and network communication
time (i.e., the value of max{ri}) in our join implementation.
We refer our approach as network-aware redistribution,
because both the network traffic and communication time
are trackable during our data locality assignment process.

B. Implementation of near-join Approach

In our join implementation, the skew detection (e.g., use
sampling) and local join implementation in phases of data
partition and join implementation, have been extensively
studied in literature. In the meantime, the implementation
details of track-join and open-shop scheduling in the step 1
and 3 of the second phase, have been introduced by [1]
and [7] respectively. Specifically, with the track-join, we
can process all the skewed keys in parallel and get the
corresponding K-(N1,list[N2]) mappings for all the skewed
tuples in both R and S. Here, K stands for a skewed key
appears at node N1, and list[N2] is a list of destination nodes
that K is assigned to. In such scenarios, we only focus on
the implementation details of the step 2 in the second phase

in our near-join approach to show how to efficiently assign
the locality for non-skew tuples.

1) Non-skew data assignment: We assume that the num-
ber of received tuples at each node i is ri0 after processing
by track-join (i.e., the step 1). If we want to get optimal data
assignment for non-skew tuples, one solution is to use the
analysis in neo-join. Then, the Eq. (3) in Section II can be
rewritten as the Eq. (4) as below.

ri =

p−1∑
j=0

(
xij

n−1∑
k=0,i6=k

hkj

)
+ ri0 i ∈ [0, n) (4)

Similar to neo-join, solving the optimization problem
based on Eq. (4) will be still costly when the number
of node is large. The reason is that each ri0 will be a
constant value and the complexity of the problem will be
still NP-complete. To address this issue, we proposed a more
practical method as following to reduce the final max{ri}
in the data assignment process.

For the initial (hash) partitioned non-skewed data, the
tuples in both relations, R and S, with the same hash value
must be assigned to the same node to implement the local
joins. Namely, our target is to get the data assignment results,
which can be represented as the H-N mappings. Here, each
H-N is a mapping between the hash value of a key and the
node that the key is assigned to. Based on this, we use a
heuristic way to assign the node N for each H step by step.
As shown in Algorithm 1, our approach contains three main
steps. For simplicity, we assume that each ri0 = 0 (lines
2-3) at the beginning of our algorithm.
• step 1. Get the statistical information of hash values at

each node (h, node, num), where h is a hash value
for the hash-partitioned tuples, node is the location
information of h and num is the number of tuples with
the hash value h. This step can be considered as the
pre-processing (line 1) and can be done in parallel at
each node.

• step 2. The (h, node, num) information at each node
will be collected and combined by a master node
(line 4), which is responsible to compute the data
assignment. After that, as presented in line 5, a two-
level sorting method is applied to the list L based on
the maximum value of num in different levels.

• step 3. The H-N solution is computed over the sorted
data in a sequential order (lines 6-9). For each hash
value h, we track the max{ri} (i.e., Rmax) for all
possible destinations (i.e., in total n possibilities as
lines 11-23) and choose the node achieving minimal
max{ri} (line 24). Then the received tuples at each
node R will be updated for computation of the next
hash value.

It can be observed that our implementation is very similar
to a step-by-step balancing approach. For the data assign-
ment of each hash value, we always try to balance the

Algorithm 1 Non-skew data processing in near-join
Pre-processing:

1: We can easily get the (h, node, num) information at each node
once the input relations have been partitioned (i.e., using hash
or range etc.).

Initialization:
2: R = [r0, r1, ..., rn] = 0 // initially received data
3: Rmax = 0 //monitor the possible runtime

Main procedure:
4: Collect all the (h, node, num) at each node and combine

them based on the value of h, and then we have that L =
list

(
h, list(node, num)

)
.

5: Sort L with descending order in two levels: (1) for each Li ∈
L, sort Li based on the maximum value of num in the list
L = list(node, num); and (2) for each L, we sort each pair
(node, num) based on the value of num. Additionally, for
each L, We also calculate the sum of each num, referred as
N .

6: for each Li ∈ L do //sequentially access each Li

7: Pi(H-N) = compute(Li, R, Rmax) //compute H-N
8: Add Pi mapping in an array P
9: end for

10: return The H-N mappings P //get all the H-N pairs

Procedure compute(Li, R, Rmax):
11: for (j = 0, 1, ..., n− 1) do //loop over all the nodes
12: H= Li.h, N= Li.Lj .node //targeted node
13: Strans = N −Li.Lj .num //the transferred data
14: Rj = max{Rmax, R[N]+Strans}
15: if j = 0 then //the first condition
16: if R0 = Rmax then
17: R[N]+ = Strans //update received
18: return Pi(H-N)
19: end if
20: else if Rj < Rj−1 then
21: Rmax = Rj //record the minimum solution
22: end if
23: end for
24: Track the loop x in line 11 with achieving Rmax

25: N= Li.Lx.node //node information
26: R[N]+ = N −Li.Lx.num //update R
27: return Pi(H-N)

number of received tuples at each node, to guarantee that a
smallest max{ri} can be achieved. Consequently, the value
of the final max{ri} is able to be efficiently reduced.

We use two sorting operations in step 2. The main reason
here is that the variation of the number of received tuples at
each node is more sensitive on large data chunks rather than
small ones. The first sorting operation can guarantee that
hash values with large number of tuples are processed with
higher priority than the small ones. On the other hand, the
second sorting operation is used to make sure that searching
of a target node can be terminated as early as possible, and
also with minimal network traffic (as shown in lines 16-18
in the algorithm). Namely, sometimes we do not need to
examine all the possible data movements. For example, for

a given h, with the sorted list of (node, num), as we examine
the max{ri} over each num in a descending order, we can
stop searching when the value of max{ri} in current loop
is equal to previous one7. The reason is that, in such a case,
the max{ri} does not increase and increased network traffic
(N−num) is the smallest one (because the value of num in
the followed searching process will be smaller than current
one).

2) An example: To give a more intuitive view of our
near-join, we show a simple example here. We assume that
there are three nodes, each node has 32 tuples and all of
them have been partitioned into 8 chunks according to their
hash values. With the statistic information (h, node, num)
collected from each node, the list L can be represented as
a table in Table I. For instance, the first row in the table
represents the item

(
0, (0, 1), (1, 3), (2, 11)

)
in L. Namely,

it shows that the number of tuples with hash value 0 on the
three nodes is 1, 3 and 11 respectively.

Table I
AN EXAMPLE OF PARTITIONING INFORMATION ON EACH NODE

hash values/num Node0 Node1 Node2

0 1 3 11
1 1 10 3
2 1 10 2
3 4 3 9
4 7 1 2
5 7 2 2
6 7 2 3
7 4 1 0

sum 32 32 32

As shown in Table II, after sorting over the maximum
num in each item in L, we start to assign data for each
hash value. For the first case with hash value 0, we have
three options for the target node, namely, we can move all
the tuples to either node 0, 1 or 2. Consequently, the number
of tuples received from remote nodes will be 14, 12 and 4
respectively. In this case, we select the smallest max{ri} in
the three movement options. Since the value 4 is the smallest
one, all the tuples with hash value 0 will be assigned to node
2. Namely, the first H-N mapping will be (0-2).

Based on the number of received tuples at each node
in the first step, for the case with h = 1, we also have
three options as well. Since moving data to node 1 leads
to smallest max{ri}, the mapping (1-1) will be selected.
Actually, we have sorted (node, num) based on the value of
each num in our second-level sorting operation, thus, the
cost of assigning all tuples to node 1 will be computed
at first. In this case, the value of max{ri} is still 4 and

7Note that, with the increased number of received tuples at each node,
max{ri} in current loop will be not smaller than previous one.

Table II
DATA ASSIGNMENT PROCESS IN near.

h N0 N1 N2 r0 r1 r2 max{ri} opt.

1 3 11

14 0 0 14
0 0 12 0 12

0 0 4 4
√

1 10 3

13 4 0 13
1 0 4 4 4

√

0 0 15 15

1 10 2

12 4 4 12
2 0 7 4 7

√

0 4 15 15
...

does not increase. Therefore, we can directly terminate our
searching in the current step and go to the next hash value.
The computing will be terminated until all the hash values
have been examined.

C. Comparison with Current Approaches

If we compare our near-join with the conventional hash-
join, there are two main advantages of our approach: (1)
network traffic can be highly reduced. The reason is that
we have explored data locality in our implementation. By
using the techniques from track-join, the cost on transferring
large number of skewed tuples can be minimized. In the
meantime, for the non-skew data, we also guarantee that
the network traffic is reduced by considering possible com-
munication time. In contrast, hash-join does not consider
data locality and simply redistribute all the input tuples; and
(2) network communication time can be efficiently reduced.
This is not only caused by the reduction of the network
traffic but also that we have used a tag max{ri} to track
the possible communication time during data assignment and
thus guarantee that a near optimal solution can be achieved.
Moreover, with the open-shop scheduling, we can also
efficiently improve the utilization of network bandwidth.

Compared to the two state-of-art approaches, track-
join [1] and neo-join [7], our near-join has provided an
efficient way to remedy their main performance issue as
we have discussed in Section II-C. Our scheduling process
is lightweight and applicable to process big data on large
data systems. The reason is that our data assignment method
does not focus on examining locality for all the join keys
or solving NP-complete problems. In comparison, we only
conduct a per-key statistics for the skewed keys, the number
of which is always very small. In the meantime, for non-
skew keys (tuples), we only search possible destinations
for each hash partitioned data, the complexity8 of which is

8Note that the complexity is actually O(n ·p), and p can be represented
by c · n, where c is greater than 1 and is a constant.

O(n2). Another advantage is that we have taken advantages
of both two approaches/ideas in our algorithm. We try to
reduce both network traffic and communication time. This
could make our join executions have heavier network traffic
than track-join as well as perform slower than neo-join on
network communication. However, as we will show in our
later experiments in Section IV-C, the impacts of these dif-
ferences are neglectable in terms of general communication
time in a join, compared to the improvements we achieved
on reducing the complexity of schedule process. In such
scenarios, our approach can be considered as an efficient
and practical solution which bridges the gap between the
two state-of-art techniques.

IV. EXPERIMENTAL EVALUATION

In this section, we present an experimental evaluation of
our algorithm and compare it with current approaches.

A. Platform and Setup

Our evaluation platform is the HRSK-II system of ZIH at
TU Dresden. Each node we used has two 12-core Intel Xeon
CPU E2680 processors running at 2.50 GHz, resulting in a
total of 24 cores per physical node. Each node has about
60GB of RAM and a single 128GB SSD local disk. Nodes
are connected by Infiniband. The operating system is Linux
kernel version 2.6.32-279 with gcc version 4.4.7.

We implemented hash-join, track-join [1] and our ap-
proach with the X10 parallel programming language [9]. The
version we used is 2.3 compiled to C++. For neo-join [7],
we used the Gurobi version 6.5.1 with C++ to solve the
data assignment optimization problem as we have described.
To focus on analyzing the major performance metrics of
our approach over large-scale distributed systems rather than
computing with multiple thread parallelism, we choose 400
physical nodes from our system and only use one core per
node. For the hash partition process in our approach and
neo-join, without sacrificing generality, we just use a simple
hash function f(k) = k%p and set p to a value which is
15 times the number of used nodes in each test9. Moreover,
to conduct a fair performance comparison and reduce the
impact of I/O, data are always in-memory processed in our
tests.

B. Datasets

We have used the widely used TPC-H benchmark [10] in
our tests. We use the following query in our experiments.
select *
from CUSTOMER C join ORDER O
on C.CUSTKEY=O.CUSTKEY

9Note that p is the number of hash partitions. Increase its value would
let us be able to have a more fine-grained control on data assignment.
However, the costs on scheduling of these two approaches will also increase.
Specially, the cost of neo-join increases very sharply in our initial tests. To
make part of its results can be presented in this work, we just choose the
number 15 here.

The scaling factor of TPC-H is set to 600. The number
of tuples in the two input relations is 90 millions and 900
millions correspondingly. In the meantime, the payload in
each tuple is set to 100 Bytes, leading to around 100GB
input size.

The generated data can be considered as a uniform dis-
tributed dataset (refer to skew=0 in the following). As data
skew occurs naturally in various applications, in order to
control the skewness in our tests, similar to work [3], [11],
we randomly choose a portion of data and change their
custkey to a specified value. For example, we randomly
choose 10% of the tuples and set their key to 1, which
will make the skewness to 10%. In this way, we can easily
identify cheeringly on-going experiment and capture the
essence of a Zipfian distribution [12].

C. Efficiency of Scheduling

We compare the efficiency of our scheduling approach
with hash-join, neo-join and track-join. We measure their
performance using three metrics defined as following.
• scheduling time: The time spent on scheduling for data

redistribution in a join. This metric gives insight into
the overheads of a join execution.

• data locality: The percentage of data that do not need
to be transferred during join executions. This metric is
an indicator of the volume of network traffic. Higher
data locality potentially indicates lighter traffic loads on
a network.

• maximum number of transferred tuples: The value of
the maximum number of sent/received tuples for a node
in the system. This metric represents network commu-
nication time in a join execution (under the condition
that with an efficient communication schedule).

In the following, we report the results of each algorithm
over different number of nodes and different data skews
respectively.

1) Over various nodes: We execute each approach by
varying the number of underlying nodes, from 50 nodes (50
cores) up to 400, over the uniformly distributed data. The
results for the scheduling time are presented in Figure 2. As
hash-join just simply redistributes all the tuples and does not
need any scheduling, its cost is always 0. Moreover, for our
near-join approach, it can been that it is very lightweight and
can always be done within seconds. More importantly, with
the increasing number of nodes, its time cost increases very
slightly, implying that it can be applied to large systems. In
comparison, the two state-of-art approaches perform worse
than our approach. For track-join, when the number of nodes
is 50, it perform much slower than our approach, and it costs
around 115 secs. Though its scheduling time decreases with
increasing number of nodes, the decreasing trend becomes
not obvious and the time cost is still much greater than our
approach when the number of nodes reaches 400. In the
meantime, it should be noted that each key of the generated

0 50 100 200 400

0

50

100

150

200 hash
track
neo
near

Number of nodes

Sc
he

du
le

tim
e

(s
)

Figure 2. Scheduling time of each algorithm over different number of
nodes (with skew=0).

tuples in the relation order always appears several times,
meaning that the scheduling time of track-join will be even
greater if we process more uniform distributed inputs or
use larger datasets, due to the increasing number of unique
keys. The time cost of neo-join is large and increases sharply
with node numbers. For example, it costs 2072 secs for 100
nodes, which is even longer than a regular join execution.
This means that neo-join cannot be applied to large systems.

The results of the second and third metric are reported
in Figure 3 and Figure 4 respectively. In both figures, we
find that hash-join performs only slightly worse than neo-
join and our near-join, which is surprising, because the
latter two methods have explored advanced techniques on
data locality and have considered the maximum number
of transferred tuples in their implementations. The possible
reason for this could be the number of data partitions p is
not big enough or the method we used for data partitioning
should be improved. Moreover, it can be seen track-join
achieves very high data locality (more than 50%) under
different conditions. There are two main reasons for this:
(1) the migration and selecting broadcast operation are very
efficient on reducing network traffic; and (2) around one
third of tuples in the relation customer do not have any match
in order [10], and track-join can avoid the transfer of such
tuples through its pre-join process. Though its data locality is
much higher than other three algorithms, it can be observed
that track-join does not show such a great improvement on
the maximum number of transferred tuples. The possible
reason for this is that the algorithm only focuses on reducing
the whole network traffic but not in a per-node way.

2) Over various skews: We examine the efficiency of
each algorithm over 200 nodes with various skews, increas-
ing from 0 to 20. As neo-join spends more than 5000 secs on
its scheduling, which is not meaningful in terms of efficient
join executions, we just present the results for the rest three
approaches.

As shown in Figure 5, the scheduling time of each

0 50 100 200 400
0

10

20

30

40

50

hash
track
neo
near

Number of nodes

D
at

a
lo

ca
lit

y
(%

)

Figure 3. The percentage of non-transferred data for each algorithm over
different number of nodes (with skew=0).

0 50 100 200 400
0

5

10

15

23 hash
track
neo
near

Number of nodes

M
ax

.t
ra

ns
fe

rre
d

tu
pl

es
(M

)

Figure 4. The maximum number of received tuples for each algorithm
over different number of nodes (with skew=0).

algorithm is nearly constant when increasing the skew. The
reason is that the number of unique keys of input relations
does not change for track-join. For our approach, the number
of unique skewed keys and the number of hash partitions
are constant under different skews. Regardlessly, it can be
seen that track-join is still costly under various conditions,
compared to our approach. Figure 6 shows that data locality
of each algorithm. It can be observed that the data locality
of hash-join is always closed to 0 while that of the track-
join and our method increases with increasing data skews.
The main reasons are: (1) for hash-join, all the tuples still
need to be redistributed with increasing skews; and (2)
newly generated skewed tuples will be kept locally in our
approach as well as in track-join. We can also see that the
trend to increase for our approach is more obvious than
track-join. The reason is that track-join can get ride of the
redistribution of tuples that do not take participate in a join
as we have described. With increasing data skew, part of
the non-skew tuples, which do not participate in the join,
have been changed to skewed tuples, which will be still

0 5 10 20
0

20

40

60

80

hash
track
near

Data skewness

Sc
he

du
lin

g
tim

e
(s

)

Figure 5. The scheduling time of each algorithm over different skews
(over 200 nodes).

0 5 10 20
0

10

20

30

40

50

hash
track
near

Data skewness

D
at

a
lo

ca
lit

y
(%

)

Figure 6. The percentage of non-transferred data for each algorithm over
different skews (over 200 nodes).

locally kept and thus make no contribution to increasing
data locality.

Though track-join has much higher data locality than our
approach, as shown in Figure 7, their maximum number of
transferred tuples are nearly same. This implies that their
communication time could be same during data redistribu-
tion. On the contrary, the communication time of hash-join
increases sharply when increasing the data skews, which
means this approach could result in more time on data
redistribution than the other two approaches in the presence
of data skews.

3) Discussion: From above results, it can be seen that
two extra techniques, which are out the scope of this work,
are also very critical for join implementations, in terms of
reducing network traffic and communication time. Namely,
efficient strategies on data partitioning for non-skew tuples
and efficient approaches on identifying tuples which do not
take part in a join. Because of the lack of these designs, we
have not achieved an ideal result as we expected. Namely,
our approach should have obviously advantages on data

0 5 10 20
0

50

100

150

200

hash
track
near

Data skewness

M
ax

.t
ra

ns
fe

rre
d

tu
pl

es
(M

)

Figure 7. The maximum number of received tuples for each algorithm
over different skews (over 200 nodes).

locality than neo-join and performs better on maximum
transferred tuples than track-join. Nevertheless, we can see
that the scheduling algorithm of our approach is much
more lightweight than the state-of-the-art techniques, in the
presence of large data and systems. Especially, our tests have
shown that neo-join will not be able to be applied in large
data systems. Moreover, though track-join can minimize
network traffic and thus achieve very high data locality
in various conditions, its network communication time is
shown to be very similar to our approach. Considering their
time cost on scheduling, we believe that our algorithm could
be a better choice than track-join, in terms of join runtime
efficiency in large-scale distributed scenarios. Additionally,
though hash-join performs very well over the uniform dis-
tributed data, it is not robust in the presence of data skews.

D. Performance of Join Executions

We compare the join performance of our approach against
the most popularly used hash-join. As shown in Figure 8,
we report the results over 200 nodes with different skews.
It can bee seen that our approach can obviously outperform
hash-join on join executions. Moreover, the runtime of our
approach decreases slightly while that of hash-join increases
greatly when increasing the data skew. This is consistent
with the results of data locality and the maximum transferred
tuples as described above and shows again the efficiency of
our scheduling algorithm.

V. RELATE WORK

As an important operation in large-scale data analytics
applications, parallel joins can incur significant costs and
hence improving efficiency of this operation have a signif-
icant impacts on overall performance of data queries. The
two most conventional approaches in this filed is the hash-
based and duplication-based join [13]. Though the hash-
based scheme can achieve a near linear speedup under ideal
balancing conditions [13], it has performance bottlenecks

0 5 10 20
0

100

200

300

400

500

600

700

800

hash
near

Data skewness

Jo
in

ex
ec

ut
io

n
tim

e
(s

)

Figure 8. Comparison of join execution time over different data skews
(with 200 nodes).

in the presence of data skew due to node hot spots [12].
In the meantime, as broadcasting operations always incur
heavy communication cost, the duplication-based method is
seldom adopted in large data joins, except for some work
on its variants, which highly rely on underlying high-speed
networks [14].

To improve the performance of join executions, various
advanced algorithms over distributed architectures have been
proposed [3], [5], [11], [15]. Regardless, almost all of
them just focus on data skew handling and thus can only
provide a coarse-grained operation over data redistribution.
For example, the PRPD algorithm [3] just simply keeps
all skewed tuples locally to reduce the network traffic.
Moreover, though the statistics-based method [15] can gen-
erate efficient redistribution plans through construction of
local and global histograms, it focuses on exploring the
join relationships between input tuples instead of their data
locality.

To minimize network traffic to speedup parallel joins,
the state-of-the-art track-join approach [1] has proposed a
more fine-grained operation, migration and select broadcast,
based on the complete knowledge of the underlying data.
Different from a conventional statistics approach, track-join
records not only the frequency a key appears but also its
location in the system. However, this could bring heavy
overheads in the scheduling process of the approach. On the
contrary, we just apply this kind of techniques to skewed
tuples, which makes our method able to efficiently reduce
network traffic, more importantly, much more lightweight.
As we have shown in our experiments, though our algorithm
has more network traffic than track-join, their numbers on
maximum transferred tuples are very similar. Moreover, our
scheduling algorithm is much faster than track-join, and can
always be done in seconds.

As another the state-of-the-art approach, neo-join [7]
proposes an optimal way on data assignment with targets to

minimize the communication time. Different from a general
redistribute approach, neo-join exhibits a fuzzy co-location
of the partitioned data and adopts an optimal communication
scheduling in their implementations. However, as we have
analyzed, their optimization is based on solving an NP-
complete problem, which is always expensive and thus
cannot be applied to large-scale data systems. In comparison,
our approach performs very fast and we can achieve similar
assignment solution as [7] when the number of nodes is
small as we have shown in our experiments.

Many other techniques, such as DHT [16] and dynami-
cal scheduling [17], [18], have been proposed to improve
performance of join operations. For example, the approach
presented in [17] divides the join workload into fine-grained
computation tasks and then scheduling them dynamically
at runtime to avoid idle nodes and thus fully utilizes the
computing power of a cluster. However, these work focus on
join implementations in a distributed way, which is different
from the parallel problem we have studied in this work.

VI. CONCLUSION AND FUTURE WORK

In this work, we have introduced a new approach, near-
join, for efficient parallel joins over distributed systems.
The approach has been devised specifically to efficiently
reduce both network traffic and communication time during
data redistribution of a join. Our experiments demonstrate
that our scheduling algorithm is much more lightweight
compared to the state-of-the-art approaches and our join
implementation can achieve obvious speedups compared to
the conventional hash-join approach.

Though our current implementation can efficiently explore
the data locality for skewed tuples, it shows only a little
improvement on the non-skewed ones in this aspect (also
happens on the neo-join). As we have explained, the reason
could be the data partitioning method we have used. We will
try to adopt more advanced techniques to improve this prob-
lem in our future work (e.g., using radix partitioning [19]).
In the meantime, to avoid the redistribution of tuples which
do not participate a join, we will also consider to integrate
a lightweight approach such as bloom-filter [20] in our
implementation, to guarantee that our schedule still remains
lightweight. We believe that all of these could further reduce
communication time and improve join performance of our
approach.

Acknowledgments. This work was partially supported by
the German Research Foundation (DFG) within the Cluster
of Excellence “Center for Advancing Electronics Dresden”
(cfaed), the Collaborative Research Center SFB 912 (HAEC)
and Emmy Noether grant KR 4381/1-1 (DIAMOND). The
computations were performed on the Bull HPC Cluster at
the Center for Information Services and High Performance
Computing (ZIH) at TU Dresden.

REFERENCES

[1] O. Polychroniou, R. Sen, and K. A. Ross, “Track join:
distributed joins with minimal network traffic,” in SIGMOD,
2014, pp. 1483–1494.

[2] C. Kim, T. Kaldewey, V. W. Lee, E. Sedlar, A. D. Nguyen,
N. Satish, J. Chhugani, A. Di Blas, and P. Dubey, “Sort vs.
hash revisited: Fast join implementation on modern multi-core
CPUs,” PVLDB, vol. 2, no. 2, pp. 1378–1389, 2009.

[3] Y. Xu, P. Kostamaa, X. Zhou, and L. Chen, “Handling
data skew in parallel joins in shared-nothing systems,” in
SIGMOD, 2008, pp. 1043–1052.

[4] L. Cheng, S. Kotoulas, T. E. Ward, and G. Theodoropoulos,
“Robust and skew-resistant parallel joins in shared-nothing
systems,” in CIKM, 2014, pp. 1399–1408.

[5] N. Bruno, Y. Kwon, and M.-C. Wu, “Advanced join strate-
gies for large-scale distributed computation,” PVLDB, vol. 7,
no. 13, 2014.

[6] S. Bellamkonda, H.-G. Li, U. Jagtap, Y. Zhu, V. Liang, and
T. Cruanes, “Adaptive and big data scale parallel execution
in Oracle,” PVLDB, vol. 6, no. 11, pp. 1102–1113, 2013.

[7] W. Rödiger, T. Muhlbauer, P. Unterbrunner, A. Reiser,
A. Kemper, and T. Neumann, “Locality-sensitive operators
for parallel main-memory database clusters,” in ICDE, 2014,
pp. 592–603.

[8] T. Gonzalez and S. Sahni, “Open shop scheduling to minimize
finish time,” Journal of the ACM, vol. 23, no. 4, pp. 665–679,
1976.

[9] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. Von Praun, and V. Sarkar, “X10: an object-
oriented approach to non-uniform cluster computing,” ACM
SIGPLAN Notices, vol. 40, no. 10, pp. 519–538, 2005.

[10] TPC-H benchmark specification, http://www.tpc.org/tpch/.
[11] W. Liao, T. Wang, H. Li, D. Yang, Z. Qiu, and K. Lei, “An

adaptive skew insensitive join algorithm for large scale data
analytics,” in APWeb, 2014, pp. 494–502.

[12] D. J. DeWitt, J. F. Naughton, D. A. Schneider, and S. Se-
shadri, “Practical skew handling in parallel joins,” in VLDB,
1992, pp. 27–40.

[13] D. DeWitt and J. Gray, “Parallel database systems: the future
of high performance database systems,” Commun. ACM,
vol. 35, no. 6, pp. 85–98, Jun. 1992.

[14] P. W. Frey, R. Goncalves, M. Kersten, and J. Teubner,
“Spinning relations: high-speed networks for distributed join
processing,” in DaMoN, 2009, pp. 27–33.

[15] M. Al Hajj Hassan and M. Bamha, “An efficient parallel algo-
rithm for evaluating join queries on heterogeneous distributed
systems,” in HiPC, 2009, pp. 350–358.

[16] G. S. Manku, “Routing networks for distributed hash tables,”
in PODC, 2003, pp. 133–142.

[17] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia, “Skewtune:
mitigating skew in MapReduce applications,” in SIGMOD.
ACM, 2012, pp. 25–36.

[18] X. Zhang, T. Kurc, T. Pan, U. Catalyurek, S. Narayanan,
P. Wyckoff, and J. Saltz, “Strategies for using additional
resources in parallel hash-based join algorithms,” in HPDC,
2004, pp. 4–13.

[19] S. Manegold, P. Boncz, and M. Kersten, “Optimizing main-
memory join on modern hardware,” TKDE, vol. 14, no. 4, pp.
709–730, 2002.

[20] B. H. Bloom, “Space/time trade-offs in hash coding with
allowable errors,” Communications of the ACM, vol. 13, no. 7,
pp. 422–426, 1970.

