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Abstract

Answer set programming (ASP) is a popular declarative programming paradigm with various applications.

Programs can easily have many answer sets that cannot be enumerated in practice, but counting still allows

quantifying solution spaces. If one counts under assumptions on literals, one obtains a tool to comprehend

parts of the solution space, so-called answer set navigation. However, navigating through parts of the so-

lution space requires counting many times, which is expensive in theory. Knowledge compilation compiles

instances into representations on which counting works in polynomial time. However, these techniques exist

only for CNF formulas, and compiling ASP programs into CNF formulas can introduce an exponential over-

head. This paper introduces a technique to iteratively count answer sets under assumptions on knowledge

compilations of CNFs that encode supported models. Our anytime technique uses the inclusion-exclusion

principle to improve bounds by over- and undercounting systematically. In a preliminary empirical anal-

ysis, we demonstrate promising results. After compiling the input (offline phase), our approach quickly

(re)counts.

KEYWORDS: ASP, answer set counting, knowledge compilation

1 Introduction

Answer set programming (ASP) (Marek and Truszczyński, 1999; Niemelä, 1999; Brewka et al.,

2011) is a widely used declarative problem modeling and solving paradigm with many applica-

tions in artificial intelligence such as knowledge representation, planning, and many more (Baral,

2003; Pontelli et al., 2012). It is widely used to solve difficult search problems while allowing

compact modeling (Gebser et al., 2012). In ASP, a problem is represented as a set of rules, called

logic program, over atoms. Models of a program under the stable semantics (Gelfond and Lifs-

chitz, 1988; Gelfond and Lifschitz, 1991) form its solutions, so-called answer sets. Beyond the

http://arxiv.org/abs/2311.07233v1
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search for one solution or an optimal solution, an increasingly popular question is counting an-

swer sets, which provides extensive applications for quantitative reasoning. For example, count-

ing is crucial for probabilistic logic programming, c.f., (Fierens et al., 2015; Wang and Lee, 2015;

Lee and Wang, 2015) or encoding Bayesian networks and their inference (Sang et al., 2005).

Interestingly, counting also facilitates more fine-grained reasoning modes between brave and

cautious reasoning. To this end, one examines the ratio of an atom occurring in answer sets over

all answer sets, which yields a notion of plausibility of an atom. When considering sets of liter-

als, which represent assumptions, one obtains a detailed tool to comprehend search spaces that

contain a large number of answer sets (Fichte et al., 2022b), e.g., for configuration problems (Di-

mopoulos et al., 1997; Lifschitz, 1999; Nogueira et al., 2001). However, already for ground

normal programs, answer set counting is #·P-complete (Fichte et al., 2017), making it harder

than decision problems. Recall that brave reasoning is just NP-complete, but by Toda’s Theorem

we know that PH ⊆ P#·P (Toda, 1991) where
⋃

k∈N ∆P
k = PH and NP ⊆ ∆P

2 = PNP (Stockmeyer,

1976). Approximate counting is in fact easier, i.e., approx-#·P⊆BPPNP ⊆ ΣP
3 (Lautemann, 1983;

Sipser, 1983; Stockmeyer, 1983), and approximate answer set counters have very recently been

suggested (Kabir et al., 2022). Still, when navigating large search spaces, we need to count

answer sets many times rendering such tools conceptually ineffective. There, knowledge compi-

lation comes in handy (Darwiche, 2004).

In knowledge compilation, computation is split in two phases. Formulas are compiled in a

potentially very expensive step into a representation in an offline phase and reasoning is carried

out in polynomial time on such representations in an online phase. Such a conceptual framework

would be perfectly suited when answer sets are counted many times, providing us with quick

re-counting. While we can translate programs into propositional formulas (Lee and Lifschitz,

2003; Lee, 2005; Janhunen and Niemelä, 2011) and directly apply techniques from propositional

formulas (Lagniez and Marquis, 2017a), it is widely known that one can easily run into an ex-

ponential blowup (Lifschitz and Razborov, 2006) or introduce level mappings (Janhunen, 2006)

that are oftentimes large grids and hence expensive for counters. In practice, solvers that find one

answer set or optimal answer sets can avoid a blowup by computing supported models, which can

be encoded into propositional formulas with limited overhead, and implementing propagators on

top (Gebser et al., 2009).

In this paper, we explore a counterpart of a propagator-style approach for counting answer sets.

We encode finding supported models as a propositional formula and use a knowledge compiler

to obtain, in an offline phase, a representation, which allows us to construct a counting graph

that in turn can be used to compute the number of supported models efficiently. The resulting

counting graph can be large but evaluated in parallel. Counting supported models only provides

an upper bound on the number of answer sets. Therefore, we suggest a combinatorial technique

to systematically improve bounds by over- and undercounting while incorporating the external

support, whose absence can be seen as the cause of overcounting in the first place. Our technique

can be used to approximate the counts but also provides the exact count on the number of answer

sets when taking the entire external support into account.

Contributions. Our main contributions are as follows.

1. We consider knowledge compilation from an ASP perspective. We recap features such as

counting under assumptions, known as conditioning, that make knowledge compilations

(sd-DNNFs) quite suitable for navigating search spaces. We suggest a domain-specific
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technique to compress counting graphs that were constructed for supported models using

Clark’s completion.

2. We establish a novel combinatorial algorithm that takes an sd-DNNF of a completion for-

mula and allows for systematically improving bounds by over- and undercounting. The

technique identifies not supported atoms and compensates for overcounting on the sd-

DNNF.

3. We apply our approach to instances tailored to navigate incomprehensible answer set

search spaces. While the problem is challenging in general, we demonstrate feasibility

and promising results on quickly (re-)counting.

Related Works. Previous work (Bogaerts and den Broeck, 2015) considered knowledge compi-

lation for logic programs. There an eager incremental approximation technique incrementally

computes the result whereas our approach can be seen as an incremental lazy approach on the

counting graph. Moreover, the technique by Bogarts and Broeck focuses on well-founded mod-

els and stratified negation, which does not work for normal programs in general without trans-

lating ASP programs into CNFs directly. Note that common reasoning problems on answer set

programs without negation can be solved in polynomial time (Truszczyński, 2011). Model count-

ing can significantly benefit from preprocessing techniques (Lagniez et al., 2016; Lagniez and

Marquis, 2014), which eliminate variables. Widely used propositional knowledge compilers are

c2d (Darwiche, 2004) and d4. Very recent works consider enumerating answer sets (Alviano

et al., 2023), which can be beneficial for counting if the number of answer sets is sufficiently

low. More advanced enumeration techniques have also recently been studied for propositional

satisfiability (Masina et al., 2023; Spallitta et al., 2023).

Prior Work. This paper extends the conference publication (Fichte et al., 2022a). The paper con-

tains more elaborate examples and proofs that have been omitted in the preliminary version. We

now provide an empirical evaluation on relevant instances and instances that have been used for

counting in previous works. We formulate detailed questions and hypotheses for our algorithm’s

implementation and evaluation. Now, our evaluation incorporates two instance sets containing a

large number of instances, and we compare our approach to state-of-the-art model counters.

2 Preliminaries

We assume familiarity with propositional satisfiability (Kleine Büning and Lettmann, 1999),

graph theory (Bondy and Murty, 2008), and propositional ASP (Gebser et al., 2012). Recall

that a cycle C on a (di)graph G is a (directed) walk of G where the first and the last vertex coin-

cide. For cycle C, we let VC be its vertices and cycles(G) := {VC |C is a cycle of G}. We consider

propositional variables and mean by formula a propositional formula. By ⊤ and ⊥ we refer to

the variables that are always evaluated to 1 or 0 (constants). A literal is an atom a or its nega-

tion ¬a, and vars(ϕ) denotes the set of variables that occur in formula ϕ . The set of models of a

formula ϕ is given byM(ϕ). Below, we introduce the necessary background and notation used

in the paper for ASP, and knowledge compilation.

Answer Set Programming. Let us recall basic notions of ASP, for further details we refer to

standard texts (Gebser et al., 2012). In the context of ASP, we usually say atom instead of
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variable. A (propositional logic) program Π is a finite set of rules r of the form

a0← a1, . . . ,am,¬am+1, . . . ,¬an

where 0 ≤ m ≤ n and a0, . . . ,an are atoms and usually omit ⊤ and ⊥. For a rule r, we de-

fine H(r) := {a0} called head of r. The body consists of B+(r) := {a1, . . . ,am} and B−(r) :=

{am+1, . . . ,an}. The set at(r) of atoms of r consists of H(r)∪B+(r)∪B−(r). Let Π be a pro-

gram. Then, we let the set at(Π) :=
⋃

r∈Π at(r) of Π contain its atoms. Its positive dependency

digraph DP(Π) = (V,E) is defined by V := at(Π) and E := {(a1,a0) | a1 ∈ B+(r),a0 ∈H(r),r ∈

Π}. The cycles of Π are given by cycles(Π) := cycles(DP(Π)). Π is tight, if DP(Π) is acyclic.

An interpretation of Π is a set I ⊆ at(Π) of atoms. I satisfies a rule r ∈ Π if H(r)∩ I 6= /0 when-

ever B+(r) ⊆ I and B−(r)∩ I = /0. I satisfies Π, if I satisfies each rule r ∈ Π. The GL-reduct ΠI

is defined by ΠI := {H(r)← B+(r) | I ∩B−(r) = /0,r ∈ Π}. I is an answer set, sometimes also

called stable model, if I satisfies ΠI and I is subset-minimal. The completion (Clark, 1978) of Π

is the propositional formula

comp(Π) :=
∧

a∈at(Π)

a↔
∨

r∈Π,H(r)=a

BF(r)

where

BF(r) :=
∧

b∈B+(r)

b∧
∧

c∈B−(r)

¬c.

where, as usual, the conjunction for an empty set is understood as ⊤ and the empty disjunc-

tion as ⊥. An interpretation I is a supported model (Apt et al., 1988) of Π, if it is a model of

the formula comp(Π). Let S(Π) be the set of all supported models of Π. It holds that AS(Π)⊆

S(Π) (Marek and Subrahmanian, 1992), but not vice-versa. If Π is tight, thenAS(Π)=S(Π) (Fages,

1994). In practice, we use the completion in CNF, thereby introducing auxiliary variables and still

preserving the number of supported models.

Example 1

Let Π1 = {a← b;b←;c← c}. We see that DP(Π1) is cyclic due to rule c← c. Thus, Π1 is

not tight and its respective answer sets AS(Π1) = {{a,b}} and supported models S(Π1) =

{{a,b},{a,b,c}} differ. △

Assumptions. We define ¬L := {¬a | a∈ L} for a set L of literals and assume that ¬¬a stands for

a. Let Π be a program and L(Π) := at(Π)∪¬at(Π) be its literals. An assumption is a literal ℓ ∈

L(Π) interpreted as rule ic(ℓ) := {⊥ ← ¬ℓ}. For set L of assumptions of Π, we say that L is

consistent, if there is no atom a ∈ L for which ¬a ∈ L. Throughout this paper, by L we refer to

consistent assumptions. Furthermore, we define ic(L) :=
⋃

ℓ∈L ic(ℓ) and let Π[L] := Π∪ ic(L).

Example 2

Consider program Π1 from Example 1, with AS(Π1) = {{a,b}}. For L1 ⊆ {a,b,¬c}, we obtain

the same answer sets, i.e., AS(Π1) =AS(Π1[L1]). However, for any L2 6⊆ {a,b,¬c} we obtain

AS(Π1[L2]) = /0. △

Knowledge Compilation and Counting on Formulas in sd-DNNF. Let ϕ be a formula, ϕ is in

NNF (negation normal form) if negations (¬) occur only directly in front of variables and the only

other operators are conjunction (∧) and disjunction (∨) (Robinson and Voronkov, 2001). NNFs

can be represented in terms of rooted directed acyclic graphs (DAGs) where each leaf node is
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labeled with a literal, and each internal node is labeled with either a conjunction (∧-node) or a

disjunction (∨-node).

We use an NNF and its DAG interchangeably. The size of an NNF ϕ , denoted by |ϕ |, is given

by the number of edges in its DAG. Formula ϕ is in DNNF, if it is in NNF and it satisfies

the decomposability property, that is, for any distinct subformulas ψi,ψ j in a conjunction ψ =

ψ1∧·· · ∧ψn with i 6= j, we have vars(ψi)∩vars(ψ j) = /0 (Darwiche, 2004). Formula ϕ is in d-

DNNF, if it is in DNNF and it satisfies the decision property, that is, disjunctions are of the form

ψ = (x∧ψ1)∨ (¬x∧ψ2). Note that x does not occur in ψ1 and ψ2 because of decomposability.

ψ1 and ψ2 may be conjunctions. Formula ϕ is in sd-DNNF, if all disjunctions in ψ are smooth,

meaning for ψ = ψ1∨ψ2 we have vars(ψ1) = vars(ψ2).

Determinism and smoothness permit traversal operations on sd-DNNFs to count models of ϕ

in linear time in |ϕ | (Darwiche, 2001). The traversal takes place on the so-called counting graph

of an sd-DNNF. The counting graph G(ϕ) is the DAG of ϕ where each node N is additionally

labeled by val(N) := 1, if N consists of a literal; labeled by val(N) := Σival(Ni), if N is an ∨-

node with children Ni; labeled by val(N) := Πival(Ni), if N is an ∧-node. By val(G(ϕ)) we

refer to val(N) for the root N of G(ϕ). Function val can be constructed by traversing G(ϕ) in

post-order in polynomial time.

It is well-known that val(G(ϕ)) equals the model count of ϕ . For a set L of literals, counting

of ϕL := ϕ ∧
∧

ℓ∈L ℓ can be carried out by conditioning of ϕ on L (Darwiche, 1999). Therefore,

the function val on the counting graph is modified by setting val(N) = 0, if N consists of ℓ

and ¬ℓ ∈ L. This corresponds to replacing each literal ℓ of the NNF ϕ by constant ⊥ or ⊤,

respectively. From now on, we denote by ΦΠ[L] an equivalent sd-DNNF of comp(Π[L]) and its

counting graph by GΠ[L]. Note that Π[L] = Π for L = /0. The conditioning of GΠ on L is denoted

by (GΠ)
L.

3 Counting Supported Models

In our applications mentioned in the introduction, we are interested in counting multiple times

under assumptions. In other words, we count the total number of answer sets and the number of

answer sets under various changing assumptions. Therefore, we extend known techniques from

knowledge compilation (Darwiche and Marquis, 2002).

The general outline for a given program Π is as follows: (i) we construct the formula comp(Π)

that can (ii) be compiled in a computationally expensive step into a formula Φcomp(Π) in a normal

form, so-called sd-DNNF by existing knowledge compilers. Then, (iii) on the sd-DNNF Φcomp(Π)

counting can be done in polynomial time in the size of Φcomp(Π). We can even count under a set L

of propositional assumptions by the technique known as conditioning.

However, this approach yields only the number of supported models under assumptions and

we overcount compared to the number of answer sets. To this end, in Section 4, (iv) we present a

technique to incrementally reduce the overcount.

In the following, we recall how knowledge compilation can be used to count formulas under

assumptions by assuming that a formula is in sd-DNNF and constructing a counting graph.

Example 3

Consider the sd-DNNF ϕ1 = ((x3∧¬c)∨ (¬x3 ∧ c))∧ (¬x1 ∧¬x2 ∧¬x5∧a∧b). We observe in

Figure 1 that its rooted directed acyclic graph (DAG) has 14 nodes, 7 variables, and 13 edges. In

consequence, we have that |ϕ1|= 13. By conditioning of ϕ on L = {¬c}, each variable in L will
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x3 ¬c ¬x3 c

1 1 1 0

∧ ∧

¬x1 ¬x2 ¬x5 b a

1 1 1 1 1

∧

∨

∧

Fig. 1: Counting graph G(ϕ ∧¬c) labeled with literals and their respective value.

be removed from G(ϕ1) and we obtain ϕ1∧¬c = ((x3∧¬⊥)∨ (¬x3∧⊥))∧ (¬x1∧¬x2∧¬x5∧

a∧ b). From Figure 1, we observe that the model count val(G(ϕ ∧¬c)) of formula ϕ ∧¬c is 1.

△

Using the techniques as described above, we can compile the formula comp(Π) into an sd-

DNNF Φcomp(Π) and count the number |S(Π)| of supported models. We illustrate this in the

following example.

Example 4

Consider Π1 from Example 1. When constructing comp(Π1) in CNF, we obtain 10 clauses with 4

new auxiliary variables x1, x2, x3, and x5. We can compile it into an sd-DNNF ΦΠ1
which is log-

ically equivalent to comp(Π1). For illustration purposes, we chose formula ϕ1 from Example 3

such that ΦΠ1
is equivalent to ϕ1. Hence, we can obtain the number |S(Π1)| of supported models

from val(GΠ1
). △

3.1 Counting Supported Models under Assumptions

Since assumptions of formulas and programs behave slightly differently due to the GL reduct, it

is not immediately clear that we can use conditioning to obtain the number of supported models

of a program under given assumptions. In the following we will show that supported models of Π

under assumptions L coincide with models of ΦΠ[L].

Observation 1

Let Π be a program and L assumptions. Then,M(ΦΠ[L]) = S(Π[L])

For any program Π the conditioning (ΦΠ)
L on assumptions L allows us to identify supported

models of a program Π[L].

Lemma 3.1

Let Π be a program and L be assumptions. Then,M((ΦΠ)
L) = S(Π[L]).

Proof

We first establish the following claim:

comp(Π[L]) = comp(Π∪ ic(L)) = comp(Π)∧
∧

ℓ∈L

ℓ (1)
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By definition, we have that comp(Π[L]) = comp(Π∪ ic(L)). This further evaluates to comp(Π)∪

ic(L). Since ⊥ evaluates to false always and

comp({⊥← B(r)+,¬B(r)− | r ∈Π,H(r) =⊥}) =⊥↔
∨

r∈Π,H(r)=⊥

BF(r),

we obtain that

M(⊥↔
∨

r∈Π,H(r)=⊥

BF(r)) =M(
∧

r∈Π,H(r)=⊥

⊥↔ BF(r)), (2)

=M(
∧

r∈Π,H(r)=⊥

¬BF(r)). (3)

As a result,

M(comp(Π[L]\ ic(L))∪ ic(L)) =M(comp(Π[L]\ ic(L))∪
⋃

ℓ∈L

comp(ic(ℓ)) (4)

=M(comp(Π)∧
∧

ℓ∈L

comp(ic(ℓ))) (5)

=M(comp(Π)∧
∧

ℓ∈L

¬BF(ic(ℓ))) (6)

=M(comp(Π)∧
∧

ℓ∈L

ℓ). (7)

In consequence, Equation 1 holds. It remains to show that conditioning (ΦΠ)
L in the sd-DNNF ΦΠ

preserves all models according to Π under the set L of assumptions. By definition of condi-

tioning, it holds that M((ΦΠ)
L) =M(ΦΠ ∧

∧

ℓ∈L ℓ). By assumption, it is true that M(ΦΠ ∧
∧

ℓ∈L ℓ) =M(comp(Π)∧
∧

ℓ∈L ℓ). From Equation 1, we obtain that M(comp(Π)∧
∧

ℓ∈L ℓ) =

M(comp(Π[L])). By definition, M(comp(Π[L])) = S(Π[L]). In consequence, we established

thatM((ΦΠ)
L) = S(Π[L]). Hence, the Lemma sustains.

Immediately, we obtain that we can count the number of supported models by first compiling

the completion into an sd-DNNF and then applying conditioning. For tight programs, this already

yields the number of answer sets.

Corollary 1

Let Π be a program and L be assumptions. Then,

val((GΠ)
L) = |M((ΦΠ)

L)|= |S(Π[L])|.

If Π is tight, also val((GΠ)
L) = |AS(Π[L])| holds. Furthermore, counting can be done in time

linear in |ΦΠ|.

Example 5

Consider program Π1 from Example 1, which has two supported models {a,b} and {a,b,c}.

Without setting val(c) to 0 in Figure 1, we would obtain 2, which corresponds to these two

models. By assumption ¬c, we set val(c) to 0, which results in a total count of 1 as the ∧-node

gives only one count in the subgraph. △

3.2 Compressing Counting Graphs

When computing the counting graph of the completion of a program Π, in practice, we usually

construct a CNF of the completion by introducing so-called nogoods (Gebser et al., 2012) similar
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Algorithm 1 Counting Graph Compression

In: sd-DNNF ΦΠ, L(Π)

Out: Compressed counting graph τ(GΠ)

1: initialize array t and traverse nodes N ∈ΦΠ bottom-up such that

2: if N contains a literal ℓ ∈ L(Π) then label N with val(N)

3: else if N contains a literal ℓ /∈ L(Π) then mark N as ignored

4: else check the number of children of N that are not marked as ignored

5: if N has no remaining children then mark N as ignored

6: else if N has one remaining child C then N←C and mark N as ignored

7: else v← val(N) w.r.t. t and remaining children of N and label N with v

8: add N to t

9: remove all nodes marked with ignored from t

10: return t

to Tseitin’s transformation (Tseytin, 1983). It is well-known that there is a one-to-one correspon-

dence, however, auxiliary variables are introduced, see, e.g., (Kuiter et al., 2023). For counting,

the one-to-one correspondence immediately allows to establish a bijection between the models

of the CNF and the supported models making it practicable on CNFs.

However, from Corollary 1, we know that the runtime counting models on (GΠ)
L depends

on the size of ΦΠ. In consequence, introducing auxiliary variables affects the runtime of our

approach. To this end, we introduce a compressing technique in Algorithm 1 that takes a counting

graph GΠ and produces a compressed counting graph (CCG) τ(GΠ), thereby removing auxiliary

variables that have been introduced by the Tseitin transformation. The algorithm takes as input

an sd-DNNF ΦΠ, and literals L(Π); and returns the compressed counting graph τ(GΠ). In Line 3,

we check whether the literal node consists of an auxiliary variable, and if so, it will be ignored.

The case distinction in Lines 5–7 distinguishes how many not ignored children a non-literal node

still has. Remember that each non-literal node is either an ∧-node or an ∨-node. In Line 5, the

node can be removed, as it has no child. In Line 6, the node needs to be absorbed, as it has only

one child meaning that the node ultimately becomes its child. In all other cases (Line 7), the node

needs to be evaluated on the CCG t such that the ignored nodes are treated as neutral element

of the respective sum or product. Ignored nodes are then removed from t. It remains to show

that compressing GΠ leaves val unchanged, which is the topic of the following statement and

subsequent proof.

Lemma 3.2

Let Π be a program, ΦΠ an sd-DNNF of comp(Π) after a transformation that preserves the num-

ber of models, but introduces auxiliary variables, and GΠ its counting graph. Then, val(τ(GΠ)) =

val(GΠ) and τ(GΠ) can be constructed in time O(2 · |ΦΠ|).

Proof

Let GΠ be the counting graph of an sd-DNNF that is equivalent to the CNF that has been con-

structed from comp(Π) using a transformation that preserves the number of models, which usu-

ally is the Tseitin transformation. We show that the value val(N) of each node N of GΠ, which

is not removed in τ(GΠ), does not change, since for N and its respective children children(N) in

Algorithm 1 we modify only literals that occur in the program Π. By Nτ ∈ τ(GΠ) we denote the
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modified version of N, and by childrenτ(N) we denote the children of N in τ(GΠ). We distinguish

the cases:

1. Suppose N is a literal node. Let ℓ denote the corresponding literal. If ℓ 6∈ L(Π), then N is removed

in τ(GΠ), thus by contraposition, we know that, if N is not removed in τ(GΠ), then ℓ ∈ L(Π).

Assume ℓ ∈ L(Π). Then N = Nτ . Therefore, val(N) = val(Nτ) ∈ {0,1}.

2. Suppose N is not a literal node. Then, since N is an∧- or an∨-node, we know that |children(N)| ≥

2. However, in general 0≤ |childrenτ (N)| ≤ |children(N)|.

(a) Assume |childrenτ (N)| = 0. Then, in Algorithm 1, N will be ignored and thus not belong

to τ(GΠ).

(b) Assume |childrenτ(N)| = 1. Then, in Algorithm 1, N will be absorbed by its only child.

Thus, N does not belong to τ(GΠ).

(c) Assume |childrenτ(N)| ≥ 2. Then in Algorithm 1, N will be evaluated on childrenτ(N),

which means Nτ will be contained in τ(GΠ). We now need to show that val(N) on

children(N) corresponds to val(N) on childrenτ(N), i.e., val(N) = val(Nτ). By assumption

(number of models is preserved), we have a bijection between M(ΦΠ) and S(Π) which ig-

nores auxiliary variables. Therefore, we can simply set the values of children children(N)

that have been removed or absorbed due to Cases 2a, 2b, or 2c – as a consequence of

removing auxiliary variables – to the corresponding neutral element of the value of N.

i Assume N is an ∧-node. Accordingly, in Algorithm 1, N will be evaluated on

childrenτ(N) such that in the product corresponding to val(N), the value of each re-

moved branch (removed child), due to removing auxiliary variables, corresponds to the

neutral element of multiplication, i.e., 1. Therefore, we conclude that val(N) = val(Nτ ).

ii Assume N is an ∨-node. Again, accordingly, in Algorithm 1, N will be evaluated on

childrenτ(N) such that in the sum corresponding to val(N), the value of each removed

branch (removed child), due to removing auxiliary variables, corresponds to the neutral

element of addition, i.e., 0. Therefore, val(N) = val(Nτ ), which concludes the proof.

Inspecting Algorithm 1, we see that we require two traversals of the original counting graph, one

from Lines 3–8 and another one in Line 9 where we remove the nodes that do not belong to the

CCG. Runtime follows from the fact that we need to traverse ΦΠ twice.

Corollary 2

Let Π be a tight program, then val(τ(GΠ)) = |AS(Π)|.

4 Incremental Counting by Inclusion-Exclusion

In the previous section, we illustrated how counting on tight programs works and introduced a

technique to speed up practical counting. To count answer sets of a non-tight program, we need

to distinguish supported models from answer sets on τ(GΠ), which can become quite tedious.

Therefore, we use the positive dependency graph DP(Π) of Π. A set X ⊆ at(Π) of atoms is

an answer set, whenever it can be derived from Π in a finite number of steps. In particular,

the mismatch between answer sets and supported models is caused by atoms C ∈ cycles(Π)

involved in cycles in DP(Π) that are not supported by atoms from outside the cycle. We call

those supporting atoms of C the external support of C.
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c a b d

Fig. 2: The positive dependency graph of Π2.

Definition 1

Let Π be a program and r ∈ Π. An atom a ∈ B+(r) is an external support of C ∈ cycles(Π),

whenever H(r)⊆C and B+(r)∩C = /0. By ES(C) we denote the set of all external supports of C.

Next, we illustrate the effect of external supports on the answer sets derivation.

Example 6

Let Π2 = {a← b;b← a;a← c;c← ¬d;d ← ¬c}. The positive dependency graph of Π2 is

given in Figure 2. We obtain a cycle C = {a,b} due to rules a← b and b← a with external

support ES(C) = {c} due to rule a← c. However, due to rules c← ¬d and d ← ¬c, we see

that whenever d is true, c is false, so that d deactivates the support of C, which means that

{a,b,d} cannot be derived from Π2 in a finite number of steps. Accordingly, we have S(Π2) =

{{a,b,c},{a,b,d},{d}}, but AS(Π2) = {{a,b,c},{d}}. △

Note that external supports are sets of atoms. However, we can simulate such a set by introducing

an auxiliary atom; hence one atom, as in this definition, is sufficient (Gebser et al., 2012).

Example 7

Let a← b, b← a, and b← c,¬d be rules. Then the external support of atoms {a,b}, which are

involved in cycles, is {c}. If instead of b← c,¬d we use two alternative rules br ← c,¬d and

b← br, we have ES({a,b}) = {br}. △

To approach the answer set count of a non-tight program under assumptions, we employ the

well-known inclusion-exclusion principle, which is a counting technique to determine the num-

ber of elements in a finite union of finite sets X1, . . . ,Xn. Therefore, first the cardinalities of the

singletons are summed up. Then, to compensate for potential overcounting, the cardinalities of all

intersections of two sets are subtracted. Next, the number of elements that appear in at least three

sets are added back, i.e., the cardinality of the intersection of all three sets – to compensate for

potential undercounting – and so on. As an example, for three sets X1,X2,X3 the procedure can be

expressed as |X1∪X2∪X3|= |X1|+ |X2|+ |X3|− |X1∩X2|− |X1∩X3|− |X2∩X3|+ |X1∩X2∩X3|.

This principle can be used to count answer sets via supported model counting.

Next we define a notion that is useful to identify or prune supported models that are not stable.

Definition 2

We define the unsupported constraint for a set C = {c0, . . . ,cn} ∈ cycles(Π) of atoms involved

in cycles and its respective external supports ES(C) = {s0, . . . ,sm} by the rule λ (C) := ⊥ ←

c0, . . . ,cn,¬s0, . . . ,¬sm.

The unsupported constraints as defined here, (i) are inspired by loop formulas (Lin and Zhao,

2004; Ferraris et al., 2006); and (ii) contain the whole set C, which is slightly weaker than con-

straints (nogoods) defined in related work (Gebser et al., 2012), but sufficient for characterizing

answer sets.
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c a b g e f d

Fig. 3: The positive dependency graph of Π3 from Example 8.

Lemma 4.1

Let Π be a program with cycles cycles(Π) = {C1, . . . ,Cn}, then

AS(Π) = S(Π∪{λ (C1), . . . ,λ (Cn)}).

Proof

Recall thatAS(Π)⊆ S(Π). However, supported models – in particular those that are not answer

sets – might contain a cycle C = {c0, . . . ,cm} ∈ cycles(Π) without external support from ES(C) =

{s0, . . . ,sk}, which are precisely those supported models we exclude by adding a rule

⊥← c0, . . . ,cm,¬s0, . . . ,¬sk

in the form of unsupported constraints λ (C) to Π for each C ∈ cycles(Π). This ensures that

atoms involved in cycles are not present without external support in any supported model, which

provides us with supported models that are answer sets.

Example 8

Let Π3 = Π2∪{b← g; f ← g;e← f ; f ← e}, which has two cycles C0 = {a,b} and C1 = {e, f}.

Their corresponding external supports are ES(C0) = {c,g} and ES(C1) = {g}. Accordingly, we

have unsupported constraints λ (C0) = ⊥ ← a,b,¬c,¬g and λ (C1) = ⊥ ← e, f ,¬g. Figure 3

illustrates the positive dependency graph of program Π3. △

Before we discuss our approach on incremental answer set counting, we need some further

notation. From now on, by Λd(Π) := {{λ (C1), . . . ,λ (Cd)} | {C1, . . . ,Cd} ⊆ cycles(Π)} we de-

note the set of all combinations of unsupported constraints of cycles that occur in any subset of

cycles(Π) with cardinality 0≤ d ≤ n, where n := |cycles(Π)|. Further, we define body literals of

a set of unsupported contraints Γ by B(Γ) :=
⋃

{B(λ (C)) | λ (C) ∈ Γ}.

Example 9 (Continued)

Consider program Π3 from Example 8. We have Λ0(Π3) = /0, Λ1(Π3) = {{λ (C0)},{λ (C1)}}

and Λ2(Π3) = {{λ (C0),λ (C1)}}. △

Now, we define the incremental count of |AS(Π[L])| by aL
d , using the combinatorial principle of

inclusion-exclusion as follows:

aL
d :=

d

∑
i=0

(−1)i ∑
Γ∈Λi(Π)

|S(Π[L∪B(Γ)])| (8)

= |S(Π[L])|− ∑
Γ∈Λ1(Π)

|S(Π[L∪B(Γ)])| (9)

+ ∑
Γ∈Λ2(Π)

|S(Π[L∪B(Γ)])|− · · ·+(−1)d ∑
Γ∈Λd(Π)

|S(Π[L∪B(Γ)])| (10)

By subtracting |S(Π[L]) \S(Π[L∪B(Γ)])| for each Γ ∈ Λ1(Π) we subtract the number of sup-

ported models that are not answer sets under assumptions L with respect to each cycle C ∈

cycles(Π). However, we need to take into account the interaction of cycles and their respective
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external supports under assumptions L. Thus we enter the first alternation step, where we proceed

by adding back |S(Π[L])\S(Π[L∪B(Γ)])| for each Γ ∈ Λ2(Π), which means that we add back

the number of supported models that were mistakenly subtracted from |S(Π[L])| in the previous

step, and so on, until we went through all Λi where 0≤ i≤ d. Note that therefore in total we have

d alternations. In general, we show that aL
n = |AS(Π[L])| as follows.

Theorem 1

Let Π be a program, cycles(Π) = {C1, . . . ,Cn}, and further U := {λ (C1), . . . ,λ (Cn)} be the set

of all unsupported constraints of Π. Then, for assumptions L,

|S(Π[L]∪U)|=
n

∑
i=0

(−1)i ∑
Γ∈Λi(Π)

|S(Π[L])\S(Π[L∪B(Γ)])|

Proof

We proceed by induction on |cycles(Π)|.

Induction Base Case: We assume that |cycles(Π)| = 0. Then, since Π admits no positive cycle

in DP(Π), we haveAS(Π[L]) = S(Π[L]), and therefore |AS(Π[L])|= |S(Π[L])|.

Induction Hypothesis (IH): We assume that the proposition holds for every program Π with a

number of cycles |cycles(Π)|< m.

Induction Step: We need to show that the result holds for a program Π with |cycles(Π)|= m+1.

Let C′ ∈ cycles(Π) be a cycle. We define Um := {λ (C1), . . . ,λ (Cm)} for any {C1, . . . ,Cm} ⊆

cycles(Π) such that |Um|= m with Ci 6=C′ for Ci ∈ {C1, . . . ,Cm}. Then, by IH, we have that

x := |S(Π[L∪B(Um)])|=
m

∑
i=0

(−1)i ∑
Γ∈Λi(Π),λ (C′)/∈Γ

|S(Π[L])\S(Π[L∪B(Γ)])|

To x, the formula ∑m+1
i=0 (−1)i ∑Γ∈Λi(Π) |S(Π[L])\S(Π[L∪B(Γ)])| adds |S(Π∪λ (C′))|. However,

this formula then subtracts supported models satisfying both constraints {λ (C′),λ (C′′)}with one

of the cycles λ (C′′) ∈Um twice, which require to be added back. Thus, we proceed by adding

back supported models satisfying unsupported constraints of C′ with two other cycles, which

again have to be subtracted in the next step. In turn, the application of the inclusion-exclusion

principle ensures that

m+1

∑
i=0

(−1)i ∑
Γ∈Λi(Π)

|S(Π[L])\S(Π[L∪B(Γ)])|

= x+
m+1

∑
i=0

(−1)i ∑
Γ∈Λi(Π),λ (C′)∈Γ

|S(Π[L])\S(Π[L∪B(Γ)])|.

Finally, one can count answer sets correctly.

Corollary 3

Let Π be a program, L assumptions, and n = |cycles(Π)|. Then, aL
n = |AS(Π[L])|.

In fact, we can characterize aL
n with respect to alternation depths. If there is no change from one

alternation to another, the point is reached where the number of answer sets is obtained, as the

following lemma states.
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Algorithm 2 Incremental Counting by Anytime Refinement

In: Program Π; assumptions L; compressed counting graph τ(GΠ); alternation depth d

Out: Incremental count aL
d

1: count← val(τ(GΠ)
L) and c← 0

2: if d is odd then d← d+ 1

3: for every 1≤ i≤ d

4: if c = count then break else c← count

5: for every 1≤ j ≤ i

6: c′← val(τ(GΠ)
L∪L′) where L′ is the set of literals appearing in Γ j ∈ Λi(Π)

7: if i is odd then count← count− c′ else count← count+ c′

8: return count

Lemma 4.2

Let Π be a program and L be assumptions. If aL
i = aL

i+1 for some integer i ≥ 0, then aL
i =

|AS(Π[L])|.

Proof

Suppose aL
i = aL

i+1, then ∑Γ∈Λi+1(Π) |S(Π[L])\S(Π[L∪B(Γ)])| = 0. We can observe that there-

fore no further combination of unsupported constraints with set L of assumptions where we com-

bine unsupported constraints of cycles that occur in subsets of cycles(Π) with cardinality j > i+1

points to any supported model. In other words, we have for all j > i that ∑Γ∈Λ j(Π) |S(Π[L]) \

S(Π[L∪B(Γ)])|= 0, which concludes the proof.

Using our approach on computing aL
n , we end up with 2n (supported model) counting operations

where n := |cycles(Π)| on the respective compressed counting graph τ(GΠ), which, since count-

ing is linear in k := |τ(G(Π))|, gives us that incremental answer set counting under assumptions

is by 2n · k exponential in time. However, we can restrict the alternation depth to d such that

0 ≤ d < n in order to stop after Λd(Π). Then we need to count n times for each cycle and its

respective unsupported constraints and another
(

n
i

)

times for 1 < i ≤ d, that is, for each num-

ber of subsets of cycles and their respective unsupported constraints with cardinality i. These

considerations yield the following result.

Theorem 2

Let Π be a program, L be assumptions, and 0≤ d ≤ n with n := |cycles(Π)|. We can compute aL
d

in time O(m · |τ(G(Π))|) where m = ∑i≤d

(

n
i

)

.

Note that if we choose an even d, we will stop on adding back, potentially overcounting, and

otherwise we will stop on subtracting, potentially undercounting. Algorithm 2 ensures that we

end on an add-operation to avoid undercounting in Line 2. Furthermore, it uses Lemma 4.2 as a

termination criterion in Line 4.

Example 10

Consider program Π3 from Example 8, which has 6 supported models, namely, {{d}, {d,e, f},

{a,b,d}, {a,b,c}, {a,b,c,e, f}, {a,b,d,e, f}} of which {d} and {a,b,c} are answer sets. Sup-
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pose we want to determine a
{d}
1 , then:

a
{d}
1 = |S(Π[{d}])|− |S(Π[{d}∪B(λ (C0))])|− |S(Π[{d}∪B(λ (C1))])|

= |S(Π[{d}])|− |S(Π[{d,a,b,¬c,¬g}])|− |S(Π[{d,e, f ,¬g}])|

= 4− 2− 2= 0.

We see that restricting the alternation depth to 1, leads to undercounting. However, not restricting

the depth leads to the exact count as:

a
{d}
2 = a

{d}
1 + |S(Π[{d}∪B({λ (C0),λ (C1)})])|= a

{d}
1 + |S(Π[{d,a,b,e, f ,¬c,¬g}])|

= 0+ 1 = 1 = |AS(Π3[{d}])|.

△

Preprocessing Cycles. When computing the incremental count aL
i , we can implement a simple

preprocessing step. Recall that an unsatisfiable propositional formula remains unsatisfiable when

adding additional clauses (Kleine Büning and Lettmann, 1999). Hence, if the conjunction of an

unsupported constraint and assumption leads to an unsatisfiable formula, we can immediately

obtain the resulting supported model count.

Example 11

Consider program Π4 given as follows:

Π4 = {a← b, b← a, b← c, c← b,

a← d, d← a, c← d, d← c,

a← g, b←¬h, c← f , d←¬e,

e←¬g, g←¬e, f ←¬h, h←¬ f}.

The supported models of Π4 are S(Π4)= { {e,h}, {a,b,c,d,g,h}, {a,b,c,d, f ,g}, {a,b,c,d,e,h},

{a,b,c,d,e, f}}. The answer sets of Π4 areAS(Π4)=S(Π4)\{{a,b,c,d,e,h}}. The program Π4

admits eight cycles, which are illustrated in Figure 4 by the positive dependency graph of Π4.

Hence, the unsupported constraints of Π4 are:

λ (C0) =⊥← a,b,¬c,¬d,¬g, λ (C1) =⊥← b,c,¬a,¬d,¬ f ,

λ (C2) =⊥← c,d,¬a,¬b,¬ f , λ (C3) =⊥← a,b,c,¬d,¬ f ,¬g,

λ (C4) =⊥← a,b,d,¬c,¬g, λ (C5) =⊥← a,c,d,¬b,¬ f ,¬g,

λ (C6) =⊥← b,c,d,¬a,¬ f , λ (C7) =⊥← a,b,c,d,¬ f ,¬g.

According to Corollary 3, we have that |AS(ΠL
4)| = aL

8 . Regarding the preprocessing for cycles.

Assume that we have L = {¬a,b}. Then, we can restrict Λd(Π) = {λ (C0), . . . ,λ (C7)} to U =

{λ (C1),λ (C6)}. In consequence,

|S(Π[L]∪U)|= |S(Π[L])|− |S(Π[L∪B(λ1)])|− |S(Π[L∪B(λ6)])|+ |S(Π[L∪B({λ1,λ6})])|

= 0− 0− 0+ 0= 0 = |AS(Π4[L])|.

△
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g h

Fig. 4: The positive dependency graph of program Π4 from Example 11.

5 Empirical Evaluation

To demonstrate the capability of our approach, we implement the functionality into a tool that

we call iascar (incremental answer set counter with anytime refinement and counting graph

compressor). Our prototypical system is publicly available.1 Below, we outline implementation

details and illustrate the results of a series of practical experiments, which aim at evaluating

the feasibility of our approach and its limitations. We explain the design of experiments, our

expectations, and examine our expectations within a set of instances originating in an AI problem,

a prototypical ASP problem, standard combinatorial puzzles, and graph problems.2

Design of Experiments. We design an empirical evaluation to study the questions:

1. Can we obtain sd-DNNFs for supported model counting by modern knowledge compilers?

2. Are these resulting sd-DNNFs feasible for our incremental answer set counting?

3. How does incremental counting on sd-DNNFs compare to translating ASP instances into

CNFs and run state-of-the-art model counters?

4. Since our technique aims at improving counting multiple times and under varying assump-

tions, do we benefit from the potentially expensive construction of sd-DNNFs when count-

ing multiple times?

5. What are the qualitative effects of the inclusion-exclusion-based approach to reduce the

over-counting that initially occurs when only supported models are constructed but re-

duced gradually?

Implementation Details. Our system iascar is written in Rust and builds upon well-established

tools, namely, gringo for constructing ground instances (Gebser et al., 2011), the Aalto ASP

Tools for converting extended rules (Bomanson et al., 2016) and constructing Clark’s comple-

tion (Gebser et al., 2011), and c2d to compile CNFs into a DNNF (Darwiche, 2004; Darwiche,

1999). In more detail, we implement Algorithms 1 and 2, which first construct a CCG and then

count based on the inclusion-exclusion technique. We assume the input program to be ground, if

not we use gringo to construct a propositional instance (Gebser et al., 2011). To obtain a CCG

from a propositional program, we first convert extended rules of the ground input program into

normal rules using the tool lp2normal (Bomanson et al., 2016). Then, we construct a positive

dependency graph from the propositional program and encode simple cycles, i.e., only the first

and last vertex repeat, as unsupported constraints. According to Corollary 3, we need to take all

cycles into account to obtain the exact number of answer sets of an instance. Separately, we store

the completion of the resulting program as a CNF using lp2sat (Janhunen, 2006). Afterward,

1 The latest version can be found on github at https://github.com/drwadu/iascar .
2 Experimental data, including a Linux binary and the source code of the evaluated version of iascar, is available at

https://doi.org/10.5281/zenodo.10091992 (Fichte et al., 2023).
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we compile the resulting CNF into an (sd-D)NNF by employing c2d (Darwiche, 2004; Darwiche,

1999).

Model Counters for Comparison. Later, we compare our system to existing tools for counting.

Natural approaches for counting are: (a) We employ answer set counters. (b) We enumerate an-

swer sets by a recent answer set solver. (c) Alternatively, we translate the propositional input

program into a propositional formula and run state-of-the-art preprocessors and model counters

on the resulting formula. We require a one-to-one correspondence between the answer sets and

the satisfying assignments for the translation. Unfortunately, existing answer set counters fo-

cus on extended functionality like probabilistic reasoning (Fichte et al., 2022c), algebraic semi-

rings (Eiter et al., 2021), or are tailored towards approximate counting (Kabir et al., 2022) or

certain structural restrictions of the instance (Fichte et al., 2017). Therefore, we omit tools listed

in (a) from an evaluation. For (b), we use the answer set solver clingo (Gebser et al., 2009) to

enumerate answer sets. To speed up solving, we do not output the answer sets. Since there have

been recent advances on enumerating answer sets (Alviano et al., 2023), we also include the

solver wasp, where we state only the number of answer sets and report only one configuration,

since we observe no notable difference. For repeated counting with clingo, one could store the

enumerated answer sets and implement fast data structures to test whether an element belongs to

a set (Bloom, 1970; Weaver et al., 2012) or count (Meel et al., 2018). To our knowledge, there is

no implementation that follows this direction and we did not implement it ourselves. For (c), we

turn the input program into a propositional program using gringo, convert extended rules (Bo-

manson et al., 2016) into normal rules (lp2normal), construct Clark’s completion (Gebser et al.,

2011) (lp2sat), and add level mappings (lp2atomic). Then, we apply bipartition and elimina-

tion as a preprocessing step using b+e (Lagniez and Marquis, 2017b) and evaluate leading solvers

of the model counting competition (Fichte and Hecher, 2023; Fichte et al., 2021a) using differ-

ent conceptual techniques. Therefore, we take c2d (Darwiche, 2004), d4 (Lagniez and Marquis,

2017a), and sharpsat-td (Korhonen and Järvisalo, 2021). Each solver counts satisfying assign-

ments on propositional formulas given as CNF. We consider approximate counting (Chakraborty

et al., 2014), which is interesting for projected counting or settings where we cannot expect a so-

lution from exact model counters. Since we observe no notable performance gain in this setting,

we omit it below.

Platform, Measure, and Restrictions. We evaluated our system on two platforms (a) laptop for

a user-tailored evaluation on instances with more detailed interest and (b) a systematic evalua-

tion on a larger set of benchmark instances. For (a), we ran the experiments on an 8-core intel

I7-10510U CPU 1.8 GHz with 16 GB of RAM, runnning Manjaro Linux 21.1.1 (Kernel 5.10.59-

1-MANJARO). For (b), we used a high-performance cluster consisting of 12 nodes. Each node

of the cluster is equipped with two Intel Xeon E5-2680v3 CPUs, where each of these 12 physical

cores runs at 2.5 GHz clock speed and has access to 64 GB shared RAM. Results are gathered

on Linux RHEL 7 powered on kernel 3.10.0-1127.19.1.el7 with hyperthreading disabled. Trans-

parent huge pages are set to system default (Fichte et al., 2020). We follow standard guidelines

for empirical evaluations (van der Kouwe et al., 2018; Fichte et al., 2021b) and measure run-

time using perf and enforce limits using runsolver (Roussel, 2011). We mainly compare wall

clock time. Run times larger than 900 seconds count as timeout and main memory (RAM) was

restricted to 8 GB. We chose a small timeout due to the interest in fast counting and fast counting

multiple times as outlined in the design of experiments. We ran jobs exclusively on one machine,
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where solvers were executed sequentially with exclusive access and at most four other runs were

executed on the same node.

Instances. For our experiment, we select instances that result in varying NNF sizes, CCG sizes,

and the number of simple cycles, answer sets, and supported models. We expect prototypical

problems for counting multiple times to be found in probabilistic settings. However, this area

is entirely unexplored for ASP. Gradually investigating the search space of an ASP instance,

so-called navigation is an application for counting multiple times on the same instance under as-

sumptions. Nevertheless, there are no standard ASP benchmark sets and ASP competitions (Geb-

ser et al., 2017; Dodaro et al., 2019) are either tailored for modeling problems or solving decision

or optimization problems. Therefore, we consider different types of instances. Set (S1) contains

242 instances that solve a problem in artificial intelligence. Set (S2) consists of 936 instances

of a prototypical ASP problem. Set (S3) includes a very small set of instances of combinatorial

problems. The instances in sets (S1) and (S2) have been used in previous works on ASP and

counting (Eiter et al., 2021; Besin et al., 2021; Hecher, 2022). Set (S1) encodes finding exten-

sions of an argumentation framework (Fichte et al., 2022b; Dvořák et al., 2020; Gaggl et al.,

2020). While there have been various iterations of the argumentation competition ICCMA, we

focused on instances from 2017 (Gaggl et al., 2020), and encode conflict-free sets of abstract

argumentation instances. These instances have a relatively high number of answer sets and are

cycle-free. In contrast, the 2019 instances are easy to enumerate (Bistarelli et al., 2020). The 2021

instances have only a relatively small number of solutions (Mailly et al., 2021). The ASP encod-

ing for conflict-free sets originates in the abstract argumentation system ASPARTIX (Dvořák

et al., 2020). More insights on counting and abstract argumentation frameworks and their vary-

ing semantics are available in the literature (Dewoprabowo et al., 2022). Set (S2) consists of

instances that encode a prototypical ASP domain with reachability and use of transitive closure

containing cycles. While the previous set can be done by encoding ASP instances into SAT with-

out the use of level mappings, this set provides us with a domain to distinguish the effect of

cycles. Reachability on these instances is considered on quite large real-world graphs of public

transport networks from all over the world, (Dell et al., 2017). We select graphs that either in-

corporate no particular means of public transport or all of them. Further, we omit unsatisfiable

instances thereof. Set (S3) contains the well-known n-queens problem for n ∈ {8,10,12}; a su-

doku sub-grid (3x3 grid) that has to be filled uniquely with numbers from 1 to 9; the 3-coloring

problem on a graph (3 coloring) and an encoding that ensures arbitrary 2-coloring for the same

graph (arb 2 coloring). These instances admit no simple cycles.

Setup. Since instances from the sets (S1) and (S2) contain many instances, we evaluate these on

a cluster and summarize the details in Table 1. In addition, we report on interesting instances

in more detail in Table 2. There, we omit (S1) due to absence of cycles. For counting under

assumptions, we select from the given instance uniform at random three atoms and set them

randomly to true or false. By setting few assumptions, we ensure that only few solutions are

cut. For considered solvers, we count answer sets and supported models and repeat two times

counting under up to three random assumptions. For iascar we run varying alternation depth

until we reach a fixed-point as by Lemma 4.2.

Expectations. Before we state the results, we formulate expectations from the design of experi-

ment and our theoretical understanding.



18 J. K. Fichte et al.

Set Solver # sd-DNNF[s] ccg[s] a[s] #AS

S1 sharpsat-td 183 – – 33.6 104.4

c2d 182 – – 41.5 104.9

iascar 180 24.1 32.0 0.1 106.0

d4 174 – – 8.3 30.8

clingo 96 – – 4.4 4.3

wasp 78 – – 12.7 3.7

S2 clingo 397 – – 21.2 2.2

d4 352 – – 70.1 1.6

iascar* 343 5.7 33.4 524.2 12.7

iascar-d2* 343 5.7 32.1 266.6 13.0

wasp 341 – – 9.3 1.5

sharpsat-td 330 – – 66.5 1.6

c2d 318 – – 105.2 1.5

iascar-d2 241 3.1 2.3 46.5 6.5

iascar 131 0.9 2.8 14.8 0.2

S3 iascar 6 30.0 29.8 0.2 10.8

d4 6 – – 8.8 10.8

sharpsat-td 6 – – 45.8 10.8

c2d 6 – – 15.8 10.8

clingo 4 – – 2.9 3.6

wasp 3 – – 12.5 3.0

Table 1: Comparing runtimes of different solvers when directly counting answer sets by enu-

meration (clingo, wasp), counting answer sets on a translation to SAT (c2d, sharpsat-td,

d4), using incremental answer-set counting (iascar), or using incremental answer-set counting

(iascar-d2) of depth two. iascar* and iascar-d2* refer to runs where, regardless of the

timeout, a bound (anytime count) was obtained. We omit iascar-d2 due to relevance for (S1)

and (S3). (S1) consists of 242 instances, (S2) of 936 instances, and (S3) of 6 instances. # refers

to the number of solved instances within the timeout of 900s. The average time of the compi-

lation phase for solved instances comprises both sd-DNNF[s] (average time for translating into

CNF and sd-DNNF compilation) and ccg[s] (average time for counting graph compression and

encoding unsupported constraints). a[s] refers to the average runtime of the counting step. #AS

contains the count in log10 notation, which equals the number of answer sets for all solvers ex-

cept iascar-d2, iascar* and iascar-d2*.

(E1.1): When counting multiple times, iascar outperforms existing systems.

(E1.2): When counting once, iascar is notably slower due to the overhead caused by compilation

and compression.

(E1.3): Compiling sd-DNNFs from formulas that encode answer sets takes much longer than when

compiling supported models. Most of the time is spend on the compilation for iascar if

the number of cycles is small.

(E2.1): Compressing the counting graph can significantly reduce its size and works fast.

(E2.2): The runtime of iascar depends on the number of cycles and size of the CCG due to the

structural parameter of the underlying algorithm.

(E2.3): If the instance has few cycles, counting works fast. Otherwise, depth restriction makes our

approach utilizable.

(E3): There are instances on which simple cycles are not sufficient for counting answer sets.



IASCAR: Incremental Answer Set Counting by Anytime Refinement 19

Set Instance cnf[s] sup[s] A[s] T[s] #S #AS #SC d sd-DNNF size CCG size

S2 nrp autorit 6.6 0.4 0.0 0.0 1.6 ·1001 4.0 ·1001 5 5 166 123

S2 nrp hanoi 280.2 4.1 0.3 0.0 1.0 ·1014 3.2 ·1012 77 *2 4,119 3,128

S2 nrp berkshire 311.3 2.7 5.0 0.0 1.2 ·1013 0.0 ·1000 206 *2 10,626 7,914

S2 nrp bart 105.1 2.1 0.1 0.0 2.3 ·1007 5.8 ·1006 46 *2 1,645 1,223

S2 nrp aircoach 253.8 3.2 1.6 0.0 8.6 ·1011 0.0 ·1000 130 *2 8,874 6,667

S2 nrp kyoto 0.0 0.0 0.0 0.0 2.0 ·1000 0.0 ·1000 2 2 57 38

S3 8 queens 5.2 4.5 0.0 0.0 9.2 ·1001 0.0 ·1000 0 0 48,791 3,490

S3 10 queens 9.7 6.9 0.0 0.0 7.2 ·1002 1.2 ·1001 0 0 532,645 31,172

S3 12 queens 95.6 46.0 0.1 0.7 1.4 ·1004 7.5 ·1001 0 0 12,529,332 649,354

S3 3x3 grid 5.7 4.5 0.0 0.1 3.6 ·1005 7.2 ·1002 0 0 788,711 210,893

S3 3 coloring 8.5 7.2 0.0 0.0 1.0 ·1017 3.0 ·1016 0 0 6,677 2,839

S3 arb 2 coloring 0.4 0.4 0.0 0.0 5.2 ·1033 6.5 ·1032 0 0 1,061 446

Table 2: For selected interesting instances from the considered sets, we compare runtimes of

iascar for compiling the input program to an NNF when directly counting answer sets (cnf),

counting supported models (sup), converging to the answer set count (A) under assumptions with

specified alternation depth (d) of several instances with varying numbers of simple cycles (#SC),

compressing counting graphs (T), and supported models (#S), sd-DNNF sizes (sd-DNNF size)

and CCG sizes (CCG size). Depths marked with * indicate restricting alternation depths to the

corresponding value.

Observations and Results. We summarize our results in Table 1 and Table 2. We exclude (S1)

from Table 2 due to absence of cycles. Experimental data and instances are publicly avail-

able (Fichte et al., 2023).

(O1): In Table 1 and Table 2, we see that iascar can compute the answer sets fast if the number

of cycles is small or only few cycles are present. When taking a look onto Table 2, we

see that instances such as 3 coloring or arb 2 coloring can be solved fast despite the high

number of solutions. This confirms our Expectation (E1.1).

(O2): We observe in Table 1 that while the ASP solver clingo suffers as soon as the number of

instances is high, dedicated model counters can compute the number of answer sets quite

fast on the considered instances. In fact, the overall time is faster than the overall time for

iascar, which confirms our Expectation (E1.2). When inspecting the number of cycles as

well, it confirms our Expectation (E2.3).

(O3): In Table 1, we can see that iascar spends a notable time during the phase of constructing

sd-DNNFs of a CNF if the instance has few or no cycles. Interestingly, in our experiments

we have seen that constructing an sd-DNNF of a CNF can vary notably ranging from 0.1s

to 472.0s for (S1) and ranges within a few seconds for (S2). When we encode answer

sets instead of supported models into a CNF, we obtain significantly higher runtimes for

compiling the CNF into sd-DNNF. In contrast, iascar might allow fast compilation, but

can result in extremly high runtimes when applying the inclusion-exclusion principle. This

only partially confirms our Expectation (E1.3). Table 2 provides a more detailed observa-

tion for selected instances. We see that on smaller instances such as 8 queens, 3x3 grid,

or arb 2 coloring, we can compile and count answer sets in reasonable time. Whereas on

instances such as nrp hanoi or nrp berkshire we observe a high runtime; in particular, there

we see that sd-DNNFs can become quite large.

(O4): In Table 2 column T[s], we can see that there are instances where compressing the counting



20 J. K. Fichte et al.

graph can significantly reduce its size. On many instances, we see a reduction by one order,

for example, 10 queens by factor 17.1 and 12 queens by 19.3. Still, for 3x3 grid, we see a

reduction by 3.7. This confirms Expectation (E2.1), but there we cannot necessarily expect

an improvement, which is not unsurprising due to the nature of this simplification step. In

fact, compressing instances with a large number of cycles, such as nrp berkshire, is less

effective than on those with a small number of cycles, such as nrp kyoto and 12 queens.

(O5): By correlating Observation (O3) with column #SC in Table 2, we can see that instances,

which can be solved fast, have no simple cycles. This pattern still holds, if we take a look

on Table 1 for more instances. When considering only a few cycles as in iascar-d2,

which considers only depth two, we can see that instances for (S2) result in significantly

more solved instances, but a high over-count. This matches with our expectation (E2.2)

and the knowledge on how CNFs are generated from a program as cycles are a primary

source of hardness in ASP. Unsurprisingly, compiling CNFs without level mappings/loop

formulas, as stated in column sup[s], works much faster. This is particularly visible for

instances nrp hanoi, nrp berkshire, nrp bart, or nrp aircoach.

(O6): From columns #SC, depth, and A[s] in Table 2, we can see that the runtime on the il-

lustrated instances depends on both parameters. A medium number of simple cycles and

depth effects the runtime; similar to high number of simple cycles and small depth. Still,

with a high number of simple cycles and a small depth, we can obtain the count under

assumption sufficiently fast. This partially confirms our Expectation (E2.2). Interestingly,

the size of the CCG itself has a much less impact than anticipated, see instance 12 queens.

(O7): Consider Table 2. The runtime, as stated in column A[s], indicates that we can still obtain

a reasonable count for instances, which ran with restricted depth, marked by *; see for

example nrp hanoi, nrp aircoach, or nrp berkshire.

(O8): Finally, note that in Table 2 there is one instance, namely, nrp autorit, for which we over-

counted by 3 when restricting to simple cycles, which confirms Expectation (E3). However,

on all other instances, we obtained the exact count.

Summary. The evaluation indicates that our approach clearly pays off on instances containing

reasonably many cycles. In particular, we see promising results when counting under assump-

tions, clearly benefiting from knowledge compilation. Compression of the counting graph works

reasonably fast and can significantly reduce its size. Overall, the drawn experiments allowed us

to confirm our expectations we stated before running the experiments. However, we see that our

approach shows only benefits if the number of cycles is sufficiently small and whenever we are

interested in counting multiple times. We expect that additional preprocessing pays off, if we

can either exclude cases where there are no answer sets possible or where we can reduce the

instance size notably, as with preprocessing of propositional formulas. Further, since knowledge

compilation might consume larger parts of our overall runtime, we immediately expect better

performance with the availability of improved and optimized knowledge compilers.

6 Conclusion

We establish a novel technique for counting answer sets under assumptions combining ideas from

knowledge compilation and combinatorial solving. Knowledge compilation and known transfor-

mations of ASP programs into CNF formulas already provide a basic toolbox for counting answer

sets. However, compilations suffer from overhead when constructing CNFs. Our approach is sim-
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ilar to propagation-based solving when searching for one solution. We construct compilations

that allow reasoning for supported models and apply a combinatorial principle to count answer

sets. Our approach gradually reduces the over-counting we obtain when considering supported

models. Further, we introduce domain-specific simplification techniques for counting graphs.

We expect our technique to be useful for navigating answer sets or answering probabilistic

questions on ASP programs, requiring repeated counting questions under assumptions. Thereby,

we see particular potential of our quantitative technique in the study and analysis of existing solv-

ing approaches and heuristics, especially through the lense of answer set navigation, where we

expect synergies. For instance, feasible repeated counting might yield useful counting-based met-

rics in the context of searching diverse answer sets (Böhl et al., 2023; Böhl and Gaggl, 2022). An-

other interesting application could be to augment visual representations of answer sets (Dachselt

et al., 2022; Hahn et al., 2022) with designated quantitative characteristics, such as relative fre-

quencies obtained by repeated counting under assumptions.

For future work, we plan to investigate techniques to reduce the size of compilations for sup-

ported models, which can, in fact, already be a bottleneck due to the added clauses modeling

the support of an atom. There, domain-specific preprocessing or an alternative compilation could

be promising. Furthermore, fast identification of unsatisfiable cases by incremental SAT solving

could be interesting to evaluate. From the practical side, it is seems also be interesting whether

we can speed up counting by GPUs (Fichte et al., 2021c) or database technology (Fichte et al.,

2022e) in the ASP navigation setting. From the theoretical side, questions on the effectiveness

of knowledge compilations in ASP might be interesting and similar to considerations for for-

mulas (Darwiche and Marquis, 2002). Finally, we believe that verifiable results would also be

interesting when exact bounds are required, similar to techniques that have recently been de-

veloped in propositional counting (Fichte et al., 2022d; Beyersdorff et al., 2023; Bryant et al.,

2023).
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TRUSZCZYŃSKI, M. 2011. Trichotomy and dichotomy results on the complexity of reasoning with disjunc-

tive logic programs. Theory and Practice of Logic Programming, 11, 881–904.

TSEYTIN, G. S. 1983. On the Complexity of Derivation in Propositional Calculus, pp. 466–483. Springer

Berlin Heidelberg, Berlin, Heidelberg.

VAN DER KOUWE, E., ANDRIESSE, D., BOS, H., GIUFFRIDA, C., AND HEISER, G. 2018. Benchmarking

crimes: An emerging threat in systems security. CoRR, abs/1801.02381, 1–17.

WANG, Y. AND LEE, J. 2015. Handling uncertainty in answer set programming. In BONET, B. AND

KOENIG, S., editors, Proceedings of the 29th AAAI Conference on Artificial Intelligence (AAAI’15) 2015,

pp. 4218–4219, Austin, TX, USA. The AAAI Press.

WEAVER, S. A., RAY, K. J., MAREK, V. W., MAYER, A. J., AND WALKER, A. K. 2012. Satisfiability-

based set membership filters. Journal on Satisfiability, Boolean Modeling and Computation, 8, 3-4,

129–148.


