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Towards More NP-Complete Problems

Starting with Sar, one can readily show more problems P to be NP-complete, each time
performing two steps:

(1) Show that P € NP
(2) Find a known NP-complete problem P" and reduce P’ <, P

Thousands of problem have now been shown to be NP-complete.
(See Garey and Johnson for an early survey)
In this course:
<, Cuque <, INDEPENDENT SET
Sat <, 3-Sar <p DIR. HamiLTONIAN PATH

<, SusseT Sum <, KNapsack
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3-Sat, Hamiltonian Path, and Subset Sum

Markus Krétzsch; 11 Nov 2024 Complexity Theory slide 3 of 34



NP-Completeness of 3-Sar

3-Sar: Satisfiability of formulae in CNF with < 3 literals per clause

Fheorem 8.1: 3-Sar is NP-complete.

Proof: Hardness by reduction Sar <, 3-Sar:
® Given: ¢ in CNF
e Construct ¢’ by replacing clauses C; = (L; V --- Vv L;) with k > 3 by

Cz/ =L VY) AN YT VIZVY) A A (2Yo VL)

Here, the Y; are fresh variables for each clause.
e Claim: ¢ is satisfiable iff ¢’ is satisfiable.
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Example

Leto:=X; VX VX3V Xy) A (X4 V=X VX5V -X))
Then ¢ = X;VY)A

(=Y VX2V Ys) A

(=Y, V=X3VY3)A

(=Y3VXy) A

=Xy VZ) A
(=Z1 V=X VZo) A
(=Zr, VX5V Z3) A

(=23 vV =Xy)
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Proving NP-Completeness of 3-Sar

“=” Given ¢ := A\, C; with clauses C;, show that if ¢ is satisfiable then ¢’ is satisfiable
For a satisfying assignment g for ¢, define an assignment g’ for ¢’:
Foreach C :=(L; v ---V L), with k > 3, in ¢ there is

C=(L VYY) AN VILVY)) Ao A (7Y VL) ing

BX)=1ifL =X

As 3 satisfies ¢, there isi < k s.th. B(L;) = 1 i.e.
p 4 L) BX)=0ifL; = =X

B =1 forj <i
set B(Y)=0 forj > i
B'(X)=pB(X) forall variables in ¢

This is a satisfying assignment for ¢’
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Proving NP-Completeness of 3-Sar

“<” Show that if ¢’ is satisfiable then so is ¢
Suppose S is a satisfying assignment for ¢’ — then f3 satisfies ¢:
LetC:= (L, v---V L) beaclause of ¢
(1) If k <3 then Cis aclause of ¢’
(2) If k> 3 then
C=(L VYY) AN VL VYY) Ao A (2Y VL) ing
S must satisfy at leastone L;, | <i<k

Case (2) follows since, if B(L;) = 0 for all i < k then C” can be reduced to

CI

YY) A Y v) A A (2Yer)

Yi AN Y1 > 1) Ao A (Yo = Y1) A=Y

which is not satisfiable.
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NP-Completeness of Directep HAmILTONIAN PATH

DirecTep HamiLTONIAN PATH

Input: A directed graph G.

tex exactly once?

Problem: Is there a directed path in G containing every ver-

Fheorem 8.2: Directep HamiLtronian PatH is NP-complete.

Proof:

(1) Directep HamiLtonian PatH € NP:
Take the path to be the certificate.

(2) Directep HamiLtonian PatH is NP-hard:
3-Sar <, DiRecTeD HAMILTONIAN PATH

Markus Krétzsch; 11 Nov 2024 Complexity Theory

slide 8 of 34



Digression: How to design reductions

Task: Show that problem P (Directep HamiLtonian PatH) is NP-hard.
® Arguably, the most important part is to decide where to start from.

That is, which problem to reduce to Directep HamiLToNIAN PATH?

® Considerations:
— Is there an NP-complete problem similar to P?
(for example, Criaue and INDEPENDENT SET)
— ltis not always beneficial to choose a problem of the same type
(for example, reducing a graph problem to a graph problem)
® For instance, CLiaue, INDEPENDENT SET are “local” problems
(is there a set of vertices inducing some structure)
® Hamiltonian Path is a global problem
(find a structure — the Hamiltonian path — containing all vertices)

* How to design the reduction:

— Does your problem come from an optimisation problem?
If so: a maximisation problem? a minimisation problem?
— Learn from examples, have good ideas.
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NP-Completeness of Directep HAmILTONIAN PATH

Proof (Proof idea): (see blackboard for details)
Letp:= AL, Ciand C; := (L V Lip V L; 3)
® For each variable X occurring in ¢, we construct a directed graph (“gadget”) that
allows only two Hamiltonian paths: “true” and “false”
e Gadgets for each variable are “chained” in a directed fashion, so that all variables
must be assigned one value
® Clauses are represented by vertices that are connected to the gadgets in such a
way that they can only be visited on a Hamiltonian path that corresponds to an
assignment where they are true

Details are also given in [Sipser, Theorem 7.46].

Example 8.3: ¢ :=C; A C; where C; :=(X V=YV Z)and C; := (=X VYV -Z)
(see blackboard)
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Towards More NP-Complete Problems

Starting with Sar, one can readily show more problems P to be NP-complete, each time
performing two steps:

(1) Show that P € NP
(2) Find a known NP-complete problem P" and reduce P’ <, P

Thousands of problem have now been shown to be NP-complete.
(See Garey and Johnson for an early survey)
In this course:
<, Cuque <, INDEPENDENT SET
Sat <, 3-Sar <p DIR. HamiLTONIAN PATH

<, SusseT Sum <, KNapsack
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NP-Completeness of SuBser Sum

SuBSET Sum

Input: A collection' of positive integers

Problem: Is there a subset 7 C S such that 3}, .y a; = 1?

Fheorem 8.4: Susset Sum is NP-complete. \

Proof:
(1) Sueser Sum € NP: Take T to be the certificate.

(2) Susser Sum is NP-hard: Sar <, Susset Sum

1) This “collection” is supposed to be a multi-set, i.e., we allow the same number to occur several
times. The solution “subset” can likewise use numbers multiple times, but not more often than they
occured in the given collection.
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Example

X; VXy VX)) A X, VX)) AKXV Xs V=X,V =Xs)
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X1 X2 X3 X4 X5 C; Gy Cs
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1
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—-—=0000

= 000000
=2 000000O0O

0

1

1

1

1

W OO0 O0O—-—=- OO0O00O0O—=-O—0O
N OO0 200 OCO—-0O0000CO—0O
A | 222000 OO —=—=20—=-000
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Sar <, SuBSET Sum

Given: ¢ :=C; A--- A Cy in conjunctive normal form.

(w.l.o.g. at most 9 literals per clause)

Let X|,.... X, be the variables in ¢. For each X; let

1 i=j 1 X;occursin C;
tit=ay...aycy...cp where g; ;= and ¢; := 0 otherwi
otherwise

i#]

1 i=j 1 —=X; occurs in C;
fit=ai...a,c;...cp where g; = and ¢ := )
' 0 0 otherwise

Markus Krétzsch; 11 Nov 2024 Complexity Theory slide 15 of 34



Example
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Sar <, SuBSET Sum

Further, for each clause C; take r := |C;| — 1| integers m; i, ..., m;,
=i

1
where mij:=¢Ci...Ck with Cp =
C+i

Definition of S: Let

S:={t,fill<isnyUim|1<i<k 1<j<|C|-1)

Target: Finally, choose as target

t:=ay...a,c,...cywherea; :=1andc; :=|C

Claim: There is T C S with 3}, . a; = 1 iff ¢ is satisfiable.
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Example
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NP-Completeness of SuBser Sum

Letyo:= AC; C;: clauses
Show: If ¢ is satisfiable, then there is 7' C S with .75 = 1.

Let 3 be a satisfying assigment for ¢

Set Th:= {4|pX)=1,1<i<m}u
Vil BX) =0, 1<i<m}
Further, for each clause C; let r; be the number of satisfied literals in C; (with resp. to 3).
SetT):={my;|1<i<k, 1<j<|C|-r)}
and define 7 := T, U T>.

It follows: > crs=1
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NP-Completeness of SuBser Sum

Show: If there is T C S with } .. s = 1, then ¢ is satisfiable.
LetT C Ssuchthat ). .rs=1

1 ifn,eT

Define B(X;) =
sfine A {0 iffeT

This is well defined as for all i: #; € T or f; € T but not both.

Further, for each clause, there must be one literal set to 1 as for all i,

the m; ; € S do not sum up to the number of literals in the clause.
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Towards More NP-Complete Problems

Starting with Sar, one can readily show more problems P to be NP-complete, each time
performing two steps:

(1) Show that P € NP
(2) Find a known NP-complete problem P" and reduce P’ <, P

Thousands of problem have now been shown to be NP-complete.
(See Garey and Johnson for an early survey)
In this course:
<, Cuque <, INDEPENDENT SET
Sat <, 3-Sar <p DIR. HamiLTONIAN PATH

<, SusseT Sum <, KNapsack
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NP-completeness of KNapsack

KNaPsack

Input:

Problem:

Asetl:={1,...,n}of items

each of value v; and weight w; for 1 <i < n,
target value r and weight limit ¢

Is there T C I such that

Ziervi > tand Y w; <07

Fheorem 8.5: Knapsack is NP-complete.

Proof:

(1) Knapsack € NP: Take T to be the certificate.

(2) Knapsack is NP-hard: Sueser Sum <, KNapPsack
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SusseT Sum <, KNapsack

Given: S:={ay,...,a,} collection of positive integers

Subset Sum: t target integer

Problem: Is there a subset 7' C S such that 3, .y a; = 1?

Reduction: From this input to Susser Sum construct
e setofitems/:={1,...,n}
® weights and values v; = w; = g; forall 1 <i<n
e target value ' :=r and weight limit £ := ¢
Clearly: Forevery T C S

Za,-:t iff

a;eT Za,»ET w;, <l =t

Daervizt =t

Hence: The reduction is correct and in polynomial time.
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A Polynomial Time Algorithm for Knapsack

Knapsack can be solved in time O(n{) using dynamic programming

Initialisation:
e Create an (£ + 1) x (n + 1) matrix M
o Set M(w,0):=0foralll <w<and M(0,i):=0forall 1 <i<n

Computation: Assign further M(w, i) to be the largest total value obtainable by selecting
from the first i items with weight limit w:

Fori=0,1,....,n—1setM(w,i+ 1) as
M(w,i+ 1) := max {M(w, i), M(W — Wiy1,1) + Vi1 }
Here, if w —w;;; < 0 we always take M(w, i).

Acceptance: If M contains an entry > 7, accept. Otherwise reject.
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Example

Input 7 = {1,2, 3,4} with

Values: vi=1 w=3 v3=4 =2
Welght wi=1l wr=1 w3=3 wy=2
Weight limit: ¢ =15 Target value: t=7

weight | max. total value from first i items

limtw | i=0|i=1]i=2|i=3|i=4
0 0 0 0 0 0
1 0 1 3 3 3
2 0 1 4 4 4
3 0 1 4 4 5
4 0 1 4 7 7
5 0 1 4 8 8

Set M(w,0):=0forall 1l <w < and M(0,/):=0foralll <i<nFori=0,1,...

set M(w,i+ 1) := max {M(w, i), M(w — Wiy, i) + viy1}
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Did we prove P = NP?

Summary:
® Theorem 8.5: Knapsack is NP-complete

® Knapsack can be solved in time O(n{) using dynamic programming

What went wrong?

KNAPsACk
Input: Asetl:={1,...,n}ofitems
each of value v; and weight w; for 1 <i < n,
target value r and weight limit ¢
Problem: Isthere T C I such that
Siervi=tand Y w; < L7
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Pseudo-Polynomial Time

The previous algorithm is not sufficient to show that Knapsack is in P
® The algorithm fills a (€ + 1) X (n + 1) matrix M
® The size of the input to Knapsack is O(n log ¢)
~> the size of M is not bounded by a polynomial in the length of the input!

Definition 8.6 (Pseudo-Polynomial Time): Problems decidable in time polyno-
mial in the sum of the input length and the value of numbers occurring in the in-
put.

Equivalently: Problems decidable in polynomial time when using unary encoding
for all numbers in the input.

o |f Knapsack is restricted to instances with ¢ < p(n) for a polynomial p, then we obtain
a problem in P.

e Knapsack is in polynomial time for unary encoding of numbers.
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Strong NP-completeness

Pseudo-Polynomial Time: Algorithms polynomial in the maximum of the input length and
the value of numbers occurring in the input.

Examples:
o KNAPSACK

® SusseT Sum

Strong NP-completeness: Problems which remain NP-complete even if all numbers are
bounded by a polynomial in the input length (equivalently: even for unary coding of
numbers).
Examples:

® CuLique

® Sar

® HamiLtoniaN CycLE

Note: Showing Sar <, Sueset Sum required exponentially large numbers.
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Beyond NP
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The Class coNP

Recall that coNP is the complement class of NP.

Definition 8.7:
e For alanguage L C X* let L := ¥* \ L be its complement
® For a complexity class C, we define coC := {L | L € C}
* In particular coNP = {L | L € NP}

A problem belongs to coNP, if no-instances have short certificates.

Examples:
* No Hamitonian Path: Does the graph G not have a Hamiltonian path?

® Tautoroay: Is the propositional logic formula ¢ a tautology (true under all
assignments)?

Markus Krétzsch; 11 Nov 2024 Complexity Theory slide 32 of 34



coNP-completeness

Definition 8.8: A language C < coNP is coNP-complete, if L <, CforallL €
coNP.

Theorem 8.9:
(1) P =coP
(2) Hence, P € NP n coNP

Open questions:
® NP = coNP?
Most people do not think so.
® P =NPncoNP?

Again, most people do not think so.
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Summary and Outlook

3-Sar and HamiLronian Path are also NP-complete

So are SusSer Sum and Knapsack, but only if numbers are encoded effiently
(pseudo-polynomial time)

There do not seem to be polynomial certificates for coNP instances; and for some
problems there seem to be certificates neither for instances nor for non-instances

What’s next?
® Space
® Games
® Relating complexity classes
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