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Abstract
Especially in data-intensive settings, a promising
reasoning approach for description logics (DLs) is
to rewrite DL theories into sets of rules. Although
many such approaches have been considered in the
literature, there are still various relevant DLs for
which no small rewriting (of polynomial size) is
known. We therefore develop small rewritings for
the DL ALCHIQ – featuring disjunction, num-
ber restrictions, and inverse roles – to disjunctive
Datalog. By admitting existential quantifiers in rule
heads, we can improve this result to yield only rules
of bounded size, a property that is common to all
rewritings that were implemented in practice so far.

1 Introduction
Among the many approaches towards efficient reasoning
in description logics (DLs), consequence-preserving transla-
tions of DL theories into rule languages are among the most
prominent. Table 1 gives an overview of works in this area.
The natural strength of rule reasoners is their good scalabil-
ity towards large sets of facts. Indeed, all of the rewritings in
Table 1 are independent of the given facts (ABox), which can
be used unchanged for reasoning with the rule-based theory.
In general, we can describe this idea of rewriting as follows:

Definition 1. Consider fragments L1 and L2 of first-order
logic that include ground facts.

An L2-theory T2 is a fact-entailment preserving rewriting
(or simply rewriting in this paper) of an L1-theory T1 if, for
every set F of ground facts and every ground fact ϕ over the
signature of T1, we have T1,F |= ϕ iff T2,F |= ϕ.

If such a rewriting can always be computed, then L1 is
(effectively, fact-entailment preserving) rewritable to L2.

All of the works in Table 1 establish rewritability in this
sense for the given fragments, and in particular preserve en-
tailments of all role (i.e., binary) atoms. If only entailments of
class (i.e., unary) atoms are of interest, then all uses of ALC
in the table can also be replaced by S – and by SR at the

∗Results from this technical report are published in an epony-
mous IJCAI 2020 paper, which should be used in citations [Carral
and Krötzsch, 2020].

Work Source Target Size

Hustadt et al. [2007] ALCHIQ Datalog∨ exp. †
Eiter et al. [2012] Horn-SHIQ Datalog exp. †

Rudolph et al. [2012] SHIQbs Datalog∨ exp. †
Bienvenu et al. [2014] SHI Datalog∨ exp. †

Carral et al. [2018] Horn-ALCHOIQ Datalog exp. †
Carral et al. [2019b] Horn-SHIQ Datalog exp. †

Horn-SRIQ Datalog 2exp.†

Ortiz et al. [2010] Horn-ALCHOIQ Datalog poly.
Ahmetaj et al. [2016] ALCHIO Datalog∨ poly.

Krötzsch [2011] EL++ Datalog poly.†
Carral et al. [2019a] Horn-ALC Datalog∃ poly.†
†: rules of bounded size that does not depend on input

Table 1: Rewritings of DL-type logics to rule languages, where
Datalog∨ and Datalog∃ denote Datalog extended with disjunctions
and existential quantifiers, respectively

cost of exponentially larger rewritings – based on common
preprocessing techniques [Ortiz et al., 2010]. Entailment of
(complex) role atoms is also a special case of regular path
query answering, which can be solved by combined methods
that we do not discuss here [Simancik, 2012].

While the works in Table 1 rely on diverse rewriting meth-
ods, they must all obey some complexity-related constraints.
In particular, if L1 is rewritable to L2, then L2’s data com-
plexity for fact entailment subsumes that ofL1. Hence, Horn-
DLs (P-complete in data) are rewritable to Datalog, while
non-Horn DLs (co-NP-complete in data) supposedly are not.

Combined complexity is also a limiting factor. It is EXP-
TIME-complete for Datalog and co-NEXPTIME-complete for
Datalog∨, but drops to P and NP, respectively, if rule sizes
are bounded († in Table 1). This explains why †-rewritings
from (N)EXPTIME-complete DLs to Datalog(∨) must pro-
duce exponentially large rule sets. The alternative is to allow
polynomially growing rule sizes (and especially predicate ari-
ties). The last two lines in Table 1 are rewritings that use con-
stant rule sets and rewrite TBoxes to facts in (sub)polynomial
time. This works for EL++ due to its P-complexity, and for
Horn-ALC due to the high expressive power of Datalog∃ the-
ories, even when these are constant.

Given this rich body of research in rule rewritings, there is



a surprising shortage of rewriting-based reasoners. KAON2
uses the exponential SHIQ rewriting of Hustadt et al.
[2007], and DReW the polynomial EL++ rewriting of
Krötzsch [2011] – both systems are discontinued. Rule rea-
soners, in contrast, have been thriving in recent years, and
scalable systems exist both for Datalog∨ (e.g., answer set
programming engines [Lifschitz, 2019]) and for Datalog∃
(e.g., engines for tuple-generating dependencies [Bellomarini
et al., 2018; Motik et al., 2014; Urbani et al., 2018]).

A possible explanation is that known rewritings still suffer
from many shortcomings. Indeed, exponentially large rule
sets (Table 1, lines 1–7) and rule sizes in the order of the on-
tology (lines 8–9) both impair practical performance, whereas
static rewritings (lines 10–11) are often better implemented
in dedicated “consequence-based” reasoners rather than rely-
ing on general-purpose rule reasoners [Kazakov et al., 2013].
Moreover, Table 1 highlights that many DL feature combina-
tions are not supported by any polynomial rewriting.

In this paper, we therefore study polynomial rewritings for
hitherto unsupported DLs, in particular for the combination
of number restrictions (Q) and inverses (I) on a non-Horn
DL. The result are two new rewriting approaches for the DL
ALCHIQ: a rewriting to Datalog∨ that (unavoidably) re-
quires unbounded (but still linear) rule sizes, and a rewrit-
ing to Datalog∨∃ that achieves bounded rule sizes. Datalog
with existential quantifiers is co-re-complete for fact entail-
ment, but we show that our rewriting leads to rule sets for
which entailment can be decided with standard algorithms,
while still matching the original DL’s co-NP data complexity.
Both results are new, and – in the second case – also illustrate
the potential advantage of considering rules with existential
quantifiers as a target for rewriting.

Finally, we also consider Horn-ALCHIQ, the disjunction-
free fragment of ALCHIQ. Whereas our rewriting of
ALCHIQ to Datalog∨ and Datalog∨∃, respectively, could be
applied here, it produces rule sets that always contain disjunc-
tions. We therefore combine several known results to obtain
alternative, disjunction-free rewritings for this case.

This is an extended technical report with additional details
on proofs that have been omitted from the conference version
[Carral and Krötzsch, 2020].

2 Preliminaries
We introduce Datalog∨∃ as a first-order rule language, and
define Datalog, Datalog∨, and the DL ALCHIQ as frag-
ments thereof. The datalog-first disjunctive chase provides
a suitable deduction calculus for the Datalog∨∃ fragments we
rewrite to. We assume familiarity with standard notions of
first-order logic, such as interpretations and homomorphisms.

2.1 Rules and Logic Fragments
We consider a first-order signature based on mutually dis-
joint, countably infinite sets of constants C, variables V,
nulls N, and predicates P. The set of terms is T = C ∪
V ∪ N. A predicate P ∈ P has an arity ar(P ) ≥ 1,
Pi = {P | ar(P ) = i}. We consider special predicates
>,⊥ ∈ P1, and ≈ ∈ P2, which are semantically inter-
preted as universal class, empty class, and equality. For

( Cu) A(x) ∧B(x)→ C(x) A uB v C
( Ct) A(x)→ B(x) ∨ C(x) A v B t C
(∀ ) A(x) ∧R(x, y)→ B(y) A v ∀R.B
(∃ ) A(x)→ ∃y.R(x, y) ∧B(y) A v ∃R.B
(◦ ) A(x) ∧R(x, y) ∧B(y)→ S(x, y) A ◦R ◦B v S
(6) R(x, y) ∧R(x, z)→ y ≈ z > v 61R.>
( Ru) R(x, y) ∧ S(x, y)→ V (x, y) R u S v V
( Rt) R(x, y)→ S(x, y) ∨ V (x, y) R v S t V
(−) R(y, x)→ S(x, y) R− v S

Figure 1: ALCHIQ rules (A,B,C ∈ P1 andR,S, V ∈ P2\{≈})

a logical expression or set thereof υ and a set of entities
E ∈ {C,V,N,T,P} ∪ {Pi | i ≥ 1}, let Eυ be the set
containing every element in E that occurs in υ. Lists of terms
t1, . . . , tn are written as ~t and treated as sets when order is
irrelevant. Letters x, y, z, w, and v, possibly with subscripts,
always denote variables.

An atom is a formula P (~t) with P ∈ P|~t| and ~t ⊆ T. A
fact is a variable-free atom. A disjunctive existential rule is a
null-free first-order logic formula of the form

∀~x.
(
β[~x]→

∨n

i=1
∃~yi.ηi[~xi, ~yi]

)
. (‡)

where β[~x] and ηi[~xi, ~yi] are conjunctions of atoms using
variables in the specified lists ~x(i) and ~yi, which satisfy
~xi ⊆ ~x and ~x ∩ ~yi = ∅ for all 1 ≤ i ≤ n. The rule has
body β[~x] and head

∨n
i=1 ∃~yi.ηi[~xi, ~yi]. We omit the uni-

versal quantifiers when writing rules. We use disjunctions in
bodies as a shortcut, e.g., we write β1 ∨ β2 → ∃~y.η instead
of β1 → ∃~y.η and β2 → ∃~y.η.
Definition 2. Datalog∨∃ is the language of all sets R of dis-
junctive existential rules. We consider some of its fragments:
• Datalog∃: Datalog∨∃ without disjunction.
• Datalog∨: Datalog∨∃ without existential quantifiers.
• Datalog: Datalog∨ without disjunctions.
• ALCHIQ: rules of one of the forms given in Figure 1.
• Horn-ALCHIQ: ALCHIQ without disjunction.

Our definition of ALCHIQ is based on first-order repre-
sentations of the axioms of the DL SHIQbs shown on the
right of Figure 1. Arbitrary ALCHIQ axioms [Horrocks et
al., 2000] can be converted into these forms while preserving
entailment of facts [Rudolph et al., 2012, Section 6]. Note
that this conversion can be computed in polynomial time if
the number restrictions are encoded in unary.

An ontology O is a pair 〈R,F〉 of a rule set R and a null-
free fact set F . Without loss of generality, we assume PF ⊆
PR and >,⊥,≈ /∈ PF . We write O |= υ if O entails a
logical expression υ in first-order logic with ≈, >, and ⊥.

2.2 The Chase.
We introduce a general proof procedure for Datalog∨∃ as the
non-deterministic version of the restricted chase algorithm.
Following Carral et al. [2019a], we prioritise Datalog∨ rules
to increase the chance of termination.



A substitution is a partial function σ : V → C ∪N. For
a logical expression υ, let υσ be the result of replacing each
variable x in υ by σ(x) if the latter is defined. Given a fact set
F and a rule ρ of the form (‡), σ is a match for ρ if βσ ⊆ F
and σ is not defined on ~y1 ∪ . . . ∪ ~yn.
Definition 3. A chase sequence of an ontology 〈R,F〉 is a
(finite or infinite) sequence of fact sets F0,F1, . . . such that

1. F0 = F;

2. for every Fi+1 with i ≥ 0, there is a rule ρ ∈ R of the
form (‡) and a match σ for ρ on Fi such that

(a) Fi 6|= ∃~yi.ηiσ for all i ∈ {1, . . . , n},
(b) Fi+1 = Fi ∪ ηj σ̂ for some j ∈ {1, . . . , n}, where

σ̂ extends σ to ~yj such that σ̂(y) ∈ N is a fresh null
for each y ∈ ~yj ,

(c) if ρ contains an existential quantifier, then for all
Datalog∨ rules ρ′ ∈ R and all matches σ′ of ρ′ on
Fi, we have Fi |= ρ′σ′ (priority for Datalog∨);

3. for every ρ ∈ R and substitution σ, there is some k ≥ 1
such that Fi |= ρσ for all i ≥ k (fairness).

The set
⋃
i≥0 Fi is a chase of 〈R,F〉.

The chase process is non-deterministic in several ways.
Disjunctions are handled by the choice of j in (2b). This
affects which facts are derived. Another form of non-
determinism is in the choice of rule application order, within
the constraints of (2c) and (3). This does not affect which
ground facts are eventually derived, but it may determine if
the chase sequence is finite or not. A rule set R is (univer-
sally) terminating if, for all fact setsF , all chase sequences of
〈R,F〉 are finite. The language of all terminating rules sets is
called terminating Datalog∨∃ (and similarly for other logics).

Definition 3 does not consider the semantics of the
special predicates >, ⊥, and ≈, which must satisfy certain
restrictions in all first-order interpretations: > and ⊥ are
interpreted as the domain and the empty set, respectively,
and ≈ is used to denote equality. We treat these special
predicates by axiomatisation. For a rule ρ, let Ax(ρ) be the
result of replacing all occurrences of >, ⊥, and ≈ by Top,
Bot, and Eq, respectively. For a rule set R, let Ax(R) be the
rule set that contains (i) Ax(ρ) for all ρ ∈ R, (ii) Top(c) for
all c ∈ CR, and (iii) the following rules instantiated for all
P ∈ PR \ {>,⊥,≈} and i ∈ {1, . . . , n} where n = ar(P ):

P (x1, . . . , xi, . . . , xn)→ Top(xi)

Bot(y) ∧ Top(x1) ∧ . . . ∧ Top(xn)→ P (x1, . . . , xn)

P (x1, . . . , xi, . . . , xn) ∧ Eq(xi, y)→ P (x1, . . . , y, . . . , xn)

Eq(x, y)→ Eq(y, x) Eq(x, y) ∧ Eq(y, z)→ Eq(x, z)

The rules are clearly sound for the intended interpretation
of the auxiliary predicates. The second rule type ensures that
everything follows from a contradiction – practical systems
would omit this for reasons of efficiency, and check for en-
tailments over Bot as a special case. The final three rules are
the usual equality theory, where we omit reflexivity since it
does not lead to conclusions for any predicates other than Eq.
Fact 1. An ontologyO = 〈R,F〉 entails a fact ϕ over a pred-
icate in PO \ {>,⊥,≈} iff ϕ is in all chases of 〈Ax(R),F〉.

~C ~D

~E1

...
~E`

~R

~S1

~S`
~D

x
~E1

...
~E`

~S1

~S`

Figure 2: Sketch of the local environments as described by generic
types (Type, left) and types for named elements x (NamType, right)

3 ALCHIQ to Disjunctive Datalog
We will now specify a polynomial rewriting of ALCHIQ to
Datalog∨, and establish its correctness. For the remainder of
this section, let R be an arbitrary, fixed ALCHIQ rule set.
Moreover, let R∃ be the set of all rules of type (∃) in R;
that is, the set of all non-Datalog rules in R. We present a
rewriting to establish the following main result.
Theorem 2. ALCHIQ is poly-time rewritable to Datalog∨.

Our rewriting is based on types that define (shapes of) lo-
cal environments of domain elements in a DL interpretation.
Sketches for the intuitive notions of “local environment” that
we consider are shown in Figure 2. The types abstract from
pairs of elements c and d that are directly related, by specify-
ing the classes of c, the classes of d, and the set of (forward or
inverse) roles relating them. To support ALCHIQ, the type
further considers, for each rule ρ ∈ R∃, a successor wρ of
d that witnesses the satisfaction of ρ on d. This successor is
again described by the (forward or inverse) roles between d
and wρ, and by the classes of wρ.

A type therefore is a tuple 〈C,R,D, S1, E1, . . . , S`, E`〉
where ` = |R∃|, C,D,Ei ⊆ P1, and R,Si ⊆ P2 \ {≈} for
i ∈ {1, . . . , `}. We encode types in Datalog∨ using a predi-
cate Type of arity (2+`)·|P1

R∪{>,⊥}|+(1+`)·2|P2
R\{≈}|,

where each parameter can be one of the fresh individuals
{0, 1}, indicating the presence or absence of an element in
one of the sets that constitute the type. This approach fol-
lows Ortiz et al. [2010]. We use the following fixed lists of
variables in Type atoms:

~C = cA1
, . . . , cAn

~R = rR1
, rR−1

. . . , rRm
, rR−m

~D = dA1
, . . . , dAn

~W = ~W ρ1 , . . . , ~W ρ`

for some fixed orderings P1
R ∪ {>,⊥} = {A1, . . . , An},

P2
R \ {≈} = {R1, . . . , Rm}, and R∃ = {ρ1, . . . , ρ`};

and with ~W ρ = wρR1
, wρ

R−1
. . . , wρRm

, wρ
R−m

, wρA1
, . . . , wρAn

for every ρ ∈ R∃. We will frequently encounter atoms
Type(~C, ~R, ~D, ~W ), which we further abbreviate as Type(~V ).
We will further use facts of the form NamType(x, ~D, ~W ) to
encode the type of a named individual x, specified by its
classes ( ~D) andR∃ witnesses ( ~W ).
Definition 4. Let rew∨(R) be the Datalog∨ rule set that con-
tains (i) Ax(R \ R∃); (ii) the rule set in Figure 3; and (iii),
for every rule ρ ∈ R, the corresponding rules in Figure 4.

In this rewriting, the rules of (i) are (axiomatised) first-
order versions of all non-existential ontology axioms. How-
ever, these rules will only apply to named individuals, since
models of the rewritten Datalog∨ rules do not contain domain



Top(x)→
∨

~c∈{0,1}|~D|+| ~W |

(
NamType(x,~c) ∧ Type(0, . . . , 0,~c)

)
(1)

Type(~C, ~R, ~D, ~W ρ1 , . . . , ~W ρ`)→
∨

~c∈{0,1}| ~W |
Type( ~D, ~W ρi ,~c) i ∈ {1, . . . , `} (2)

NamType(x, ~D, ~W )[dA/0] ∧A(x)→ Bot(0) A ∈ P1
R \ {>,⊥} (3)

Eq(0, 1) ∨ Type(~C, ~R, ~D, ~W )[d⊥/1]→ Bot(0) (4)

Type(~C, ~R, ~D, ~W )[d>/0, v/1]→ Bot(0) v ∈ ~R ∪ ~D (5)

Figure 3: Part of the Datalog∨ rewriting rew∨(R) of ALCHIQ rule setR; [x1/a1, . . . , xn/an] is the substitution that maps every xi to ai

( Cu) Type(~V )[dA/1, dB/1, dC/0]→ Bot(0) ( Ct) Type(~V )[dA/1, dB/0, dC/0]→ Bot(0)

(∀) Type(~V )[cA/1, rR/1, dB/0]→ Bot(0) (∃) Type(~V )[dA/1, w
ρ
R/0]→ Bot(0)

Type(~V )[cB/0, rR−/1, dA/1]→ Bot(0) Type(~V )[dA/1, w
ρ
B/0]→ Bot(0)

(◦) Type(~V )[cA/1, rR/1, dB/1, rS/0]→ Bot(0) ( Ru) Type(~V )[rR/1, rS/1, rV /0]→ Bot(0)

Type(~V )[cB/1, rR−/1, dA/1, rS−/0]→ Bot(0) Type(~V )[rR−/1, rS−/1, rV −/0]→ Bot(0)

( Rt) Type(~V )[rR/1, rS/0, rV /0]→ Bot(0) (−) Type(~V )[rR−/1, rS/0]→ Bot(0)

Type(~V )[rR−/1, rS−/0, rV −/0]→ Bot(0) Type(~V )[rR/1, rS−/0]→ Bot(0)

(6) {Type(~V )[wρ
′

R /1, w
ρ′′

R /1]→ Eq(wρ
′

S , w
ρ′′

S ) ∧ Eq(wρ
′

S− , w
ρ′′

S−) ∧ Eq(wρ
′

A , w
ρ′′

A ),

Type(~V )[rR−/1, w
ρ′

R /1]→ Eq(rS , w
ρ′

S−) ∧ Eq(rS− , w
ρ′

S ) ∧ Eq(cA, w
ρ′

A ),

R(x, y) ∧ NamType(x, ~D, ~W )[wρ
′

R /1, w
ρ′

S /1]→ S(x, y), R(x, y) ∧ NamType(x, ~D, ~W )[wρ
′

R /1, w
ρ′

S−/1]→ S(y, x),

R(x, y) ∧ NamType(x, ~D, ~W )[wρ
′

R /1, w
ρ′

A /1]→ A(y) | ρ′, ρ′′ ∈ R∃, A ∈ P1
R \ {>,⊥}, S ∈ P2

R \ {≈}}

Figure 4: Rewriting ALCHIQ rules ρ to Datalog∨; [x1/a1, . . . , xn/an] is the substitution that maps every xi to ai

elements to represent the anonymous individuals that are rel-
evant in DL models. Such anonymous elements instead are
represented indirectly by recording their types, which is ac-
complished by rules (ii) and (iii). Rules (1) and (2) trigger
the construction of types by requiring that named individuals
have types (1), and that existing types have compatible suc-
cessor types that satisfy existential restrictions (2). All other
rules in Figures 3 and 4 then restrict these types by excluding
contradicting cases. Rule (3) ensures the consistent assign-
ment of classes to named individuals, rule (4) excludes some
basic inconsistencies, and rule (5) ensures that the second el-
ement (“d”) of any type must satisfy > if it satisfies anything
at all. We do allow the case where all bits for ~R and ~D are 0,
which occurs, e.g., for named individuals without successors.

Rules in Figure 4 encode the meaning of specific axioms
when applied to the local structure of types as sketched in
Figure 2. Most rules are straightforward, but the rules (6) for
expressing functionality require some explanation. Note that
these rules are instantiated for various combinations of exis-
tential restrictions, class names, and role names. The rules
in the first line encode equality of two existential successors
(illustrated by elements in classes ~Ei in Figure 2); the rules
in the second line encode equality of an existential successor

and the first element of the type (illustrated by the element in
classes ~C in Figure 2). Using Eq in these lines ensures that
bits that encode the equated elements’ type data are identical,
since equality of 0 and 1 is disallowed by (4). The rules in the
last two lines capture cases where predicates of named indi-
viduals can be derived from predicates of successor elements
(represented by bits in a type). Note that we cannot use Eq for
achieving the latter. Equality of several named individuals is
already supported by the corresponding axiom in Ax(R\R∃).

For better clarity, we have chosen a presentation of
rew∨(R) that is not polynomial, since rules (1) and (2) are
of exponential size. To define a polynomial rewriting, we can
simply substitute rule (1) with the rules

Type(~V )→ Type1( ~D, ~W ρ, 0) ∨ Type1( ~D, ~W ρ, 1)

Typei( ~D, ~W
ρ, ~xi)→

∨
j∈{0,1}

Typei+1( ~D, ~W ρ, ~xi, j)

Typek(~V )→ Type(~V )

where k = |~V |, the second rule is instantiated for all i =
1, . . . , k − 1, and ~xi is a list of variables of size i. We can
replace the rules of type (2) in an analogous manner.

To establish Theorem 2, it remains to proof soundness



(Lemma 3) and completeness (Lemma 4).

Lemma 3. For all fact sets F and all facts ϕ with a predicate
in PR \ {>,⊥,≈}, if 〈R,F〉 6|= ϕ then 〈rew∨(R),F〉 6|= ϕ.

Proof. Let O = 〈R,F〉. Since O 6|= ϕ there is a model
M |= O withM 6|= ϕ. We define a model I of rew∨(R)∪F
and I 6|= ϕ by specifying all (ground) facts that I satisfies:

I |= Type(0, . . . , 0),Named(a), Top(a) for all a ∈ CO
I |= A(a) for all A ∈ P1

R \ {>,⊥} with aM ∈ AM
I |= R(a, b) for all R ∈ P2

R with 〈aM, bM〉 ∈ RM
I |= Eq(a, b) if aM = bM

For specifying NamType and Type, we first introduce some
notation. For every ρ ∈ R∃ of form ρ = A(x) →
∃y.R(x, y) ∧ B(y), and every δ ∈ AM, there is an element
γ ∈ BM with 〈δ, γ〉 ∈ RM. Let SatρM(δ) denote one (fixed)
such element.

Given elements δ, γ ∈ ∆M, we define lists of constants
0 and 1 to represent their type in M in the scheme of
Type(~C, ~R, ~D, ~W ). Let JδKC = ~Cσ for σ(cA) = 1 if
δ ∈ AM and σ(cA) = 0 if δ /∈ AM; Jδ, γKR = ~Rσ for
σ(rR) = 1 if 〈δ, γ〉 ∈ RM, σ(rR) = 0 if 〈δ, γ〉 /∈ RM,
σ(rR−) = 1 if 〈γ, δ〉 ∈ RM, σ(rR−) = 0 if 〈γ, δ〉 /∈ RM;
and Jδ, γKRD = Jδ, γKR, JγKC . Finally, let JδKW be the list
~uρ1 , . . . , ~uρ` ∈ {0, 1} for the rules {ρ1, . . . , ρ`} = R∃ as
in the definition of ~W , such that ~uρ = Jδ, SatρM(δ)KRD if
SatρM(δ) is defined, and ~uρ = 0|

~R|+|~D| otherwise.
For all a ∈ CO, let I |= NamType(a, JaMKC , JaMKW )

and I |= Type(0|
~C|+|~R|, JaMKC , JaMKW ). Furthermore, for

all δ ∈ ∆M and ρ ∈ R∃ such that SatρM(δ) = γ, we set
I |= Type(JδKC , Jδ, γKRD, JγKW ).
I |= Ax(R \ R∃) since all relevant predicates agree with

M on named elements. I satisfies all rules in Figure 3, due
to our coherent definition of types for named individuals, and
sinceM satisfies O. Satisfaction of rules in Figure 4 is easy
to check for most rules, e.g., for A u B v C ∈ R, rule
Type(~V )[dA/1, dB/1, dC/0] → Bot(0) is satisfied since the
bits for ~D always have the form JδKC for some δ ∈ ∆M.

Lemma 4. For all fact sets F and all facts ϕ with a predicate
in PR \ {>,⊥,≈}, if 〈rew∨(R),F〉 6|= ϕ then 〈R,F〉 6|= ϕ.

Proof. Since 〈rew∨(R),F〉 6|= ϕ, there is a model I |=
rew∨(R) ∪ F with I 6|= ϕ. To show 〈R,F〉 6|= ϕ, we de-
fine a modelM |= R ∪ F withM 6|= ϕ through an iterative
construction.

Initially, let M = M0 with ∆M0 = {[a]≈ | a ∈ CR}
where [a]≈ = {b | I |= Eq(a, b)}, and set aM0 = [a]≈ for all
a ∈ CF . The interpretations of other c ∈ C\CF is arbitrary.
We further set aM0 ∈ AM0 for A ∈ P1

R if I |= A(a), and
〈aM0 , bM0〉 ∈ RM0 for R ∈ P2

R \ {≈} if I |= R(a, b).
Then, we extend M by applying extension rules in a fair

way. In each step, select an element δ ∈ ∆M that has not
been chosen before. If δ = aM for some a ∈ CF , let σ be a
substitution for which I |= NamType(a, ~D, ~W )σ. Otherwise
δ is of form δ = γ.ρ with δ ∈ ∆M and ρ ∈ R∃, and we let
σ be a substitution for which I |= Type(~C, ~R, ~D, ~W )σ with

~Cσ = JγKC , ~R = Jγ, δKR, and ~Dσ = JδKC , where we use
the notation from the proof of Lemma 3.

Then, for every ρ ∈ R∃, we add some fresh δ.ρ ∈ ∆M,
and extendM as follows: for all A ∈ P1

R, let δ.ρ ∈ AM if
σ(wρA) = 1, and, for all R ∈ P2

R \ {≈}, let 〈δ, δ.ρ〉 ∈ RM
if σ(wρR) = 1 and 〈δ.ρ, δ〉 ∈ RM if σ(wρR−) = 1. We say
that δ.ρ is unnecessary if there is a homomorphism fromM
to the sub-interpretation obtained by removing δ.ρ from the
domain; in this case, we immediately remove δ.ρ from M.
This completes the step performed for each element δ.

This iterative construction leads to a monotonically in-
creasing sequence of interpretationsM0,M1, . . . with union
M =

⋃
i≥0Mi. We can show by induction that each Mi

satisfies all of the Datalog∨ rules in R. The rules with exis-
tential quantifiers in R are satisfied byM because we apply
the extension rule fairly to each domain element in ∆M.

4 ALCHIQ to Terminating Datalog∨∃

We will now specify a polynomial rewriting of ALCHIQ to
Datalog∨∃. Our main result improves upon Theorem 2 by
avoiding the need for predicates of unbounded arity:
Theorem 5. ALCHIQ is poly-time rewritable into termi-
nating Datalog∨∃ rules of bounded size.

For the remainder of this section, let R be an arbitrary,
fixed ALCHIQ rule set. Moreover, let R∃ and R6 be the
sets of all rules of type (∃) and (6) in R, respectively. Theo-
rem 5 is established by the following rewriting.
Definition 5. Let rew∨∃(R) be the Datalog∨∃ rule set that
contains the rules shown in Figure 5 and the rule set obtained
from Ax(R\(R∃∪R6)) by replacing every predicate P with
a fresh predicate P of the same arity.

Note that Figure 5 uses predicates P and P, as well as fur-
ther variants P¬ and P¬, which indicate the absence of a
true atom. The fresh predicates (i.e., predicates such as P)
allow us to reserve regular ontology predicates for relations
between named individuals, which we mark by Named. This
relationship between the predicate names is expressed in the
rules of (6). It is required since we often treat named indi-
viduals differently from individuals that were introduced to
satisfy existential restrictions (see, e.g., rules of type (10)).

Intuitively, the rules implement a proof procedure that is
similar to tableau calculi in DLs, where we construct a fi-
nite representation of a model by applying rules for each type
of axiom iteratively. For example, rules of type (9) intro-
duce a successor element to satisfy an existential restriction.
Essential tableau-like structures are captured by predicates
Named and Unnamed, and by Succ (where Succ(x, y) means
that y was created to satisfy an existential restriction on x).
Facts SmClAi(x, y) mean that x and y agree on all classes
A1, . . . ,Ai for a fixed ordering A1, . . . , An ∈ P1

R \ {>,⊥}.
Facts SmRlRi(x, y, z, w) are analogous for roles between
class-equivalent pairs 〈x, y〉 and 〈z, w〉. The “equivalence”
of elements y and w (SameTyp(y, w)) is inferred by (17).

To ensure that the resulting structure is finite, however, we
sometimes need to reuse anonymous elements. Tableau pro-
cedures accomplish this by a method known as blocking, and
our approach is similar to pairwise anywhere blocking [Motik



{P (~x)→ P(~x) ∧
∧

x∈~x
Named(x),P(~x) ∧

∧
x∈~x

Named(x)→ P (~x) | P ∈ PR ∪ {Top,Bot,Eq} \ {>,⊥,≈}} ∪ (6)

{Unnamed(x)→ A(x) ∨ A¬(x),A(x) ∧ A¬(x)→ Bot(x) | A ∈ P1
R \ {>,⊥}} ∪ (7)

{Succ(x, y)→
(
R(x, y) ∨ R¬(x, y)

)
∧
(
R(y, x) ∨ R¬(y, x)

)
,R(x, y) ∧ R¬(x, y)→ Bot(x) | R ∈ P2

R \ {≈}} ∪ (8)

{A(x)→ ∃y.R(x, y) ∧ B(y) ∧ Succ(x, y) ∧ Unnamed(y) ∧ Top(y) | A(x)→ ∃y.R(x, y) ∧B(y) ∈ R∃} ∪ (9)

{R(x, y) ∧ R(x, z) ∧ Succ(x, y) ∧
(
Succ(x, z) ∨ Succ(z, x) ∨ Named(x)

)
→ Copy(x, y, z),

R(x, y) ∧ R(x, z) ∧ Named(x) ∧ Named(y) ∧ Named(z)→ Eq(y, z) | R(x, y) ∧R(x, z)→ y ≈ z ∈ R≤} ∪
(10)

{Copy(x, y, z) ∧ A(y)→ A(z) | A ∈ P1
R \ {>,⊥}} ∪ (11)

{R(x, y) ∧ Copy(x, y, z)→ R(x, z),R(y, x) ∧ Copy(x, y, z)→ R(z, x) | R ∈ P2
R \ {≈}} ∪ (12)

{
(
A1(x) ∧ A1(z)

)
∨
(
A¬1 (x) ∧ A¬1 (z)

)
→ SmClA1

(x, z)} ∪ (13)

{SmClAi−1
(x, z) ∧

((
Ai(x) ∧ Ai(z)

)
∨
(
A¬i (x) ∧ A¬i (z)

))
→ SmClAi

(x, z) | 2 ≤ i ≤ n} ∪ (14)

{SmClAn
(x, z) ∧ SmClAn

(y, w) ∧
(
R1(x, y) ∧ R1(z, w)

)
∨
(
R¬1 (x, y) ∧ R¬1 (z, w)

)
→ SmRlR1

(x, y, z, w)} ∪ (15)

{SmRlRi−1
(x, y, z, w) ∧

((
Ri(x, y) ∧ Ri(z, w)

)
∨
(
R¬i (x, y) ∧ R¬i (z, w)

))
→ SmRlRi

(x, y, z, w) | 2 ≤ i ≤ m} ∪ (16)

{Succ(x, y) ∧ Succ(z, w) ∧ SmRlRm(x, y, z, w) ∧ SmRlRm(y, x, w, z)→ SameTyp(y, w)} ∪ (17)

{SameTyp(x, z) ∧ Succ(x, y) ∧ P(x, y)→ Succ(z, y) ∧ P(z, y),

SameTyp(x, z) ∧ Succ(x, y) ∧ P(y, x)→ Succ(x, y) ∧ P(y, z) | P ∈ (P2
R ∪ {R¬ | R ∈ P2

R}) \ {≈,≈¬}}
(18)

Figure 5: Mapping the ALCHIQ Rule Set R into the Terminating Datalog∨∃ Rule Set rw4(R) (A1, . . . , An and R1, . . . , Rm are lists
without repetitions containing all of the elements in P1

R \ {>,⊥} and P2
R \ {≈}, respectively)

et al., 2009]. In contrast to tableau approaches, however, we
cannot directly disallow the application of rule (9) (which
would require non-monotonic negation). Instead, when we
detect that two elements x and y are of the same type (17), we
reuse all of the successors of either term that are introduced
to satisfy rules of the form (9) to satisfy the same rules over
the other element (18). Since we apply Datalog∨ rules with
higher priority (Definition 3), rules (17) and (18) are preferred
over rules of type (9). Therefore, we will not introduce a suc-
cessor for x to satisfy an existential restriction if we already
have introduced one such successor for y. This is essential for
termination. Removing the rules (13)–(18) would still yield
a correct rewriting from ALCHIQ into Datalog∨∃, but the
resulting rule set would not be terminating.

Another peculiarity is the ternary predicate Copy, which
is a weaker form of Eq that we use to handle functionality
on unnamed individuals (10). If Copy(x, y, z) holds, then all
unary relations of y and all binary relations between x and
y are copied to z (rules (11) and (12)). Asserting Eq(y, z)
would copy additional binary relations of y and other ele-
ments, which would not be sound in our case.

Rules in rew∨∃(R) are of bounded size and can be com-
puted in polynomial time. To establish Theorem 5, we fur-
ther show that the rewriting proposed in Definition 5 is sound
(Lemma 6) and complete (Lemma 7), and that rew∨∃(R) is
terminating (Lemma 8).

Lemma 6. Given a fact set F and a fact ϕ defined over PR \
{>,⊥,≈}, 〈R,F〉 6|= ϕ implies 〈rew∨∃(R),F〉 6|= ϕ.

Proof. IfO = 〈R,F〉 does not entail ϕ, then there is a model
M |= O such thatM 6|= ϕ. To show that 〈rew∨∃(R),F〉 6|=
ϕ, we define a model I |= rew∨∃(R) ∪ F with I 6|= ϕ.

We define I via the application of an iterative construction.
Initially, we set ∆I = {a | a ∈ CO} with aI = a (an
arbitrary element is used if CO = ∅). Now, for all a, b ∈ CO:
(i) aI ∈ NamedI ∩TopI ; (ii) aI ∈ AI ∩AI if aM ∈ AM for
all A ∈ P1

R; (iii) 〈aI , bI〉 ∈ RI ∩ RI if 〈aM, bM〉 ∈ RM
for all R ∈ P2

R \ {≈}; and (iv) 〈aI , bI〉 ∈ EqI if aM = bM.
Furthermore, we extend I by applying the following 3-step

expansion rule once to each element γ ∈ ∆I :
• Choose some γ ∈ ∆I . Then, γ = aI for some a ∈ CO or
γ is a domain element of the form a.δ1. . . . .δk with a ∈ C
and δ1, . . . , δk ∈ ∆M. Let d(γ) = aM if γ = aI and
d(γ) = δk otherwise.

• For every ρ = A(x) → ∃y.R(x, y) ∧ B(y) ∈ R∃ with
γ ∈ AI , add 〈γ, γ.ε〉 ∈ SuccI and γ.ε ∈ UnnamedI where
γ.ε is a fresh null with ε = SatρM(d(γ)) (i.e., the satisfying
successor as defined in the proof of Lemma 3). For all
C ∈ P1

R, add γ.ε ∈ CI if ε ∈ CM and γ.ε ∈ (C¬)I

otherwise. For all S ∈ P2
R \ {≈}; add 〈γ, γ.ε〉 ∈ SI if

〈d(γ), ε〉 ∈ SM, 〈γ, γ.ε〉 ∈ (S¬)I if 〈d(γ), ε〉 /∈ SM,
〈γ.ε, γ〉 ∈ SI if 〈ε, d(γ)〉 ∈ SM, and 〈γ.ε, γ〉 ∈ (S¬)I if
〈ε, d(γ)〉 /∈ SM.

• Then, minimally extend the function of I so I satisfies the
Datalog rules (10) and (13–18) from Figure 5.
We can show via induction that, after each extension of A

is computed by applying either of the above expansion rules,



the resulting interpretation satisfies all of the Datalog∨ rules
in rew∨∃(R). The induction step can be shown by contra-
diction: if a Datalog∨ rule in rew∨∃(R) is not satisfied, then
M is not a model of O. The Datalog∃ rules in rew∨∃(R) are
satisfied byA because we apply the extension rule fairly.

Lemma 7. Given a fact set F and a fact ϕ defined over PR \
{>,⊥,≈}, 〈rew∨∃(R),F〉 6|= ϕ implies 〈R,F〉 6|= ϕ.

Proof. Since 〈rew∨∃(R),F〉 6|= ϕ, there is a model I |=
rew∨∃(R)∪F with I 6|= ϕ. We define a modelM |= 〈R,F〉
withM 6|= ϕ by an iterative construction.

Initially, let M = M0 be as in the proof of Lemma 4.
Then, we extendM by applying extension rules in a fair way.
In each step, chose an element δ ∈ ∆M for which elements γ,
γ′, and δ− can be defined in one of two ways: (1) If 〈aI , δ〉 ∈
SuccI for some a ∈ C, let γ = aM, γ′ = a.δ, and δ− = aI .
(2) If 〈δk, δ〉 ∈ SuccI for some δk and some a.δ1. . . . .δk ∈
∆M, let γ = a.δ1. . . . .δk ∈ ∆M, γ′ = γ.δ, and δ− = δk.

Now add γ′ ∈ ∆M as a fresh element, where (i) γ′ ∈ AM
for all A ∈ P1

R with δ ∈ AI ; and, (ii) for all R ∈ P2
R, let

〈γ, γ′〉 ∈ RM if 〈δ−, δ〉 ∈ RI and 〈γ′, γ〉 ∈ RM if 〈δ, δ−〉 ∈
RI . If γ′ is unnecessary in M (as defined in the proof of
Lemma 4), then remove it immediately.

As in Lemma 4, we get a monotonically increasing se-
quence of interpretations M0,M1, . . . with union M =⋃
i≥1Mi. We can show by induction that eachMi satisfies

the Datalog∨ rules inR. The Datalog∃ rules inR are satisfied
byM because we apply the extension rules fairly.

Lemma 8. The rule set rew∨∃(R) is terminating.

Proof. Consider a set of factsF and a chase C of the ontology
O = 〈rew∨∃(R),F〉. We show the lemma by proving that C
is finite. More precisely, we show that NC is finite.

A null n ∈ NC is shallow if Succ(a, n) ∈ C for some
constant a ∈ CO; otherwise, n is deep. The number of shal-
low nulls is at most |R∃| · |CO|; we proceed to show that the
number of deep nulls is finite as well.

For every deep null n, there are some tn ∈ TC and mn ∈
NC with Succ(tn,mn),Succ(mn, n) ∈ C. Then, the null
n is associated with the type Typ(n) = 〈A,R,S,B〉 where
A = {A | A(tn) ∈ C, A ∈ P1

R}, R = {R | R(tn,mn) ∈
C, R ∈ P2

R}, S = {R | R(mn, tn) ∈ C, R ∈ P2
R}, and

B = {A | A(mn) ∈ C, A ∈ P1
R}.

Since Datalog∨ rules are applied with higher priority, we
can show by contradiction that, for every ρ ∈ R∃, there is at
most one deep null n associated with any given type Type(n).
Since there are T = 22|P

1
R+2| · 22|P2

R| possible types, there
are at most |R∃| · T deep nulls in C.

5 Horn-ALCHIQ to Datalog and Datalog∃

In Sections 3 and 4, we presented rewritings fromALCHIQ
to Datalog∨ and Datalog∨∃, respectively. Although we can
apply these rewritings to Horn-ALCHIQ, the resulting rule
sets will always contain rules with disjunction. We can avoid
this by applying dedicated rewritings from Horn-ALCHIQ
to Datalog and Datalog∃, discussed next.

Ortiz et al. [2010] propose a polynomial translation from
Horn-ALCHOIQ – the extension of Horn-ALCHIQ with
nominals – to DatalogS – an extension of Datalog with set
operators – that preserves the outcomes of fact entailment.
Furthermore, they discuss how to transform the resulting
DatalogS rule sets into Datalog in polynomial time. Applying
this to Horn-ALCHIQ yields the following result.

Theorem 9. Horn-ALCH(O)IQ is rewritable to Datalog in
polynomial time.

The rewriting shares some commonalities with the type-
based method of Section 3, and in particular uses predicates
of unbounded (though polynomial) arity for encoding sets.

To get bounded-size rules, we can rewrite to Datalog∃ us-
ing a technique introduced by Carral et al. [2019a] for rewrit-
ing Horn-ALC to polynomial, bounded-size, and terminating
Datalog∃. In their approach, an (existing) consequence-based
reasoning procedure is expressed in a fixed set of DatalogS
rules, which are then rewritten to terminating Datalog∃ [Car-
ral et al., 2019a, Theorem 4]. A fundamental difference of
this approach to our rewriting in Section 4 is that the whole
ontology is rewritten into facts that are combined with a fixed
Datalog∃ rule set. In a similar manner, we adapt an existing
consequence-based reasoning procedure for Horn-ALCHIQ
[Eiter et al., 2012] to solve fact entailment (left side of Fig-
ure 6) and then implement the adapted calculus using a fixed
set of DatalogS rules (right side of Figure 6). This set can
then be translated into a fixed set of terminating Datalog∃
rules that preserve fact entailment (cf. [Carral et al., 2019a,
Theorem 4]). Indeed, this strategy describes how to compute
a rewriting from Horn-ALCHIQ to Datalog∃, and hence the
following holds.

Theorem 10. Horn-ALCHIQ is poly-time rewritable to ter-
minating Datalog∃ rules of bounded size.

We proceed with the definition of the adapted procedure
for solving fact entailment over Horn-ALCHIQ.

Definition 6. For a Horn-ALCHIQ ontology O, let Ξ(O)
be the set of axioms that results from exhaustively applying
the rules in the left hand side of Figure 6 to the axioms in O.

Note that the above procedure produces DL axioms that are
not in the normal form considered in Figure 1. For instance,
note the axioms of the form M v ∃S.N where M and N are
conjunctions of concept names and S is a conjunction of roles.
The semantics of these axioms are defined as in, e.g., [Eiter
et al., 2012].

Theorem 11. A Horn-ALCHIQ ontologyO entails a fact ϕ
if and only if Ξ(O) contains ϕ or a fact of the form ⊥(a).

Now, we describe how to implement the procedure from
Definition 6 using a fixed set of DatalogS rules. For an ex-
tended definition of the syntax and semantics of this extension
of Datalog, see [Carral et al., 2019a, Section 2].

Definition 7. For a Horn-ALCHIQ rule setR, let rewS(R)
be the (minimal) set of DatalogS rules such that:

• For every axiom in R of every type defined in Figure 1,
the rule set rewS(R) contains the corresponding facts:

( Cu) SC({cA, cB}, cC)



M(a) M′(a)

(M uM′)(a) >(a)

ISA(a,M) ∧ ISA(a,M′)
→ ISA(a,M UM′) ∧ ISA(a,{>})

S(a, b) S′(a, b)
(S u S′)(a, b) >(a) >(b)

SPO(a,S, b) ∧ SPO(a,S′, b)
→ SPO(a,S U S′, b) ∧ ISA(a,{>}) ∧ ISA(b,{>})

V (a, b)

Inv(V )(b, a)

SPO(a,{V }, b) ∧ Inv(V, Vinv)

→ SPO(b,{Vinv}, a)

M(a) M v B
B(a)

ISA(a,M) ∧ SC(M, B)

→ ISA(a,{B})

M v ∃S.(N u N′) N v A
M v ∃S.(N u N′ uA)

Ex(M,S,N U N′) ∧ SC(N, A)

→ Ex(M,S,N U N′ U {A})

S(a, b) S v R
R(a, b)

SPO(a,S, b) ∧ SR(S, R)

→ SPO(a,R, b)

M v ∃(S u S′).N S v R
M v ∃(S u S′ uR).N

Ex(M,S U S′,N) ∧ SR(S, R)

→ Ex(M,S U S′ U {R},N)

M v ∃S.(N u ⊥)

M v ⊥
Ex(M,S,N U {⊥})

→ SC(M,⊥)

M v ∃(S uR).N A v ∀R.B
M uA v ∃(S uR).(N uB)

Ex(M,S U {R},N) ∧ Univ(A,R,B)

→ Ex(M U {A},S U {R},N U {B})

A(a) R(a, b) A v ∀R.B
B(b)

ISA(a,{A}) ∧ SPO(a,{R}, b) ∧ Univ(A,R,B)

→ ISA(b,{B})

M v ∃(S u Inv(R)).(N uA) A v ∀R.B
M v B

Ex(M,S U {Rinv},N U {A}) ∧ Univ(A,R,B) ∧ Inv(R,Rinv)

→ SC(M, B)

A(a) R(a, b) B(b) A ◦R ◦B v S
S(a, b)

ISA(a,{A}) ∧ SPO(a,{R}, b) ∧ Circ(A,R,B, S)

→ SPO(a,{S}, b)

M v ∃(S uR).(N uB) A ◦R ◦B v S
M uA v ∃(S uR u S).(N uB)

Ex(M,S U {R},N U {B}) ∧ Circ(A,R,B, S)

→ Ex(M U {A},S U {R,S},N U {B})

M v ∃(S u Inv(R)).(N uA) A ◦R ◦B v S
M uB v ∃(S u Inv(R) u S).(N uA)

Ex(M,S U {Rinv},N U {A}) ∧ Circ(A,R,B, S) ∧ Inv(R,Rinv)

→ Ex(M U {B},S U {Rinv, S},N U {A})

R(a, b) R(a, c) > v 61R.>
C(b) / V (d, b) / V (b, d)

C(c) / V (d, c) / V (c, d)

SPO(a,{R}, b) ∧ SPO(a,{R}, c) ∧ Funct(R) ∧
ISA(b,{C}) / SPO(d,{V }, b) / SPO(b,{V }, d)

→ ISA(c,{A}) / SPO(d,{V }, c) / SPO(c,{V }, d)

M(a) R(a, b) > v 61R.>
M v (S uR u V ).(N u C)

V (a, b) C(b)

ISA(a,M) ∧ SPO(a,{R}, b) ∧ Funct(R) ∧
Ex(M,S U {R, V },N U {C})

→ SPO(a,{V }, b) ∧ ISA(b,{C})

M v ∃(S uR).N > v 61R.>
M′ v ∃(S′ uR).N′

M uM′ v ∃(S u S′ uR).(N u N′)

Ex(M,S U {R},N) ∧ Funct(R) ∧
Ex(M′,S′ U {R},N′)
→ Ex(M UM′,S U S′ U {R},N U N′)

M v ∃(S u Inv(R)).(N1 u N2) > v 61R.>
N1 v ∃(S′ uR u V ).(N′ u C)

M v ∃(S u Inv(R) u Inv(V ).(N1 u N2) M v C

Ex(M,S U {Rinv},N1 U N2) ∧ Funct(R) ∧
Ex(N1,S′ U {R, V },N′ U {C}) ∧ Inv(R,Rinv) ∧ Inv(V, Vinv)

→ Ex(M,S U {Rinv, Vinv},N1 U N2) ∧ SC(M, C)

Figure 6: Horn-ALCHIQ consequence-based calculus for fact entailment (left) and corresponding DatalogS rules (right); where Inv is a
function that maps each role to its inverse; on the left, M, M′, N(i), and N′ are conjunctions of concept names, A, B, and C are concepts, S
and S′ are conjunctions of roles, R, S, and V are roles; and a, b, and c are individuals; and, on the right, M, M′, N(i), N′, S, and S′ are set
variables, and A, B, C, R(inv), S, V(inv), a, b, and c are object variables



(∀) Univ(cA, cR, cB)

(∃) Ex({cA},{cR},{cB})

(◦) Circ(cA, cR, cB , cS)

(6) Funct(cR)

( Ru) SR({cR, cS}, cV ) and SR({cR− , cS−}, cV −)

(−) SR({cR−}, cS) and SR({cR}, cS−)

In the above, cA, cB , cC , cR, cR− , cS , cS− , cV , and cV −
are fresh constants specific to A, B, C, R, S, and V .

• For every binary predicate R occurring in R, we have
that Inv(cR, cR−), Inv(cR− , cR) ∈ rewS(R).

• The rule set rewS(R) contains the rules in the right hand
side of Figure 6.

• The rule set rewS(R) contains the following rules in-
stantiated for all unary A and binary R predicates oc-
curring inR:

A(x)→ ISA(x,{cA})

R(x, y)→ SPO(x,{cR}, y)

ISA(x,M U {cA})→ A(x)

SPO(x, S U {cR}, y)→ R(x, y)

⊥(x) ∧ >(y)→ A(y)

⊥(x) ∧ >(y) ∧ >(z)→ R(y, z)

In the above, x, y, and z are object variables, M and S
are set variables, and cA and cR are constants specific
to A and R, respectively.

Theorem 12. Consider a Horn-ALCHIQ rule setR. Then,
rewS(R) is a (DatalogS) rewriting forR.

Proof. For a given set of facts F and a fact ϕ defined over
the signature of R, we can show via induction that ϕ is en-
tailed by 〈rewS(R),F〉 if and only if Ξ(〈R,F〉) contains ϕ
or some fact over the special predicate ⊥ . Therefore, the
claim follows by Theorem 11.

As previously discussed, we can transform any DatalogS
rule set into a terminating Datalog∃ rule set that is polynomial
and preserves the outcomes of fact entailment (cf. [Carral
et al., 2019a, Theorem 4]). For a Horn-ALCHIQ rule set
R, we can apply this transformation to the DatalogS rule set
rewS(R) to compute a terminating Datalog∃ rewriting forR.

6 Future Work and Conclusions
We show thatALCHIQ is poly rewritable to Datalog∨ and to
bounded-size Datalog∨∃ for which the disjunctive chase ter-
minates when prioritising non-generating rules (“Datalog∨-
first”). As for future work, we aim to develop rewrit-
ing techniques for more expressive DL languages, such as
ALCHOIQ, and decidable rule languages [Baget et al.,
2011; König et al., 2015] to terminating Datalog∨∃.

Termination of our Datalog∨∃ rewritings relies on the
use of the restricted chase with a Datalog∨-first rule ap-
plication strategy. The set modelling technique used for
Horn-ALCHIQ (Theorem 10) can be adapted to work for
arbitrary strategies, but no such modification is known for our
rewriting in Section 4. Bounded-size terminating rewritings

may still be achieved, even when using the weaker Skolem
chase [Marnette, 2009], by limiting the depth of terms in the
chase using binary counters. However, this will result in a
2EXPTIME procedure, while our rewriting achieves NEXP-
TIME (cf. proof of Lemma 5). As for all known polynomial
rewritings of non-Horn DLs with EXPTIME-complete reason-
ing problems, these are not worst-case optimal. The quest for
optimal rule-based approaches in such cases remains open.
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and František Simančı́k. The incredible ELK: From poly-
nomial procedures to efficient reasoning with EL ontolo-
gies. J. Automated Reasoning, 53:1–61, 2013.
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[Krötzsch, 2011] Markus Krötzsch. Efficient rule-based in-
ferencing for OWL EL. In Toby Walsh, editor, Proc. 22nd
Int. Joint Conf. on Artif. Intell. (IJCAI 2011), pages 2668–
2673. IJCAI/AAAI, 2011.

[Lifschitz, 2019] Vladimir Lifschitz. Answer Set Program-
ming. Springer, 2019.

[Marnette, 2009] Bruno Marnette. Generalized schema-
mappings: from termination to tractability. In Jan
Paredaens and Jianwen Su, editors, Proc. 28th ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems (PODS 2009), pages 13–22. ACM,
2009.

[Motik et al., 2009] Boris Motik, Rob Shearer, and Ian Hor-
rocks. Hypertableau reasoning for description logics. J.
Artif. Intell. Res., 36:165–228, 2009.

[Motik et al., 2014] Boris Motik, Yavor Nenov, Robert Piro,
Ian Horrocks, and Dan Olteanu. Parallel materialisation of
Datalog programs in centralised, main-memory RDF sys-
tems. In Proc. 28th AAAI Conf. on Artificial Intelligence
(AAAI 2014), pages 129–137, 2014.

[Ortiz et al., 2010] Magdalena Ortiz, Sebastian Rudolph,
and Mantas Simkus. Worst-case optimal reasoning for the
Horn-DL fragments of OWL 1 and 2. In Fangzhen Lin,
Ulrike Sattler, and Miroslaw Truszczynski, editors, Proc.
12th Int. Conf. on Principles of Knowledge Representation
and Reasoning (KR 2010). AAAI Press, 2010.

[Rudolph et al., 2012] Sebastian Rudolph, Markus Krötzsch,
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