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Abstract System NEL is a conservative extension of multiplicative ex-
ponential linear logic (MELL) by a self-dual non-commutative connective
called seq which lives between the par and the times. In this paper, I will
show that system NEL is undecidable by encoding two counter machines
into NEL. Although the encoding is quite simple, the proof of the faithful-
ness is a little intricate because there is no sequent calculus and no phase
semantics available for NEL.

1 Introduction

Since the beginning of linear logic [5], the complexity of the provability problem
of its fragments has been studied. The multiplicative fragment is NP-complete
[12], the multiplicative additive fragment is PSPACE-complete and full propo-
sitional linear logic is undecidable [19]. The decidablility of the multiplica-
tive exponential fragment (MELL) is still an open problem. However, in in a
purely non-commutative setting, i.e. in the presence of two mutually dual non-
commutative connectives, the multiplicatives and the exponentials are sufficient
to get undecidability [19].

In this paper, I will address the decidability question for a mixed commu-
tative and non-commutative system in which there is only a single self-dual
non-commutative connective. I will show that also in this case, the multiplica-
tives and the exponentials alone are sufficient to get undecidability, as it has
been conjectured in [8]. For showing this, Guglielmi proposes in [6] an encoding
of Post’s correspondence problem, which makes the non-commutativity corre-
spond to sequential composition of words. However, I will here use an encoding
of two counter machines because it is much simpler. If it turns out thatMELL is
decidable (as many believe), then the border to undecidability is crossed by this
new self-dual non-commutative connective. Such a connective did first occur in
Retoré’s pomset logic [22] and has then been rediscovered in Guglielmi’s system
BV [7]. It is conjectured that the two logics are the same, but the proof of
this is not yet complete. The new non-commutative connective is important for
applications in linguistics as well as in concurrency. Because of the self-duality
it corresponds quite well to the notion of sequentiality in many process algebras.
For example in [3] Bruscoli shows the correspondence to prefixing in CCS [20].

In the following, I will first (in Section 2) introduce system NEL [9], which is
a conservative extension ofMELL plus mix [4] plus nullary mix [1] by a self-dual
non-commutative connective called seq [7]. It has been shown by Tiu in [24] that
a logic containing that connective cannot be presented in the sequent calculus
because deep rewriting is crucial for reasoning with seq. For that reason, I will
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use here the calculus of structures [8, 2], which is a generalisation of the one-
sided sequent calculus. Rules do not work on sequents but on structures, which
are intermediate expressions between formulae and sequents.

Then, in Section 3, I will introduce two counter machines [21, 18] and show
in Section 4 how they are encoded in system NEL. The encoding is pretty much
inspired by [14], and the proof of its completeness is an easy exercise (done in
Section 5).

However, the proof of the faithfulness of the encoding is quite different from
what has been done so far. There are two reasons for this: First, the simple
way of extracting the computation sequence of the machine from the proof of
the encoding, as done in [19, 13] for full linear logic, is not possible because
the calculus of structures allows much more freedom in applying and permuting
rules than the sequent calculus. And second, the use of phase spaces [5], as it
has been done in [16, 17, 14] is not possible because (so far) there is no phase
semantics available for NEL.

The method I will use instead is the following. The given proof in system
NEL of an encoding of a two-counter machine is first transformed into a certain
normal form, which allows to remove the exponentials. The resulting proof in
the multiplicative fragment has as conlusion a structure which has the shape of
what I call a weak encoding. From this proof I will extract the first computation
step of the machine and another proof (in the multiplicative fragment) which
has as conlusion again a weak encoding. By an inductive argument it is then
possible to obtain the whole computation sequence. For this, I will first discuss
the multiplicative fragment (namely Guglielmi’s system BV [7, 8]) in Section 6,
and then show the full proof in Section 7.

2 System NEL

In order to present a system in the calculus of structures, we first need to define
a language of structures, in the same way as we need to define a language of
formulae when presenting a system in the sequent calculus or natural deduction.
2.1 Definition There are countably many positive and negative atoms. They,
positive or negative, are denoted by a, b, c, d, o, p and q. Structures are denoted
by S, P , Q, R, T , U , V , W , X and Z. The structures of the language NEL are
generated by

S ::= a | ◦ | [ S, . . . , S︸ ︷︷ ︸
>0

] | (S, . . . , S︸ ︷︷ ︸
>0

) | 〈S; . . . ; S︸ ︷︷ ︸
>0

〉 | ?S | !S | S̄ ,

where ◦, the unit, is not an atom; [S1, . . . , Sh ] is a par structure, (S1, . . . , Sh) is
a times structure, 〈S1; . . . ; Sh〉 is a seq structure, ?S is a why-not structure and
!S is an of-course structure; S̄ is the negation of the structure S. Structures
with a hole that does not appear in the scope of a negation are denoted by
S{ }. The structure R is a substructure of S{R}, and S{ } is its context. I will
simplify the indication of context in cases where structural parentheses fill the
hole exactly: for example, S [R, T ] stands for S{[R, T ]}.
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Associativity

[ �R, [ �T ], �U ] = [ �R, �T , �U ]

(�R, (�T ), �U) = (�R, �T , �U)

〈�R; 〈�T 〉; �U〉 = (�R; �T ; �U)

Commutativity

[ �R, �T ] = [ �T , �R]

(�R, �T ) = (�T , �R)

Unit

[◦, �R] = [ �R]

(◦, �R) = (�R)

〈◦; �R〉 = 〈�R〉
〈�R; ◦〉 = 〈�R〉

Singleton

[R] = (R) = 〈R〉 = R

Exponentials

?◦ = ◦
!◦ = ◦

??R = ?R
!!R = !R

Negation

◦ = ◦
[R1, . . . , Rh ] = (R̄1, . . . , R̄h)

(R1, . . . , Rh) = [R̄1, . . . , R̄h ]

〈R1; . . . ; Rh〉 = 〈R̄1; . . . ; R̄h〉
?R = !R̄
!R = ?R̄
¯̄R = R

Contextual Closure

if R = T then S{R} = S{T }

Figure 1: Basic equations for the syntactic equivalence =

Structures come with equational theories establishing some basic, decidable
algebraic laws by which structures are indistinguishable. These are analogous
to the laws of associativity, commutativity, idempotency, and so on, usually
imposed on sequents. The difference is the notions of formula and sequent are
merged and the equations are extended to formulae. The structures of the
language NEL are equivalent modulo the relation =, defined in Figure 1. There,
�R, �T and �U stand for finite, non-empty sequences of structures (sequences may
contain ‘,’ or ‘;’ separators as appropriate in the context).

There is a straightforward two-way correspondence between structures not
involving seq and formulae of MELL. For example ![(?a, b), c̄, !d̄] corresponds to
!((?a � b) � c⊥�!d⊥), and vice versa. Units are mapped into ◦, since 1 ≡ ⊥,
when mix and mix0 are added to MELL.

The next step in defining a system is to show the inference rules. In the

calculus of structures, an (inference) rule is a scheme
T

ρ
R

, where ρ is the name

of the rule, T is its premise and R is its conclusion. If a rule ρ has no premise,
then it is called an axiom. Observe that contrary to the sequent calculus, all
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◦↓ ◦
S{◦}

ai↓
S [a, ā]

S([R, U ], T )
s
S [(R, T ), U ]

S〈[R, U ]; [T, V ]〉
q↓

S [〈R; T 〉, 〈U ; V 〉]

S{![R, T ]}
p↓

S [!R, ?T ]

S{◦}
w↓

S{?R}
S [?R, R]

b↓
S{?R}

Figure 2: System NEL

rules have at most one premise.
A (formal) system, denoted by S , is a set of rules. A derivation in a

system S is a finite sequence of instances of rules of S , and is denoted by
∆; a derivation can consist of just one structure. The topmost structure in a
derivation is called its premise; the bottommost structure is called conclusion.
A derivation ∆ whose premise is T , conclusion is R, and whose rules are in S is

denoted by
T

S‖∆

R
. A derivation with no premise is called a proof, denoted by

Π. A system S proves R if there is in the system S a proof Π whose conclusion
is R, written −

S‖Π

R
. The rules of system NEL are shown in Figure 2.

The inference rules of NEL (except for the axiom) are all of the kind
S{T }

ρ
S{R} .

This rule scheme specifies that if a structure matches R, in a context S{ }, it
can be rewritten as specified by T , in the same context S{ } (or vice versa if
one reasons top-down).
2.2 Example Here is an example for a proof in system NEL:

◦↓ ◦
ai↓

[a, ā]
ai↓ 〈[a, ā]; [b, b̄]〉

ai↓ 〈[a, ā]; [b, b̄]; [c, c̄]〉
q↓ 〈[a, ā]; [〈b; c〉, 〈b̄; c̄〉]〉
q↓

[〈a; b; c〉, 〈ā; b̄; c̄〉]
w↓ .

[?(〈c; d〉, c̄), 〈a; b; c〉, 〈ā; b̄; c̄〉]

For system NEL, the cut rule has the following shape

S(R, R̄)
i↑

S{◦} .
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2.3 Theorem (Cut elimination) The rule i↑ is admissible for system NEL,
in other words, for every proof −

Π‖NEL∪{i↑}
R

, there is a proof −
Π′‖NEL

R
.

For a proof of that result and a more detailed discussion on the proof theory
of NEL, the reader is referred to [9]. For the precise relation between NEL and
linear logic, the reader should consult [23] and [7].

3 Two Counter Machines

Two counter machines have been introduced by Minsky in [21] as two tape non-
writing Turing machines. He showed that any (usual) Turing machine can be
simulated on a two counter machine. In [18], Lambek showed that any recursive
function can be computed by an n counter machine, for some number n ∈ N.
3.1 Definition A two counter machine M is a tuple (Q, q0, n0, m0, qf , T ),
where Q is a finite set of states, q0 ∈ Q is called the initial state, qf ∈ Q is
called the final state, the numbers n0, m0 ∈ N represent the initial positions of
the heads on the two tapes, and T ⊆ Q × I × Q is a finite set of transitions,
where

I = {inc1, dec1, zero1, inc2, dec2, zero2}
is the set of possible instructions. A configuration of M is given by a tu-
ple (q, n, m), where q ∈ Q is a state and n and m are natural numbers.
The configuration (q0, n0, m0) is called initial configuration. A configuration
(q′, n′, m′) is reachable in one step from a configuration (q, n, m), written as
(q, n, m) → (q′, n′, m′), if one of the following six cases holds:

(q, inc1, q′) ∈ T and n′ = n + 1 and m′ = m ,
(q, dec1, q′) ∈ T and n > 0, n′ = n − 1 and m′ = m ,
(q, zero1, q′) ∈ T and n′ = n = 0 and m′ = m ,
(q, inc2, q′) ∈ T and n′ = n and m′ = m + 1 ,
(q, dec2, q′) ∈ T and n′ = n and m > 0, m′ = m − 1 ,
(q, zero2, q′) ∈ T and n′ = n and m′ = m = 0 .

A configuration (q′, n′, m′) is reachable in r steps from a configuration (q, n, m),
written as (q, n, m) →r (q′, n′, m′), if

• r = 0 and (q′, n′, m′) = (q, n, m) or

• r � 1 and there is a configuration (q′′, n′′, m′′) such that (q, n, m) →
(q′′, n′′, m′′) and (q′′, n′′, m′′) →r−1 (q′, n′, m′).

A configuration (q′, n′, m′) is reachable from a configuration (q, n, m), written as
(q, n, m) →∗ (q′, n′, m′), if there is an r ∈ N such that (q, n, m) →r (q′, n′, m′).
In other words, the relation →∗ is the reflexive and transitive closure of →.
A two counter machine M = (Q, q0, n0, m0, qf , T ) accepts a configuration
(q, n, m), if (q, n, m) →∗ (qf , 0, 0).
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3.2 Example The running example in this paper will be the following

M = ({q0, q1, q2}, q0, 1, 0, q1, T ) , where
T = {(q0, dec2, q2), (q1, dec1, q1), (q0, zero2, q1)} .

The machine accepts for example the configuration (q0, 8, 0), because (q0, 8, 0) →
(q1, 8, 0) →8 (q1, 0, 0). More precisely, it accepts any configuration (q0, n, 0) for
n � 0. In particular it also accepts its initial configuration (q0, 1, 0).
3.3 Theorem In general, it is undecidable whether a two counter machine
accepts its initial configuration.
3.4 Remark In Definition 3.1, I defined two counter machines to have only
one final state, whereas in the standard textbook definition [21, 11, 15], they
might have many final states. But this is not a problem, since any two counter
machine M with many final states qf1, . . . , qfn can be transformed into a two
counter machine M′ that has only one final state and that accepts the same
configurations, by adding a new state qf (which will be the new final state) and
a transition (qfi, zero2, qf ) for each i = 1, . . . , n.

4 Encoding Two Counter Machines in NEL

Let a be an atom and n ∈ N. Then an denotes the structure 〈a; a; . . . ; a〉 with
n copies of a. More precisely, a0 = ◦ and an = 〈an−1; a〉, for n � 1.
4.1 Encoding Let a two counter machine M = (Q, q0, n0, m0, qf , T ) be
given. For each state q ∈ Q, I will introduce a fresh atom, also denoted by q.
Further, I will need four atoms a, b, c and d. Without loss of generality, let
Q = {q0, q1, . . . , qz} for some z � 0. Then qf = qi for some i ∈ {0, . . . , z}. A
configuration (q, n, m) will be encoded by the structure 〈b; an; q; cm; d〉. Since
T is finite, we have T = {t1, t2, . . . , th} for some h ∈ N (if T = ∅, then
h = 0). For each k ∈ {1, . . . , h}, I will define the structure Tk, that encodes the
transition tk, as follows. For all i, j ∈ {0, . . . , z},

if tk = (qi, inc1, qj) , then Tk = (q̄i, 〈a; qj〉) ,
if tk = (qi, dec1, qj) , then Tk = (〈ā; q̄i〉, qj) ,
if tk = (qi, zero1, qj), then Tk = (〈b̄; q̄i〉, 〈b; qj〉) ,
if tk = (qi, inc2, qj) , then Tk = (q̄i, 〈qj ; c〉) ,
if tk = (qi, dec2, qj) , then Tk = (〈q̄i; c̄〉, qj) ,
if tk = (qi, zero2, qj), then Tk = (〈q̄i; d̄〉, 〈qj ; d〉) .

I will say that a structure T encodes a transition of M, if T = Tk for some
k ∈ {1, . . . , h}. The machine M is then encoded by the structure

Menc = [?T1, . . . , ?Th, 〈b; an0 ; q0; cm0 ; d〉, 〈b̄; q̄f ; d̄〉] ,

which is called the encoding of M.
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4.2 Example The machine in Example 3.2 is encoded by the structure

Menc = [?(〈q̄0; c̄〉, q2), ?(〈ā; q̄1〉, q1), ?(〈q̄0; d̄〉, 〈q1; d〉), 〈b; a; q0; d〉, 〈b̄; q̄1; d̄〉] .

The remaining two sections are devoted to the proof of the following:
4.3 Theorem A two counter machine M accepts its initial configuration if
and only if its encoding Menc is provable in NEL.

The main result of this paper is an immediate consequence:
4.4 Corollary Provability in system NEL is undecidable.

5 Completeness of the Encoding

5.1 Lemma Given a two counter machine M = (Q, q0, n0, m0, qf , T ).

If (qi, n, m) → (qj , n
′, m′) then

[?T1, . . . , ?Th, 〈b; an′
; qj ; cm′

; d〉, 〈b̄; q̄f ; d̄〉]
‖NEL

[?T1, . . . , ?Th, 〈b; an; qi; cm; d〉, 〈b̄; q̄f ; d̄〉]
.

Proof: There are six possible cases how the machine M can go from (qi, n, m)
to (qj , n

′, m′):

• The first counter has been incremented: (qi, inc1, qj) ∈ T and n′ = n + 1
and m′ = m. Then we have Tk = (q̄i, 〈a; qj〉) for some k ∈ {1, . . . , h}.
Now use

[?T1, . . . , ?Th, 〈b; an+1; qj ; cm; d〉, 〈b̄; q̄f ; d̄〉]
ai↓

[?T1, . . . , ?Th, 〈b; an; ([q̄i, qi ], 〈a; qj〉); cm; d〉, 〈b̄; q̄f ; d̄〉]
s

[?T1, . . . , ?Th, 〈b; an; [(q̄i, 〈a; qj〉), qi ]; cm; d〉, 〈b̄; q̄f ; d̄〉]
q↓

[?T1, . . . , ?Th, 〈[(q̄i, 〈a; qj〉), 〈b; an; qi〉]; cm; d〉, 〈b̄; q̄f ; d̄〉]
q↓

[?T1, . . . , ?Th, (q̄i, 〈a; qj〉), 〈b; an; qi; cm; d〉, 〈b̄; q̄f ; d̄〉]
b↓ .

[?T1, . . . , ?Th, 〈b; an; qi; cm; d〉, 〈b̄; q̄f ; d̄〉]

• The first counter has been decremented: (qi, dec1, qj) ∈ T and n > 0
and n′ = n − 1 and m′ = m. Then we have Tk = (〈ā; q̄i〉, qj) for some
k ∈ {1, . . . , h}. Now use

[?T1, . . . , ?Th, 〈b; an−1; qj ; cm; d〉, 〈b̄; q̄f ; d̄〉]
ai↓

[?T1, . . . , ?Th, 〈b; an−1; ([q̄i, qi ], qj); cm; d〉, 〈b̄; q̄f ; d̄〉]
ai↓

[?T1, . . . , ?Th, 〈b; an−1; (〈[ā, a]; [q̄i, qi ]〉, qj); cm; d〉, 〈b̄; q̄f ; d̄〉]
q↓

[?T1, . . . , ?Th, 〈b; an−1; ([〈ā; q̄i〉, 〈a; qi〉], qj); cm; d〉, 〈b̄; q̄f ; d̄〉]
s

[?T1, . . . , ?Th, 〈b; an−1; [(〈ā; q̄i〉, qj), 〈a; qi〉]; cm; d〉, 〈b̄; q̄f ; d̄〉]
q↓

[?T1, . . . , ?Th, 〈[(〈ā; q̄i〉, qj), 〈b; an; qi〉]; cm; d〉, 〈b̄; q̄f ; d̄〉]
q↓

[?T1, . . . , ?Th, (〈ā; q̄i〉, qj), 〈b; an; qi; cm; d〉, 〈b̄; q̄f ; d̄〉]
b↓ .

[?T1, . . . , ?Th, 〈b; an; qi; cm; d〉, 〈b̄; q̄f ; d̄〉]
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• The first counter has been tested for zero: (qi, zero1, qj) ∈ T and n = n′ =
0 and m′ = m. Then we have Tk = (〈b̄; q̄i〉, 〈b; qj〉) for some k ∈ {1, . . . , h}.
Now use

[?T1, . . . , ?Th, 〈b; qj ; cm; d〉, 〈b̄; q̄f ; d̄〉]
ai↓

[?T1, . . . , ?Th, 〈([q̄i, qi ], 〈b; qj〉); cm; d〉, 〈b̄; q̄f ; d̄〉]
ai↓

[?T1, . . . , ?Th, 〈(〈[b̄, b]; [q̄i, qi ]〉, 〈b; qj〉); cm; d〉, 〈b̄; q̄f ; d̄〉]
q↓

[?T1, . . . , ?Th, 〈([〈b̄; q̄i〉, 〈b; qi〉], 〈b; qj〉); cm; d〉, 〈b̄; q̄f ; d̄〉]
s

[?T1, . . . , ?Th, 〈[(〈b̄; q̄i〉, 〈b; qj〉), 〈b; qi〉]; cm; d〉, 〈b̄; q̄f ; d̄〉]
q↓

[?T1, . . . , ?Th, (〈b̄; q̄i〉, 〈b; qj〉), 〈b; qi; cm; d〉, 〈b̄; q̄f ; d̄〉]
b↓ .

[?T1, . . . , ?Th, 〈b; qi; cm; d〉, 〈b̄; q̄f ; d̄〉]

The other three cases (where the second counter is concerned) are similar. �
Now we can prove the first direction of Theorem 4.3.

5.2 Proposition Given a two counter machine M = (Q, q0, n0, m0, qf , T ).

If (q0, n0, m0) →∗ (qf , 0, 0) then −‖NEL
Menc

.

Proof: Use
−

Π‖NEL
[?T1, . . . , ?Th, 〈b; qf ; d〉, 〈b̄; q̄f ; d̄〉]

∆‖NEL
[?T1, . . . , ?Th, 〈b; an0 ; q0; cm0 ; d〉, 〈b̄; q̄f ; d̄〉]

,

where ∆ is obtained from Lemma 5.1 by an easy inductive argument and Π
exists trivially (cf. Example 2.2). �
5.3 Example The proof of the encoding in Example 4.2 has the following
shape:

−‖NEL
[?(〈q̄0; c̄〉, q2), ?(〈ā; q̄1〉, q1), ?(〈q̄0; d̄〉, 〈q1; d〉), 〈b; q1; d〉, 〈b̄; q̄1; d̄〉]

‖NEL
[?(〈q̄0; c̄〉, q2), ?(〈ā; q̄1〉, q1), ?(〈q̄0; d̄〉, 〈q1; d〉), 〈b; a; q1; d〉, 〈b̄; q̄1; d̄〉]

‖NEL
[?(〈q̄0; c̄〉, q2), ?(〈ā; q̄1〉, q1), ?(〈q̄0; d̄〉, 〈q1; d〉), 〈b; a; q0; d〉, 〈b̄; q̄1; d̄〉]

6 Some Facts about System BV

In order to show the other direction, I need first to establish some properties of
the multiplicative fragment of system NEL. That fragment is called system BV
[8, 7] and is shown in Figure 3.

One important result about this logic is Guglielmi’s Splitting Lemma:



The Undecidability of System NEL 9

◦↓ ◦
S{◦}

ai↓
S [a, ā]

S([R, U ], T )
s
S [(R, T ), U ]

S〈[R, U ]; [T, V ]〉
q↓

S [〈R; T 〉, 〈U ; V 〉]

Figure 3: System BV

6.1 Lemma (Splitting) Let R, T , P be any BV structures and let a be an
atom.

(1) If [(R, T ), P ] is provable in BV , then there are structures PR and PT , such
that

[PR, PT ]
‖BV
P

and −‖BV
[R, PR ]

and −‖BV
[T, PT ]

.

(2) If [〈R; T 〉, P ] is provable in BV , then there are structures PR and PT , such
that

〈PR; PT 〉
‖BV
P

and −‖BV
[R, PR ]

and −‖BV
[T, PT ]

.

(3) If [a, P ] is provable in BV , then there is a derivation
ā
‖BV
P

.

For the proof, the reader has to be referred to [7] or [10]. Here, I need it only
for the proof of Lemma 6.11. Although this seems like breaking a fly on the
wheel, I could not find a simpler way for proving Lemma 6.11, which is rather
crucial.

If a structure R is provable in BV , then every atom a occurs as often in R
as ā. This is easy to see: the only possibility, where an atom a can disappear is
an instance of ai↓. But then at the same time an atom ā does disappear.
6.2 Definition A set P of atoms is called clean if for all atoms a ∈ P , we
have ā /∈ P . Let e : P → Q be a mapping, where P and Q are two clean sets of
atoms. The mapping (·)e is defined inductively on BV structures in a natural
way as follows:

◦e = ◦

ae =




e(a) if a ∈ P
e(a) if ā ∈ P
a otherwise

[R1, . . . , Rh ]e = [Re
1, . . . , R

e
h ]

(R1, . . . , Rh)e = (Re
1, . . . , R

e
h)

〈R1; . . . ; Rh〉e = 〈Re
1; . . . ; R

e
h〉

R̄e = Re
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6.3 Example Let P = {a, b} and Q = {c}, and let e(a) = e(b) = c. Then

[〈a; b; c; d〉, 〈ā; d̄; b̄; ā〉]e = [〈c; c; c; d〉, 〈c̄; d̄; c̄; c̄〉] .

6.4 Lemma Given two clean sets P and Q of atoms, a mapping e : P → Q
and a structure R. If R is provable in BV , then Re is also provable in BV .
Proof: Let −

BV ‖Π

R
be given. Now let Πe be the proof obtained from Π by

replacing each structure S occurring inside Π by Se. Each rule application
remains valid. Hence −

BV ‖Πe

Re
is a valid proof. �

6.5 Example Let P = {a, b} and Q = {c}, and let e(a) = e(b) = c as above.
Let R = [〈a; b; d〉, 〈ā; b̄; d̄〉], which is provable in BV . By Lemma 6.4, we have

◦↓ ◦
ai↓

[d, d̄]
ai↓ 〈[b, b̄]; [d, d̄]〉

ai↓ 〈[a, ā]; [b, b̄]; [d, d̄]〉
q↓ 〈[a, ā]; [〈b; d〉, 〈b̄; d̄〉]〉
q↓ �

[〈a; b; d〉, 〈ā; b̄; d̄〉]

◦↓ ◦
ai↓

[d, d̄]
ai↓ 〈[c, c̄]; [d, d̄]〉

ai↓ 〈[c, c̄]; [c, c̄]; [d, d̄]〉
q↓ 〈[c, c̄]; [〈c; d〉, 〈c̄; d̄〉]〉
q↓ .

[〈c; c; d〉, 〈c̄; c̄; d̄〉]
The converse of Lemma 6.4 does in general not hold. For example R = [a, b̄] is
not provable, but Re = [c, c̄] is.

For a given proof Π of a structure R, I will call the killer (in Π) of a given
occurrence atom a, that occurrence of ā, that vanishes together with it in an
instance of ai↓. The situation is trivial, if in R every atom occurs exactly once.
For example in the left-hand side proof in Example 6.5, the killer of b̄ is b. In the
right-hand side proof, more care is necessary: The killer of the first occurrence
of c̄ is the first c. The killer of the second c is the second c̄.
6.6 Definition A BV structure R is called a non-par structure if it it does
not contain a par structure as substructure, i.e. it is generated by the grammar

R ::= ◦ | a | (R, . . . , R︸ ︷︷ ︸
>0

) | 〈R; . . . ; R︸ ︷︷ ︸
>0

〉 | R̄ .

6.7 Lemma Let V and P be BV structures, such that V̄ is a non-par struc-
ture.

If −‖BV
[V̄ , P ]

, then
V
‖BV
P

.

Proof: This lemma is an immediate consequence of Lemma 6.1. �
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6.8 Definition Let R be a BV structure and let a be an atom occurring in
R. I will say that the atom a is unique in R if it occurs exactly once.
6.9 Example In [〈c, c, d〉, 〈c̄, c̄, d̄〉], the atoms d and d̄ are unique, but not c
and c̄.
6.10 Lemma Let V �= ◦ be a BV structure and S{ } and S′{ } be two
contexts, such that all atoms occuring in V are unique in S{V }.

If
S′{V }

‖BV
S{V }

, then
S′{X}

‖BV
S{X}

for every structure X .

Proof: Pick any atom a inside V , and replace every other atom occurring in

V everywhere inside
S′{V }
∆‖BV
S{V }

by ◦. This yields a derivation
S′{a}
∆′‖BV
S{a}

, in which

the atom a can everywhere be replaced by the structure X . �
The following lemma will play a crucial role in the proof of the faithfulness

of the encoding of two counter machines.
6.11 Lemma Let R = [Z, (V̄ , T ), 〈U, V, W 〉] be a BV structure, such that V̄
is a non-par structure and all atoms occurring in V are unique in R. If R is
provable in BV , then R′ = [Z, 〈U, T, W 〉] is also provable in BV .
Proof: Let −

Π‖BV
[Z, (V̄ , T ), 〈U, V, W 〉]

be given. By Lemma 6.1, there are struc-

tures P and Q such that

[P, Q]
∆‖BV

[Z, 〈U ; V ; W 〉]
and −

Π1‖BV
[V̄ , P ]

and −
Π2‖BV
[T, Q]

.

By applying Lemma 6.7 to Π1, we get
V

∆1‖BV
P

, from which we can get the

following derivation:
[V, Q]
∆1‖BV
[P, Q]
∆‖BV

[Z, 〈U ; V ; W 〉]

.

Now, we can apply Lemma 6.10, which gives us
[T, Q]
∆3‖BV

[Z, 〈U ; T ; W 〉]
. Composing

Π2 and ∆3 yields the desired proof of R′. �
6.12 Definition A BV structure Q is called a negation circle if there is a
clean set of atoms P = {a1, a2, . . . , an}, such that Q = [Z1, . . . , Zn ], where

• Zj = (aj , āj+1) or Zj = 〈aj ; āj+1〉 for every j = 1, . . . , n − 1, and
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• Zn = (an, ā1) or Zn = 〈an; ā1〉.
I will say that a structure P contains a negation circle if there is a structure Q
such that

• Q is a negation circle,

• Q can be obtained from P by replacing some atoms in P by ◦, and

• all atoms that occur in Q are unique in P .

6.13 Example The structure P = [(a, c, [d̄, b]), c̄, 〈b̄; [ā, d]〉] contains the
negation circle Q = [(a, b), 〈b̄; ā〉].
6.14 Proposition Let P be a BV structure. If P contains a negation circle,
then P is not provable in BV .
Proof: Let Q be the negation circle that is contained in P . By way of con-
tradiction, assume that there is a proof of P . This proof remains valid, if all
atoms that do not occur in Q are replaced by ◦ everywhere (some rule instances
become trivial and can be removed). This yields a proof

−
Π‖BV

[Z1, Z2, . . . , Zn ]
,

for some n � 1, where Z1, . . . , Zn are as in Definition 6.12. Now, I will proceed
by induction on n to produce a contradiction.

Base Case: If n = 1, then obviously, there is no proof

−
Π‖BV

(a1, ā1)
or −

Π‖BV
〈a1; ā1〉

.

Inductive Case: Suppose there is no proof Π for all n′ < n. Now consider the
bottommost rule instance ρ in

−
Π‖BV

[Z1, Z2, . . . , Zn ]
,

where Zj = (aj, āj+1) or Zj = 〈aj ; āj+1〉 for every j = 1, . . . , n. (For the
sake of simplicity I will use the convention that an+1 = a1.) Without loss
of generality, we can assume that ρ is not trivial.

(1) ρ = ◦↓ or ρ = ai↓. Not possible.

(2) ρ = q↓. There are the following possibilities to apply
S〈[R, U ]; [T, V ]〉

q↓
S [〈R; T 〉, 〈U ; V 〉] .

(i) R = aj , T = āj+1 for some j = 1, . . . , n. Then, without loss of
generality, we can assume that j = 1. We have the following
subcases:
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(a) U = ai and V = āi+1 for some i = 2, . . . , n. Then we have a
proof Π′ such that

−
Π′‖BV

[〈[a1, ai ]; [ā2, āi+1 ]〉, Z2, . . . , Zi−1, Zi+1, . . . , Zn ]
q↓ .

[〈a1; ā2〉, Z2, . . . , Zi−1, 〈ai; āi+1〉, Zi+1, . . . , Zn ]

The proof Π′ remains valid if we replace am and ām by ◦ for
every m with 2 � m � i. Then we get

−
Π′′‖BV

[〈a1; āi+1〉, Zi+1, . . . , Zn ]
,

which is a contradiction to the induction hypothesis.
(b) U = ◦ and V = [Zk1 , . . . , Zkv ] for some v > 0 and k1, . . . , kv ∈

{2, . . . , n}. Without loss of generality, assume that k1 < k2 <
. . . < kv. Let {2, . . . , n} \ {k1, . . . , kv} = {h1, . . . , hs}, where
s = n − v − 1. Then there is a proof Π′ such that

−
Π′‖BV

[〈a1; [ā2, Zk1 , . . . , Zkv ]〉, Zh1, . . . , Zhs ]
q↓ .

[〈a1; ā2〉, Z2, . . . , Zn ]

The proof Π′ remains valid if we replace am and ām by ◦ for
every m with 2 � m � kv. Then we get

−
Π′′‖BV

[〈a1; ākv+1〉, Zkv+1, . . . , Zn ]
,

which is a contradiction to the induction hypothesis.
(c) U = [Zk1 , . . . , Zku ] and V = ◦ for some u > 0 and k1, . . . , ku ∈

{2, . . . , n}. Without loss of generality, assume that k1 < k2 <
. . . < ku. Let {2, . . . , n} \ {k1, . . . , ku} = {h1, . . . , hs}, where
s = n − u − 1. Then there is a proof Π′ such that

−
Π′‖BV

[〈[a1, Zk1 , . . . , Zku ]; ā2〉, Zh1 , . . . , Zhs ]
q↓ .

[〈a1; ā2〉, Z2, . . . , Zn ]

The proof Π′ remains valid if we replace am and ām by ◦ for
every m with m > k1 and for m = 1. Then we get

−
Π′′‖BV

[〈ak1 , ā2〉, Z2, . . . , Zk1−1 ]
,

which is a contradiction to the induction hypothesis.
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(ii) U = aj and V = āj+1 for some j = 1, . . . , n. Similar to (i).
(iii) R = [Zk1 , . . . , Zkr ], T = ◦, U = ◦ and V = [Zl1 , . . . , Zlv ] for

some r, v > 0 and k1, . . . , kr, l1, . . . , lv ∈ {1, . . . , n}. Then there
is a proof Π′ such that

−
Π′‖BV

[〈[Zk1 , . . . , Zkr ]; [Zl1 , . . . , Zlv ]〉, Zh1 , . . . , Zhs ]
q↓ ,

[Z1, Z2, . . . , Zn ]

where s = n−r−v and {h1, . . . , hs} = {1, . . . , n}\{k1, . . . , kr, l1, . . . , lv}.
Without loss of generality, we can assume that r = v = 1. Oth-
erwise we could replace

[〈[Zk1 , . . . , Zkr ]; [Zl1 , . . . , Zlv ]〉, Zh1 , . . . , Zhs ]
q↓ by

[Z1, Z2, . . . , Zn ]

[〈[Zk1 , . . . , Zkr ]; [Zl1 , . . . , Zlv ]〉, Zh1 , . . . , Zhs ]
q↓

[〈[Zk1 , . . . , Zkr ]; Zl1〉, Zl2 , . . . , Zlv , Zh1 , . . . , Zhs ]
q↓

[〈Zk1 ; Zl1〉, Zk2 , . . . , Zkr , Zl2 , . . . , Zlv , Zh1 , . . . , Zhs ]
q↓ .

[Z1, Z2, . . . , Zn ]

Now let k = k1 and l = l1. Then we have

−
Π′‖BV

[〈Zk; Zl〉, Zh1 , . . . , Zhs ]
q↓ ,

[Z1, Z2, . . . , Zn ]

where s = n − 2. There are two subcases.
(a) l < k. Then replace inside Π′ all atoms am and ām by ◦ for

every m with m � l or k < m. The proof Π′ then becomes

−
Π′′‖BV

[〈ak; āl+1〉, Zl+1, . . . , Zk−1 ]

which is a contradiction to the induction hypothesis.
(b) k < l. Then replace inside Π′ all atoms am and ām by ◦ for

every m with k < m � l. The proof Π′ then becomes

−
Π′′‖BV

[Z1, . . . , Zk−1, 〈ak; āl+1〉, Zl+1, . . . , Zn ]
,

which is a contradiction to the induction hypothesis.
(iv) R = ◦, T = [Zk1 , . . . , Zkt ], U = [Zl1 , . . . , Zlu ] and V = ◦ for

some t, u > 0 and k1, . . . , kt, l1, . . . , lu ∈ {1, . . . , n}. Similar to
(iii).
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(3) ρ = s. There are three possibilities to apply
S([R, U ], T )
s
S [(R, T ), U ]

.

(i) R = aj , T = āj+1 for some j = 1, . . . , n. Then, without loss of
generality, we can assume that j = 1. Further, U = [Zk1 , . . . , Zku ]
for some u > 0 and k1, . . . , ku ∈ {2, . . . , n}. Without loss of
generality, assume that k1 < k2 < . . . < ku. Let {2, . . . , n} \
{k1, . . . , ku} = {h1, . . . , hs}, where s = n − u − 1. Then there is
a proof Π′ such that

−
Π′‖BV

[([a1, Zk1 , . . . , Zku ], ā2), Zh1 , . . . , Zhs ]
s .

[(a1, ā2), Z2, . . . , Zn ]

The proof Π′ remains valid if we replace the atoms a1, ā1 and
am, ām for every m � k1 by ◦. Then we get

−
Π′′‖BV

[(ak1 , ā2), Z2, . . . , Zk−1 ]
,

which is a contradiction to the induction hypothesis.
(ii) R = āj+1, T = aj for some j = 1, . . . , n. Similar to (i).
(iii) R = ◦, T = [Zk1 , . . . , Zkt ] and U = [Zl1 , . . . , Zlu ] for some

t, u > 0 and k1, . . . , kt, l1, . . . , lu ∈ {1, . . . , n}. Similar to (2.iii).
�

6.15 Remark I strongly believe that the converse of Proposition 6.14 does
also hold. This would then immediately imply the equivalence between Guglielmi’s
BV and Retoré’s pomset logic [22].

7 Faithfulness of the Encoding

The main ingredient of the proof of the second direction of Theorem 4.3 is the
notion of weak encoding together with a crucial use of Proposition 6.14.
7.1 Definition Let M = (Q, q0, n0, m0, qf , T ) be a two counter machine.
Then a BV structure W is called a weak encoding of M, if

W = [U1, . . . , Ur, 〈b; an; q; cm; d〉, 〈b̄; q̄f ; d̄〉] ,

for some r, n, m � 0 and q ∈ Q, where the structures U1, . . . , Ur encode tran-
sitions of M, i.e. for every l ∈ {1, . . . , r}, we have that Ul = Tk for some
k ∈ {1, . . . , h}.

Observe that in a weak encoding W of a machine M, some transitions Tk

might occur many times and some might not occur at all.
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7.2 Lemma Given a two counter machine M = (Q, q0, n0, m0, qf , T ).

If −‖NEL
Menc

then there is a weak encoding W of M, such that

−‖BV
W
‖{w↓,b↓}

Menc

.

Proof: It is easy to see that the rules w↓ and b↓ can be permuted under any
other rule in system NEL (see [10] for a detailed explanation of this fact). Hence
the proof −‖NEL

Menc

can be decomposed into

−
Π‖{◦↓,ai↓,s,q↓,p↓}
M′

enc

∆‖{w↓,b↓}
Menc

.

Let W be the structure, which is obtained from M′
enc by removing all expo-

nentials, and let Π′ be the proof obtained from Π by removing the exponentials
from each structure occurring inside Π. By this manipulation, all rule instances
remain valid, except for the promotion rule, which becomes trivial:

S{![R, T ]}
p↓

S [!R, ?T ]
�

S [R, T ]
p↓′

S [R, T ]
,

and can therefore be omitted. This means that Π′ is valid proof of W in system
BV . Further, M′

enc does not contain any ! because Menc is !-free. Therefore,
there is a derivation

W
‖{w↓,b↓}

M′
enc

because of

S{R}
w↓

[?R, R]
b↓ .

S{?R}

Hence, we have
W
‖{w↓,b↓}

Menc

. That W is a indeed weak encoding is obvious. �

7.3 Example In our example, we get

W = [(〈ā; q̄1〉, q1), (〈q̄0; d̄〉, 〈q1; d〉), 〈b; a; q0; d〉, 〈b̄; q̄1; d̄〉] .

The following lemma is nothing but an act of bureaucracy. The idea is to
rename the atoms q0, . . . , qz that encode the states of the machine in such a way
that each such atom occurs only once. This will then simplify the extraction of
the computation from the proof.
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7.4 Lemma Let M = (Q, q0, n0, m0, qf , T ) be a two counter machine and let
W = [U1, . . . , Ur, 〈b; an; q; cm; d〉, 〈b̄; q̄f ; d̄〉] be a weak encoding of M. Further,
let P = {p0, . . . , pr} be a clean set of r + 1 fresh atoms. If W is provable in
BV , then there is a mapping e : P → Q and a structure

W̃ = [Ũ1, . . . , Ũr, 〈b; an; p0; cm; d〉, 〈b̄; p̄r; d̄〉] ,

such that

(1) W̃ is provable in BV ,

(2) all atoms p0, p̄0, . . . , pr, p̄r occur exactly once in W̃ ,

(3) for every l ∈ {1, . . . , r}, the atoms p̄l−1 and pl occur inside Ũl,

(4) W̃ e = W , and

(5) for every l ∈ {1, . . . , r}, we have Ũe
l = Ul′ for some l′ ∈ {1, . . . , r},

Proof: Let O = {o0, . . . , or} be another clean set of r + 1 fresh atoms. The
structure W contains r + 1 occurrences of atoms q ∈ Q and r + 1 occurrences
of atoms q′ with q̄′ ∈ Q (because each Ul for l = 1, . . . , r contains exactly one
q ∈ Q and one q′ with q̄′ ∈ Q). Since W is provable, each such q and q′ must
have its killer inside W . Now let W ′ be obtained from W by replacing each such
q and its killer by ol and ōl, respectively, for some l = 0, . . . , r, such that each
o ∈ O is used exactly once. Then W ′ is also provable because the replacement
can be continued to the proof Π of W . This also yields a mapping f : O → Q
with f(o) = q if an occurrence of q has been replaced by o. We now have

W ′ = [U ′
1, . . . , U

′
r, 〈b; an; ol; cm; d〉, 〈b̄; ōl′ ; d̄〉]

for some l, l′ ∈ {0, . . . , r}. Further, all atoms o0, ō0, . . . , or, ōr occur exactly once
in W ′. The atom ōl must occur inside a U ′

s1
for some s1 ∈ {1, . . . , r} (i.e. l �=

l′). Otherwise the atoms o0, ō0, . . . , ol−1, ōl−1, ol+1, ōl+1, . . . , or, ōr would form a
negation circle inside [U ′

1, . . . , U
′
r ], which is by Proposition 6.14 a contradiction

to the provability of W ′. Now let W ′
0 be obtained from W ′ by replacing ol and

ōl by p0 and p̄0, respectively. Let ol1 be the atom from O that occurs inside
U ′

s1
. Again, we have that ōl1 must occur inside U ′

s2
for some s2 ∈ {1, . . . , r} (i.e.

l1 �= l′), because otherwise there would be a negation circle inside [U ′
1, . . . , U

′
r ].

Let W ′
1 be obtained from W ′

0 by replacing ol1 and ōl1 by p1 and p̄1, respectively.
Repeat this to get the structures W ′

2, . . . , W
′
r. This also defines a bijective

mapping g : O → P with g(o) = p if o has been replaced by p. Now let
W̃ = W ′

r and e(p) = f(g−1(p)). Further let Ũ1 = U ′
s1

g, Ũ2 = U ′
s2

g, and so on.
Then W̃ is provable in BV , because W ′ is provable in BV . Further, all atoms
p0, p̄0, . . . , pr, p̄r occur exactly once in W̃ because all atoms o0, ō0, . . . , or, ōr

occur exactly once in W ′. The replacement of atoms is done in such a way that
for every l ∈ {1, . . . , r}, the atoms p̄l−1 and pl occur inside Ũl and W̃ e = W . �



The Undecidability of System NEL 18

7.5 Example For the weak encoding in Example 7.3, we get

W̃ = [ (〈p̄0; d̄〉, 〈p1; d〉)︸ ︷︷ ︸
Ũ1

, (〈ā; p̄1〉, p2)︸ ︷︷ ︸
Ũ2

, 〈b; a; p0; d〉 , 〈b̄; p̄2; d̄〉 ] ,

with e(p0) = q0 and e(p1) = e(p2) = q1.
7.6 Lemma Let M = (Q, q0, n0, m0, qf , T ) a two counter machine and let
W = [U1, . . . , Ur, 〈b; an; q; cm; d〉, 〈b̄; q̄f ; d̄〉] be a weak encoding of M.

If −‖BV
W

then (q, n, m) →r (qf , 0, 0) .

Proof: By induction on r:

Base case: If r = 0 then W = [〈b; an; q; cm; d〉, 〈b̄; q̄f ; d̄〉]. This is only provable
if n = m = 0 and q = qf , i.e. if W = [〈b; qf ; d〉, 〈b̄; q̄f ; d̄〉]. We certainly
have that (qf , 0, 0) →0 (qf , 0, 0).

Inductive case: By Lemma 7.4, there is a set P = {p0, . . . , pr} of r + 1 fresh
atoms, a mapping e : P → Q and a provable structure

W̃ = [Ũ1, . . . , Ũr, 〈b; an; p0; cm; d〉, 〈b̄; p̄r; d̄〉] ,

with W̃ e = W , and such that the killer p̄0 of p0 is inside Ũ1. Now we have
six cases:

(1) Ũ1 = (p̄0, 〈a; p1〉). Then

W̃ = [ Ũ2, . . . , Ũr, (p̄0, 〈a; p1〉)︸ ︷︷ ︸
Ũ1

, 〈b; an; p0; cm; d〉, 〈b̄; p̄r; d̄〉 ] .

Since W̃ is provable in BV , we have by Lemma 6.11 that

W̃ ′ = [ Ũ2, . . . , Ũr, 〈b; an; a; p1; cm; d〉, 〈b̄; p̄r; d̄〉 ]

is also provable. Let now W ′ = W̃ ′e and assume e(p1) = q′. Then

W ′ = [ U1, . . . , Ul−1, Ul+1, . . . , Ur, 〈b; an+1; q′; cm; d〉, 〈b̄; q̄f ; d̄〉 ] ,

for some l ∈ {1, . . . , r}. We have that W ′ is a weak encoding of M
because W is a weak encoding of M. By Lemma 6.4, W ′ is provable
in BV . Hence, we can apply the induction hypothesis and get

(q′, n + 1, m) →r−1 (qf , 0, 0) .

Further, we have that

Ul = Ũe
1 = (q̄, 〈a; q′〉) .
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Therefore (q, inc1, q′) ∈ T . Hence

(q, n, m) → (q′, n + 1, m) ,

which gives us
(q, n, m) →r (qf , 0, 0) .

(2) Ũ1 = (〈ā; p̄0〉, p1). Then

W̃ = [ (〈ā; p̄0〉, p1)︸ ︷︷ ︸
Ũ1

, Ũ2, . . . , Ũr, 〈b; an; p0; cm; d〉, 〈b̄; p̄r; d̄〉 ] .

Mark inside W̃ the atom ā inside Ũ1 by ā• and its killer by a•.
By way of contradiction, assume now that a• occurs inside Ũl =
(p̄l−1, 〈a•; pl〉) for some l ∈ {2, . . . , r}. This means that

W̃ = [ (〈ā•; p̄0〉, p1)︸ ︷︷ ︸
Ũ1

, Ũ2, . . . , Ũl−1, (p̄l−1, 〈a•; pl〉)︸ ︷︷ ︸
Ũl

, Ũl+1, . . . , Ũr,

〈b; an; p0; cm; d〉, 〈b̄; p̄r; d̄〉 ] .

But then W̃ contains a negation circle:

[(ā•, p1), (p̄1, p2), . . . , (p̄l−1, a
•)] ,

which is (by Proposition 6.14) a contradiction to the provability of
W̃ . Hence, the atom a• must occur inside the encoding of the con-
figuration, which means that n > 0. Further, we have that

W̃ = [ (〈ā•; p̄0〉, p1)︸ ︷︷ ︸
Ũ1

, Ũ2, . . . , Ũr, 〈b; an′
; a•; an′′

; p0; cm; d〉, 〈b̄; p̄r; d̄〉 ] ,

for some n′, n′′ with n = n′ + 1 + n′′. I will now show that n′′ = 0.
For this, assume by way of contradiction, that n′′ > 0. Mark the first
atom a in an′′

by a◦ and its killer by ā◦. Then ā◦ must occur inside
Ũk = (〈ā◦; p̄k−1〉, pk) for some k ∈ {2, . . . , r}. Then we have that

W̃ = [ (〈ā•; p̄0〉, p1)︸ ︷︷ ︸
Ũ1

, Ũ2, . . . , Ũk−1, (〈ā◦; p̄k−1〉, pk)︸ ︷︷ ︸
Ũk

, Ũk+1, . . . , Ũr,

〈b; an′
; a•; a◦; an′′−1; p0; cm; d〉, 〈b̄; p̄r; d̄〉 ] .

But then W̃ contains a negation circle:

[〈a•; a◦〉, 〈ā◦; p̄k−1〉, (pk−1, p̄k−2), . . . , (p2, p̄1), (p1, ā
•)] ,

which is (by Proposition 6.14) a contradiction to the provability of
W̃ . Hence, the atom a◦ cannot exist, which means that n′′ = 0 and
n′ = n − 1. This means that

W̃ = [ Ũ2, . . . , Ũr, (〈ā•; p̄0〉, p1)︸ ︷︷ ︸
Ũ1

, 〈b; an−1; a•; p0; cm; d〉, 〈b̄; p̄r; d̄〉 ] .
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Since this is provable in BV , we have (by Lemma 6.11) that

W̃ ′ = [ Ũ2, . . . , Ũr, 〈b; an−1; p1; cm; d〉, 〈b̄; p̄r; d̄〉 ]

is also provable. Let now W ′ = W̃ ′e and e(p1) = q′. Then

W ′ = [ U1, . . . , Ul−1, Ul+1, . . . , Ur, 〈b; an−1; q′; cm; d〉, 〈b̄; q̄f ; d̄〉 ] ,

for some l ∈ {1, . . . , r}. As before, W ′ is a weak encoding of M and
(by Lemma 6.4) provable in BV . Hence, we can apply the induction
hypothesis and get

(q′, n − 1, m) →r−1 (qf , 0, 0) .

Further, we have that

Ul = Ũe
1 = (〈ā; q̄〉, q′) .

Therefore (q, dec1, q′) ∈ T . Since we also have n > 0, we have

(q, n, m) → (q′, n − 1, m) ,

which gives us
(q, n, m) →r (qf , 0, 0) .

(3) Ũ1 = (〈b̄; p̄0〉, 〈b; p1〉). Then

W̃ = [ (〈b̄; p̄0〉, 〈b; p1〉)︸ ︷︷ ︸
Ũ1

, Ũ2, . . . , Ũr, 〈b; an; p0; cm; d〉, 〈b̄; p̄r; d̄〉 ] .

Mark inside W̃ the atom b̄ inside Ũ1 by b̄• and its killer by b•.
By way of contradiction, assume now that b• occurs inside Ũl =
(〈b̄; p̄l−1〉, 〈b•; pl〉) for some l ∈ {2, . . . , r} (it can certainly not be
inside Ũ1). Then we have that

W̃ = [ (〈b̄•; p̄0〉, 〈b; p1〉)︸ ︷︷ ︸
Ũ1

, Ũ2, . . . , Ũl−1, (〈b̄; p̄l−1〉, 〈b•; pl〉)︸ ︷︷ ︸
Ũl

, Ũl+1, . . . , Ũr,

〈b; an; p0; cm; d〉, 〈b̄; p̄r; d̄〉 ] .

But then we have a negation circle inside W̃ :

[(b̄•, p1), (p̄1, p2), . . . , (p̄l−1, b
•)] ,

which is (by Proposition 6.14) a contradiction to the provability of
W̃ . Hence, the atom b• must occur inside the encoding of the con-
figuration. This means that

W̃ = [ (〈b̄•; p̄0〉, 〈b; p1〉)︸ ︷︷ ︸
Ũ1

, Ũ2, . . . , Ũr, 〈b•; an; p0; cm; d〉, 〈b̄; p̄r; d̄〉 ] .
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I will now show that n = 0. For this, assume by way of contradiction,
that n > 0. Mark the first atom a in an by a◦ and its killer by
ā◦. Then ā◦ must occur inside Ũk = (〈ā◦; p̄k−1〉, pk) for some k ∈
{2, . . . , r}. This means that

W̃ = [ (〈b̄•; p̄0〉, 〈b; p1〉)︸ ︷︷ ︸
Ũ1

, Ũ2, . . . , Ũk−1, (〈ā◦; p̄k−1〉, pk)︸ ︷︷ ︸
Ũk

, Ũk+1, . . . , Ũr,

〈b•; a◦; an−1; p0; cm; d〉, 〈b̄; p̄r; d̄〉 ] .

But then W̃ contains a negation circle:

[〈b•; a◦〉, 〈ā◦; p̄k−1〉, (pk−1, p̄k−2), . . . , (p2, p̄1), (p1, b̄
•)] ,

which is (by Proposition 6.14) a contradiction to the provability of
W̃ . Hence, the atom a◦ cannot exist, which means that n = 0. This
means that

W̃ = [ Ũ2, . . . , Ũr, (〈b̄•; p̄0〉, 〈b; p1〉)︸ ︷︷ ︸
Ũ1

, 〈b•; p0; cm; d〉, 〈b̄; p̄r; d̄〉 ] .

Since this is provable in BV , we have (by Lemma 6.11) that

W̃ ′ = [ Ũ2, . . . , Ũr, 〈b; p1; cm; d〉, 〈b̄; p̄r; d̄〉 ]

is also provable. Let now W ′ = W̃ ′e and e(p1) = q′. Then

W ′ = [ U1, . . . , Ul−1, Ul+1, . . . , Ur, 〈b; q′; cm; d〉, 〈b̄; q̄f ; d̄〉 ] ,

for some l ∈ {1, . . . , r}. As before, W ′ is a weak encoding of M and
(by Lemma 6.4) provable in BV . Hence, we can apply the induction
hypothesis and get

(q′, 0, m) →r−1 (qf , 0, 0) .

Further, we have that

Ul = Ũe
1 = (〈b̄; q̄〉, 〈b; q′〉) .

Therefore (q, zero1, q′) ∈ T . Since we also have n = 0, we have

(q, 0, m) → (q′, 0, m) ,

which gives us
(q, n, m) →r (qf , 0, 0) .

(4) Ũ1 = (p̄0, 〈p1; c〉). Similar to (1).

(5) Ũ1 = (〈p̄0; c̄〉, p1). Similar to (2).

(6) Ũ1 = (〈p̄0; d̄〉, 〈p1; d〉). Similar to (3). �
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7.7 Proposition Given a two counter machine M = (Q, q0, n0, m0, qf , T ).

If −‖NEL
Menc

then (q0, n0, m0) →∗ (qf , 0, 0) .

Proof: First apply Lemma 7.2 to get

−‖BV
W
‖{w↓,b↓}

Menc

,

where W is a weak encoding of M. Since the rules w↓ and b↓ cannot modify the
substructure 〈b; an0 ; q0; cm0 ; d〉 of Menc, this substructure must still be present
in W . Hence, we have that

W = [U1, . . . , Ur, 〈b; an0 ; q0; cm0 ; d〉, 〈b̄; q̄f ; d̄〉] ,

for some r � 0. By Lemma 7.6, we have that (q0, n0, m0) →∗ (qf , 0, 0). �
Proof of Theorem 4.3: For the first direction use Proposition 5.2 and for
the second direction use Proposition 7.7. �
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