
Semantic Web 0 (0) 1 1
IOS Press

Completeness and Soundness Guarantees for
Conjunctive SPARQL Queries over RDF Data
Sources with Completeness Statements 1
Editor(s): Aidan Hogan, Universidad de Chile, Chile
Solicited review(s): Sebastian Skritek, Vienna University of Technology, Austria
Martín Ugarte, Université Libre de Bruxelles, Belgium

Fariz Darari a,∗, Werner Nutt b, Simon Razniewski c and Sebastian Rudolph d

a Faculty of Computer Science, Universitas Indonesia
Kampus UI Depok, Indonesia - 16424
E-mail: fariz@cs.ui.ac.id
b Faculty of Computer Science, Free University of Bozen-Bolzano
Dominikanerplatz 3 – piazza Domenicani, 3, 39100 Bozen-Bolzano, Italy
E-mail: Werner.Nutt@unibz.it
c Max Planck Institute for Informatics
Saarland Informatics Campus, Building E1 4, 66123 Saarbrücken, Germany
E-mail: srazniew@mpi-inf.mpg.de
d Faculty of Computer Science, Technische Universität Dresden
Nöthnitzer Str. 46, 01187 Dresden, Germany
E-mail: sebastian.rudolph@tu-dresden.de

Abstract. RDF generally follows the open-world assumption: information is incomplete by default. Consequently, SPARQL
queries cannot retrieve with certainty complete answers, and even worse, when they involve negation, it is unclear whether they
produce sound answers. Nevertheless, there is hope to lift this limitation. On many specific topics (e.g., children of Trump,
Apollo 11 crew, EU founders), RDF data sources contain complete information, a fact that can be made explicit through com-
pleteness statements. In this work, we leverage completeness statements over RDF data sources to provide guarantees of com-
pleteness and soundness for conjunctive SPARQL queries. We develop a technique to check whether query completeness can
be guaranteed by taking into account also the specifics of the queried graph, and analyze the complexity of such checking. For
queries with negation, we approach the problem of query soundness checking, and distinguish between answer soundness (i.e.,
is an answer of a query sound?) and pattern soundness (i.e., is a query as a whole sound?). We provide a formalization and
characterize the soundness problem via a reduction to the completeness problem. We further develop heuristic techniques for
completeness checking, and conduct experimental evaluations based on Wikidata, a prominent, real-world knowledge base, to
demonstrate the feasibility of our approach.

Keywords: Data quality, data completeness, query completeness, query soundness, RDF, SPARQL

1This paper is an extended and revised version of Darari et al. [1].
*Corresponding author. E-mail: fariz@cs.ui.ac.id.

1. Introduction

Over the Web, we are witnessing a growing amount
of data available in RDF. As of July 2018, the LOD

1570-0844/0-1900/$35.00 c© 0 – IOS Press and the authors. All rights reserved

2 F. Darari et al. / Completeness and Soundness Guarantees for Conjunctive SPARQL Queries

Cloud1 has recorded over 1,200 RDF data sources,
covering a wide range of application domains from
government to life sciences. RDF follows the open-
world assumption (OWA), assuming that data is inher-
ently incomplete [2]. Yet, given such a large quantity
of RDF data, one might wonder if it is complete for
some topics. As an illustration, consider Wikidata, a
collaborative knowledge base (KB) whose content is
made available in RDF [3]. For data about the movie
Reservoir Dogs, Wikidata is incomplete,2 as it is miss-
ing the fact that Michael Sottile was acting in that
movie.3 On the other hand, for data about the Euro-
pean Union (EU), Wikidata actually stores all of its
founding members,4 as shown in Figure 1. Neverthe-
less, the figure does not provide any indicator about
completeness, leaving the user undecided whether the
presented facts about the EU founders are complete or
not.

Fig. 1. Wikidata is complete for all EU founding members

The incorporation of completeness information can
help users assess the quality of data. Over the Web,
completeness information is in fact already available
in various forms. For instance, Wikipedia provides a
template for adding completeness annotations for lists5

and contains about 15,000 pages with the keywords
‘complete list of’ and ‘list is complete’; IMDb of-
fers around 52,000 editor-verified (natural language)
statements about the completeness of cast and crew;6

1http://lod-cloud.net/
2https://www.wikidata.org/wiki/Q72962 (as of

July 31, 2018)
3See, e.g., http://www.imdb.com/title/tt0105236/

fullcredits
4https://europa.eu/european-union/about-eu/

history/
5https://en.wikipedia.org/wiki/Template:

Complete_list
6E.g., see http://www.imdb.com/title/tt0105236/

fullcredits

and OpenStreetMap has around 2,200 pages featur-
ing completeness status information.7 For RDF data,
such information about completeness is particularly
crucial due to RDF’s incomplete nature. In [4], Darari
et al. proposed completeness statements, metadata to
specify which parts of an RDF data source are com-
plete: for a complete part all facts that hold in real-
ity are captured by the data source. They also pro-
vided an RDF representation of completeness state-
ments, making them machine readable. The availabil-
ity of explicit completeness information opens up the
possibility of specialized applications for data source
curation, discovery, analytics, and so forth. Moreover,
it can also benefit data access over RDF data sources,
mainly done via SPARQL queries [5]. More specifi-
cally, the quality of query answers can also be made
more transparent given that now we know the quality
of data sources with regard to completeness.

Query Completeness When data sources are en-
riched with completeness information, the question
naturally arises as to whether queries can be answered
also completely. Intuitively, queries that are evaluated
only over parts of data captured by completeness state-
ments, are guaranteed to be complete. Consider the
query “Give the EU founders” over Wikidata:8

PREFIX wd: <http://www.wikidata.org/entity/>
PREFIX wdt: <http://www.wikidata.org/prop/direct/>

SELECT * WHERE {
wd:Q458 wdt:P112 ?c } # EU founder ?c

Without completeness information, evaluating the
query would give only query answers, for which we do
not know the completeness. By having the statement
that Wikidata is complete for the EU founders, we can
then guarantee that the answers are complete. Darari et
al. [4,6] characterized such reasoning, that is, check-
ing whether queries can be guaranteed to be com-
plete by completeness statements. Nonetheless, this
approach is limited in the sense that the specifics of the
queried graph are not taken into account in the com-
pleteness reasoning.

Let us give an example, illustrating this limitation.
Suppose that in addition to the statement about all EU
founders, we also have the statements that Wikidata
is complete for the official languages of the follow-
ing countries: Belgium, France, Germany, Italy, Lux-

7For instance, see http://wiki.openstreetmap.org/w
iki/Abingdon

8Wikidata has internal identifiers for resources, as shown in the
SPARQL query example.

http://lod-cloud.net/
https://www.wikidata.org/wiki/Q72962
http://www.imdb.com/title/tt0105236/fullcredits
http://www.imdb.com/title/tt0105236/fullcredits
https://europa.eu/european-union/about-eu/history/
https://europa.eu/european-union/about-eu/history/
https://en.wikipedia.org/wiki/Template:Complete_list
https://en.wikipedia.org/wiki/Template:Complete_list
http://www.imdb.com/title/tt0105236/fullcredits
http://www.imdb.com/title/tt0105236/fullcredits
http://wiki.openstreetmap.org/wiki/Abingdon
http://wiki.openstreetmap.org/wiki/Abingdon

F. Darari et al. / Completeness and Soundness Guarantees for Conjunctive SPARQL Queries 3

embourg, and the Netherlands. Let us now consider
the query “Give the EU founders and their official lan-
guages.” We show that the query can be answered com-
pletely by applying a data-aware approach: we enu-
merate the complete EU founders stored in Wikidata,
and for each of them, we are complete for its lan-
guages. On the other hand, the data-agnostic approach
from Darari et al. [4,6] would fail to capture the query
completeness: it can be that all the EU founders are
completely different than those in Wikidata, and thus,
having completeness statements about the six coun-
tries above could not help in the reasoning. We ar-
gue that data-aware reasoning can provide more fine-
grained insights over the completeness of query an-
swers, which otherwise cannot be captured by relying
only on the data-agnostic approach.

Query Soundness While it is rather obvious to see
that completeness information may guarantee query
completeness, one might wonder if such completeness
information can also be leveraged to check the sound-
ness of query answers. Indeed, for the positive frag-
ment of SPARQL, the soundness of query answers
trivially holds, thanks to monotonicity. Now let us con-
sider queries with negation. There are different ways
to express negation in SPARQL, either by the explicit
syntactic constructs MINUS and FILTER NOT EX-
ISTS, which are available in SPARQL 1.1, or by com-
bining OPTIONAL patterns with a check for unbound
variables, as was the method of choice in SPARQL 1.0.
The meaning of such queries on the Semantic Web has
always been dubious (see, e.g., W3C mailing list dis-
cussions in [7] and [8]). The evaluation of SPARQL
queries that include negation relies on the absence of
some information. On the other hand, RDF, which fol-
lows the OWA, regards missing information as unde-
cided, that is, it is unknown whether the missing infor-
mation is false. Given this situation, answers to queries
with negation can never be assured to be sound.

Completeness information can tackle the problem of
query soundness. To illustrate this, consider asking for
“countries that are not EU founders” over Wikidata:
PREFIX wd: <http://www.wikidata.org/entity/>
PREFIX wdt: <http://www.wikidata.org/prop/direct/>

SELECT * WHERE {
?c wdt:P31 wd:Q6256 # ?c a country
FILTER NOT EXISTS {

wd:Q458 wdt:P112 ?c }} # EU founder ?c

The answers include Spain (= wd:Q29). Without
any completeness information about Wikidata, we can-
not be sure about its soundness: assume Spain were an

EU founder, but this information were missing from
the data. In that case, Spain is not a correct answer. In
reality, the EU founders are exactly as shown before
in Figure 1. Knowing this guarantees that Spain is not
an EU founding country. What we can observe here
is that negation in SPARQL, due to its inherent non-
monotonicity, may lead to the problem of judging an-
swer soundness: adding new information may invali-
date an answer. Soundness of answers is ensured, how-
ever, if we know that the parts of the data, over which
the negated parts of a query range, are complete (i.e.,
not open-world).

Contributions An earlier version of our ideas on
query completeness checking was published in the
Proceedings of the International Conference on Web
Engineering [1]. In that work, we provided a for-
malization of the data-aware completeness entailment
problem and developed a sound and complete algo-
rithm for the entailment problem. The SPARQL frag-
ment considered in that work is the conjunctive frag-
ment, which is the core fragment underlying all exten-
sions [9,10]. The present paper significantly extends
the previous work in the following ways:

1. we formulate the soundness problem for conjunc-
tive SPARQL queries augmented with negation
in the presence of completeness information, and
distinguish between answer soundness (i.e., is an
answer of a query sound?) and pattern soundness
(i.e., is a query as a whole sound?);

2. we provide a full characterization of both the an-
swer and pattern soundness problem via a reduc-
tion to the completeness problem;

3. we identify the bottlenecks of the complete-
ness reasoning techniques from [1] and develop
heuristic techniques for completeness reasoning;

4. we provide experimental evaluations based on
Wikidata, a prominent, real-world data source to
study the effectiveness of the proposed heuristics
(and their interplay) and to validate the feasibility
of our approach; and

5. we provide a comprehensive complexity analy-
sis of the completeness and soundness entailment
problem, include the proofs of all theorems as
well as more recent related work, and improve the
presentation of the theoretical parts.

A poster by Darari et al. [11] contained a result that
can be interpreted as a sufficient condition for sound-
ness in the data-agnostic setting. We now provide a dis-
tinction between so-called pattern soundness and an-

4 F. Darari et al. / Completeness and Soundness Guarantees for Conjunctive SPARQL Queries

swer soundness, a full characterization by means of a
reduction to completeness checking, as well as a com-
plexity analysis and experimental evaluations for the
soundness problem.

Organization The rest of the article is organized as
follows. Section 2 provides some background about
RDF and SPARQL, as well as completeness state-
ments. Section 3 motivates and formalizes the prob-
lem of query completeness and query soundness. In
Section 4, we first introduce formal notions capturing
aspects of completeness, then present an algorithm for
completeness entailment checking based on those no-
tions, and conclude with a complexity analysis of the
completeness entailment problem. We give a charac-
terization of the two problem variants of query sound-
ness, that is, answer soundness and pattern soundness,
in Section 5. We describe our heuristic techniques for
completeness checking in Section 6, and report on our
experimental evaluations for query completeness and
query soundness checking in Section 7. Related work
is presented in Section 8. Section 9 provides a discus-
sion of our framework, while Section 10 gives conclu-
sions and future work. Proofs are provided in the ap-
pendices.

2. Preliminaries

In this section, we introduce basic notions of RDF
and SPARQL, and provide a formalization of com-
pleteness statements. We adopt the formalization of
RDF and SPARQL as in [12] and base ourselves on the
formalization of completeness as in [4,6].

2.1. RDF and SPARQL

We assume three pairwise disjoint infinite sets I
(IRIs), L (literals), and V (variables). We collectively
refer to IRIs and literals as RDF terms or simply terms.
An RDF graph (or simply, graph) G is a finite set of
triples (s, p, o) ∈ I × I × (I ∪ L). For simplicity, we
omit namespaces in the abstract representation of RDF
graphs.

The standard RDF query language is SPARQL [5].
At the core of SPARQL lie triple patterns, which re-
semble triples, except that in each position also vari-
ables are allowed. A basic graph pattern (BGP) is a
set of triple patterns. A mapping µ is a partial function
µ : V → I ∪ L. The operator dom(µ) returns the set of
all variables that are mapped in µ. We define the map-

ping with the empty domain as the empty mapping µ∅.
The operator var(P) denotes the set of variables that
are in a BGP P. Given a BGP P, µP denotes the BGP
obtained by replacing variables in P with terms ac-
cording to µ. Evaluating P over a graph G gives the
set of mappings JPKG = { µ | µP ⊆ G and dom(µ) =

var(P) }.
In the following, we define variable freezing, an im-

portant notion for the characterizations of complete-
ness and soundness entailment in the subsequent sec-
tions.

Definition 1 (Variable Freezing). For a BGP P, the
freeze mapping ĩd maps each variable ?v in P to a fresh
IRI ṽ. With this mapping, we construct the prototypi-
cal graph P̃ := ĩd P to represent any possible graph
that can satisfy the BGP P. The melt mapping ĩd

−1
un-

does the freezing by substituting the fresh IRIs with the
original variables.9

Example 1. Consider the query “Give the founding
members of the EU” as introduced in Section 1. The
query’s BGP can be written as: {(EU, founder, ?c)}.
The freeze mapping of the BGP is ĩd = {?c 7→ c̃}, and
the prototypical graph is {(EU, founder, c̃)}.

The standard query type of SPARQL is the SELECT
query, which has the abstract form Q = (W, P), where
P is a BGP and W ⊆ var(P). The evaluation JQKG over
a graph G is obtained by projecting the mappings in
JPKG to W. We study only SELECT queries where W =

var(P). In this regard, there is no distinction between
bag and set semantics (that is, both semantics coin-
cide since duplicates cannot occur). Beside SPARQL
SELECT, in our formalization later on we will rely
on CONSTRUCT queries. Given two BGPs P1 and P2

where var(P1) ⊆ var(P2), a CONSTRUCT query has
the abstract form (CONSTRUCT P1 P2). Evaluating a
CONSTRUCT query over G yields a graph where P1 is
instantiated with all the mappings in JP2KG.

9Technically, this definition is ambiguous, since there are in-
finitely many ways to choose the fresh IRIs and therefore there
are infinitely many such mappings and corresponding prototypical
graphs. In addition, the choice depends on the pattern P so that a
correct notation would include a subscript P. To keep our formalism
slim, we do not specify how to choose the IRIs, nor do we introduce
the subscript, which would be inessential details for the arguments
in the paper.

F. Darari et al. / Completeness and Soundness Guarantees for Conjunctive SPARQL Queries 5

SPARQL with Negation SPARQL queries can also
include negation. We introduce notation that is concise
and more convenient for our purposes than the original
SPARQL syntax [5]. A NOT-EXISTS pattern is con-
structed by negating a BGP using ‘¬∃’. A graph pat-
tern P, as used throughout this paper, is defined as a set
of triple patterns and NOT-EXISTS patterns. The pos-
itive part of P, denoted P+, consists of all triple pat-
terns in P, and the negative part of P, denoted P−,
consists of the BGPs of all NOT-EXISTS patterns in
P. The evaluation JPKG of a graph pattern P over a
graph G produces a set of mappings and is defined
in [5] as: { µ ∈ JP+KG | ∀Pi ∈ P− . JµPiKG = ∅ }.
As for SELECT queries with negation, the projection is
allowed only for the variables in the positive part, that
is, Q = (var(P+), P), where P is a graph pattern.

Example 2. Consider the query with negation, “Give
countries that are not EU founders.” The graph pattern
of the query can be written as follows: {(?c, a, country),
¬∃{ (EU, founder, ?c) }}. The positive part of the
query is {(?c, a, country)}, whereas the negative part
is {{(EU, founder, ?c)}}.

We refer to the SPARQL fragment where posi-
tive and negative parts of queries are constructed
from BGPs as the conjunctive SPARQL fragment aug-
mented with negation. Note that BGPs are the ba-
sic building blocks underlying other SPARQL exten-
sions [9,10] as well.

2.2. Completeness Statements

We want to formalize a mechanism for specify-
ing which parts of a data source are complete. When
talking about the completeness of a data source, one
implicitly compares the information available in the
source with a possible state of the source that con-
tains all information that holds in the real world. We
model this situation with a pair of graphs: one graph
is the available, possibly incomplete state, while an-
other stands for an ideal, conceptual complete refer-
ence, which contains the available graph. In this work,
we only consider data sources that may miss informa-
tion, but do not contain wrong information.

Definition 2 (Extension Pair). An extension pair is a
pair (G,G′) of two graphs, where G ⊆ G′. We call G
the available graph and G′ the ideal graph.

In an application, the state stored in an RDF data
source is our actual, available graph, which consists of
a part of the facts that hold in reality. The full set of

facts that constitute the ideal state are, however, un-
known. Nevertheless, an RDF data source can be com-
plete for some parts of the reality. In order to make
assertions in this regard, we now introduce complete-
ness statements, as meta-information about the extent
to which the available state captures the ideal state. We
adopt the unconditional version of the completeness
statements defined in [4].

Definition 3 (Completeness Statement). A complete-
ness statement C has the form Compl(PC), where PC

is a non-empty BGP.

For example, we express that a data source is
complete for all triples about the EU founders us-
ing the statement Ceu = Compl((EU, founder, ?f)).10

To serialize completeness statements in RDF, we re-
fer the reader to [4]. We now define when a com-
pleteness statement is satisfied by an extension pair.
To a statement C = Compl(PC), we associate the
CONSTRUCT query QC = (CONSTRUCT PC PC).
Note that, given a graph G, the query QC returns the
graph consisting of those instantiations of the pat-
tern PC present in G. For example, the query QCeu =
(CONSTRUCT {(EU, founder, ?f)} {(EU, founder, ?f)})
returns the founding members of the EU in G. Intu-
itively, an extension pair (G,G′) satisfies a complete-
ness statement C, if the subgraph of G′ identified by C
is also present in G.

Definition 4 (Satisfaction of Completeness State-
ments). An extension pair (G,G′) satisfies a complete-
ness statement C, written (G,G′) |= C, if JQCKG′ ⊆ G.

The above definition naturally extends to the sat-
isfaction of a set C of completeness statements, that
is, (G,G′) |= C iff for all C ∈ C, it is the case that
JQCKG′ ⊆ G.

An important tool for characterizing completeness
entailment is the transfer operator, which evaluates
over G all CONSTRUCT queries associated to the state-
ments in C and returns the union of the results.

Definition 5 (Transfer Operator). Let C be a set of
completeness statements. The transfer operator TC
maps every graph G to the subgraph

TC(G) =
⋃

C∈C
JQCKG.

10For the sake of readability, we slightly abuse the notation by
removing the set brackets of the BGPs of completeness statements.

6 F. Darari et al. / Completeness and Soundness Guarantees for Conjunctive SPARQL Queries

As an illustration, consider the statement Ceu as
before and the graph Gorg = {(EU, founder, ger),
(ASEAN, founder, sgp)}. Then, it is the case that
T{Ceu}(Gorg) = {(EU, founder, ger)}. We have the
following immediate characterization of transfer op-
erator: for all extension pairs (G,G′), it holds that
(G,G′) |= C iff TC(G′) ⊆ G.

3. Motivation and Formal Framework

In this section, we motivate and formalize the prob-
lem of query completeness and query soundness,
adapting the definitions from [4] to the data-aware set-
ting and to the problem of soundness.

3.1. Query Completeness

Given an RDF graph and a set of completeness state-
ments, we want to check whether a query can be an-
swered completely.

3.1.1. Motivating Scenario

Fig. 2. RDF graph Gcou about countries

Consider the RDF graph Gcou about members coun-
tries of the United Nations (UN) and official languages
of the members as in Figure 2. Next, consider the query
Q0 asking for the UN members and their languages:

Q0 = (W0, P0)
= ({ ?m, ?l }, {(UN,member, ?m), (?m, lang, ?l)})

Evaluating Q0 over the graph gives only one map-
ping, where the member is mapped to Germany and
the language is mapped to de. Up until now, nothing
can be said about the completeness of the query since
(i) there can be another UN member with an official
language; (ii) Germany may have another language; or
(iii) the USA may have an official language.

Let us consider the same graph as above, now en-
riched with completeness information, as displayed in
Figure 3. The figure illustrates the set Ccou of three
completeness statements and to which parts of the
graph the statements apply:

Fig. 3. RDF graph Gcou with completeness statements

– Cun = Compl((UN,member, ?m)), which states
that the graph contains all members of the UN;11

– Cger = Compl((ger, lang, ?l)), which states the
graph contains all official languages of Germany;

– Cusa = Compl((usa, lang, ?l)), which states the
graph contains all official languages of the USA
(i.e., the USA has no official languages).12

With the addition of completeness information, let us
see whether we can answer our query completely.

First, from the statement Cun about UN members,
we can infer that the part (UN,member, ?m) of Q0 is
complete. By evaluating that part over Gcou, we know
that all the UN members are Germany and the USA. In
terms of extension pairs, that means that no extension
G′cou ⊇ Gcou satisfying Cun has UN members other
than Germany and the USA. This allows us to instan-
tiate the query Q0 to the following two queries that in-
tuitively are together equivalent to Q0 itself:

– Q1 = (W1, P1)
= ({ ?l }, {(UN,member, ger), (ger, lang, ?l)})

– Q2 = (W2, P2)
= ({ ?l }, {(UN,member, usa), (usa, lang, ?l)}),

where we record that the variable ?m has been instan-
tiated by Germany and the USA, respectively.

Our task is now transformed to checking whether
Q1 and Q2 can be answered completely. As for Q2, we
know from the statement Cusa that our data graph is
complete with regard to the triple pattern (usa, lang, ?l).
This again allows us to instantiate the query Q2 wrt.
the graph Gcou. However, now we come to the situation
where there is no matching part in Gcou: instantiating
the triple pattern (usa, lang, ?l) returns nothing (i.e.,
the USA has no official languages). In other words,
for any possible extension G′cou of Gcou, as guaranteed
by Cusa, the extension G′cou is also empty for the part
(usa, lang, ?l). Thus, there is no way that Q2 will re-
turn an answer, so it can be safely removed. Here we
can also see that we are complete for Q2.

11For the sake of example, let us suppose that this is true.
12See, e.g., https://www.cia.gov/library/public

ations/the-world-factbook/geos/us.html

https://www.cia.gov/library/publications/the-world-factbook/geos/us.html
https://www.cia.gov/library/publications/the-world-factbook/geos/us.html

F. Darari et al. / Completeness and Soundness Guarantees for Conjunctive SPARQL Queries 7

Now, only the query Q1 is left. Again, from the
statement Cger, we know that we are complete for the
part (ger, lang, ?l) of Q1. This allows us to instantiate
the query Q1 to the query Q3, that is intuitively equiv-
alent to Q1 itself:

Q3 = (W3, P3)
= ({ }, {(UN,member, ger), (ger, lang, de)}),

where we record that the variable ?m has been instanti-
ated by Germany and ?l by de. However, our graph is
complete for Q3 as it contains the whole ground body
of Q3. Clearly, no extension G′cou of Gcou can contain
more information about Q3. Now, tracing back our rea-
soning steps, we know that our Q3 is in fact intuitively
equivalent to our original query Q0. Since we are com-
plete for Q3, we are also complete for Q0, wrt. our
graph and completeness statements. In other words,
our statements and graph can guarantee the complete-
ness of the query Q0. Concretely, this means that de
is the only official language of Germany, the only UN
member with an official language.

In summary, we have reasoned about the complete-
ness of a query given a set of completeness statements
and a graph. The reasoning is basically done as fol-
lows: (i) we find parts of the query that can be guar-
anteed to be complete by the completeness statements;
(ii) we produce equivalent query instantiations by eval-
uating those complete query parts over the graph and
applying the obtained mappings to the query itself; (iii)
for all the query instantiations, we repeat the above
steps until no further complete parts can be found. The
original query is complete iff all the BGPs of the gen-
erated queries are contained in the data graph.

Note that using the data-agnostic completeness rea-
soning approach of [4], it is not possible to derive
the same conclusion. Without looking at the available
graph, we cannot conclude that Germany and the USA
are all the UN members, since it could be the case that
the members are completely different items (i.e., not
Germany nor the USA). Consequently, just knowing
that the official languages of Germany and the USA
are complete does not help in the reasoning.

3.1.2. Formalization of Completeness Reasoning
When querying a data source, we want to know

whether the data source provides sufficient informa-
tion to retrieve all answers to the query, that is, whether
the query is complete wrt. the real world. For instance,
when querying for members of the UN, it would be in-
teresting to know whether we really get all such coun-
tries. Intuitively, a query is complete over an extension
pair whenever all answers we retrieve over the ideal

graph are also retrieved over the available graph. We
now define query completeness wrt. extension pairs.

Definition 6 (Query Completeness). To express that a
query Q is complete, we write Compl(Q). An exten-
sion pair (G,G′) satisfies Compl(Q), if the result of
Q evaluated over G′ also appears in Q over G, that
is, JQKG′ ⊆ JQKG.13 In this case we write (G,G′) |=
Compl(Q).

The above definition can be naturally adapted to the
completeness of a BGP P, written Compl(P), that is
used in subsequent content: An extension pair (G,G′)
satisfies Compl(P), written (G,G′) |= Compl(P), if
JPKG′ ⊆ JPKG.

Now, the question arises as to when some meta-
information about data completeness can provide a
guarantee for query completeness. In other words, the
available state contains all data, as guaranteed by com-
pleteness statements, that is required for computing the
query answers, so one can trust the result of the query.
In the following, we define completeness entailment.

Definition 7 (Completeness Entailment). Let C be a
set of completeness statements, G a graph, and Q a
query. Then C and G entail the completeness of Q,
written C,G |= Compl(Q), if for all extension pairs
(G,G′) |= C, it holds that (G,G′) |= Compl(Q).

In our motivating scenario, we have seen that the
graph about the UN and the completeness statements
entail the completeness of the query Q0 asking for
members of the UN and their official languages.

Since for our SPARQL queries all variables are dis-
tinguished, the set of query answers for such a query
is the same as the set of mappings satisfying the
BGP. We can therefore focus on the BGPs used in the
body of queries for completeness entailment. Note that
here (again) the distinction between bag and set se-
mantics collapses. The following proposition provides
an initial characterization of completeness entailment,
which will serve as a starting point to develop formal
notions for completeness checking and an algorithm in
Section 4. Basically, for a set of completeness state-
ments, a graph, and a BGP, the completeness entail-
ment holds, if and only if extending the graph with
a possible BGP instantiation (by some mapping) such
that the extension satisfies the statements, always re-
sults in the inclusion of the BGP instantiation in the
graph itself.

13For monotonic queries, the other direction, that is, JQKG′ ⊇
JQKG , comes for free. Hence, we sometimes use the ‘=’ condition
when queries are monotonic.

8 F. Darari et al. / Completeness and Soundness Guarantees for Conjunctive SPARQL Queries

Proposition 1. Let C be a set of completeness state-
ments, G a graph, and P a BGP. Then the following are
equivalent:

1. C,G |= Compl(P);
2. for every mapping µ such that dom(µ) = var(P)

and (G,G ∪ µP) |= C, it is the case that µP ⊆ G.

In other words, the completeness entailment does
not hold, if and only if we can find a possible BGP in-
stantiation (by some mapping) such that the extension
satisfies the statements, but the BGP instantiation is not
contained in the graph. The idea here is that, as demon-
strated in our motivating example, by using complete-
ness statements we always try to find complete parts of
BGPs and instantiate them over the graph, until either
all the instantiations are included in the graph (= the
success case), or there is one instantiation that is not
included there (= the failure case).

3.2. Query Soundness

Here, we motivate the second main problem of this
work, query soundness. The problem comes in two
variants: answer soundness and pattern soundness.

3.2.1. Answer Soundness
In a nutshell, a mapping is a sound answer for a

query with negation over a given graph if it continues
to be an answer over all possible completions of the
graph. For an example, consider the following graph
pattern, asking for countries where en is no official
language and whose official languages (if any) do not
include an official language of an EU founder:

Pl = {(?c, a, country),
¬∃{ (?c, lang, en) },
¬∃{(?c, lang, ?l), (?f , lang, ?l),

(EU, founder, ?f)}}.

For the sake of example, consider the following
graph about countries:

Gl = {(ger, a, country), (usa, a, country),
(sgp, a, country), (spa, a, country),
(ger, lang, de), (spa, lang, es),
(EU, founder, ger)}.

For this graph, consider also the set Cl of the fol-
lowing four completeness statements: the first two are
Cger and Cusa as we have had before in the motivat-
ing scenario of query completeness. The other two
are Cspa = Compl((spa, lang, ?l)) for all official lan-

guages of Spain and Ceu = Compl((EU, founder, ?f))
for all EU founders.14 Note that we do not claim any-
thing about the completeness of the official languages
of Singapore (= sgp).

Evaluating the graph pattern over the graph in
the standard way results in JPlKGl = {{?c 7→ usa},
{?c 7→ sgp}, {?c 7→ spa}}. We want to verify whether
these answers are sound, that is, whether they cannot
have been returned due to possibly incomplete infor-
mation. This amounts to checking that there is no valid
extension of Gl wrt. Cl over which the answers are not
returned.

Let us analyze {?c 7→ usa}. First, we check if
(usa, lang, en) is certainly not true. Indeed, since we
know by the graph and the statement Cusa that the USA
has no official languages, the triple (usa, lang, en)
must not be true. Second, we check if {(usa, lang, ?l),
(?f , lang, ?l), (EU, founder, ?f)} surely fails. This is
clearly the case for the same reason as before, namely
that there is no official language of the USA. From this
reasoning, we conclude that the answer {?c 7→ usa} is
sound.

Next, let us analyze {?c 7→ sgp}. We check if
(sgp, lang, en) is indeed not true, that is, there is no
valid extension where (sgp, lang, en) is true. Now we
have a problem: due to the lack of completeness in-
formation, it might be that in reality, en is an offi-
cial language of Singapore, but the fact is missing in
our data. Thus, we cannot guarantee the soundness of
{?c 7→ sgp}.

Last, let us analyze {?c 7→ spa}. First, we check
if the triple (spa, lang, en) is not true. Since we know
by Cspa and the graph that Spain’s official language is
only es, then (spa, lang, en) must not be true. Second,
we check if the BGP {(spa, lang, ?l), (?f , lang, ?l),
(EU, founder, ?f)} evaluates to false. From the graph
and the statements Cger and Ceu, we know that de is
the only official language of Germany as the only EU
founder, which is different from es. Thus, the pattern
must evaluate to false. We therefore conclude that the
answer {?c 7→ spa} is sound.

In summary, our analysis established for which an-
swers the NOT-EXISTS patterns of the query pattern
are surely false and thus whether the answer is sound.

3.2.2. Pattern Soundness
Consider now the graph pattern asking for countries

where en is no official language and that are not EU

14For the sake of example, suppose this is true.

F. Darari et al. / Completeness and Soundness Guarantees for Conjunctive SPARQL Queries 9

founders:

P f = {(?c, a, country),¬∃{ (?c, lang, en) } ,
¬∃{ (EU, founder, ?c) }}.

Consider also the set C f consisting of two complete-
ness statements: Clang for all languages of countries
and Ceu for all EU founders. We will show that the
statements guarantee that all answers returned by P f

are sound, independently of the queried graph. In such
a case, we say that the pattern itself is sound.

Let us see why C f guarantees for any possible graph
the soundness of all answers to P f . Consider a graph G
and suppose that pattern evaluation over G returns
{?c 7→ c} for an IRI c. Consider also an arbitrary ex-
tension G′ of G such that (G,G′) |= C f . To show that
{?c 7→ c} is sound, we must make sure that neither
over G nor over G′ does c have en as an official lan-
guage and is c an EU founder. By the statement Clang,
it is the case that G is complete for all languages of
countries. Therefore, G is also complete for all lan-
guages of c. The fact that c is returned by P f over G
means that en is not among its official languages ac-
cording to G, and due to completeness, also not ac-
cording to G′. Moreover, the fact that c is returned over
G means that c is not an EU founder according to G,
and, since G is complete for all EU founders due to
Ceu, also not according to G′. Thus we can be sure that
the answer {?c 7→ c} is sound. Since the answer and
the graph were arbitrary, we conclude that the set C f of
completeness statements entails the soundness of P f .

In this scenario, as opposed to answer soundness, we
have reasoned for a graph pattern whether the sound-
ness of an arbitrary answer over an arbitrary graph can
be guaranteed by a set of completeness statements.

3.3. Formalization of Soundness Reasoning

In the following, we provide definitions of answer
soundness and pattern soundness.

Definition 8 (Answer Soundness). To express that a
mapping µ is sound for a graph pattern P, we write
Sound(µ, P). We say that an extension pair (G,G′) sat-
isfies Sound(µ, P) if, whenever µ ∈ JPKG, then also µ ∈
JPKG′ . In this case we write (G,G′) |= Sound(µ, P).

From the above definition, for µ 6∈ JPKG it is trivial
that (G,G′) |= Sound(µ, P). Thus, we are only inter-
ested in the soundness of answers occurring in JPKG.

Definition 9 (Answer Soundness Entailment). Given
a set C of completeness statements, a graph G, a graph
pattern P, and a mapping µ ∈ JPKG, we say that C and
G entail the soundness of µ for P, written as C,G |=
Sound(µ, P), if for all extension pairs (G,G′) |= C, it
holds that (G,G′) |= Sound(µ, P).

In our motivating scenario we saw that for all pos-
sible completions of the graph, usa is a sound an-
swer while sgp is not. Thus, Cl,Gl |= Sound({?c 7→
usa}, Pl), whereas Cl,Gl 6|= Sound({?c 7→ sgp}, Pl).

Pattern soundness, as opposed to answer soundness,
is concerned with a graph pattern as a whole and ab-
stracts from any specific answers of the pattern.

Definition 10 (Pattern Soundness). We express that a
graph pattern P is sound by Sound(P). We say that
P is sound over the extension pair (G,G′), written
(G,G′) |= Sound(P), if JPKG ⊆ JPKG′ .

Thus, a pattern is sound whenever all answers in the
evaluation over G are also present in that over G′. En-
tailment of pattern soundness by completeness state-
ments is defined in a natural manner.

Definition 11 (Pattern Soundness Entailment). A set
of completeness statements C entails the soundness of
a graph pattern P, written C |= Sound(P), if for all
extension pairs (G,G′) |= C, it holds that (G,G′) |=
Sound(P).

In our motivating scenario, it is the case that Cf |=
Sound(Pf). Combining the definitions above, we see
that a pattern is sound if and only if over all graphs all
its answers are sound.

Proposition 2. Let C be a set of completeness state-
ments and P be a graph pattern. Then, C |= Sound(P)
iff C,G |= Sound(µ, P) for every graph G and map-
ping µ ∈ JPKG.

4. Checking Query Completeness

In this section, we introduce formal notions and
present an algorithm for checking the entailment of
query completeness. We also analyze the complexity
of the entailment problem.

4.1. Formal Notions

First, we need a notion for a BGP with a stored map-
ping from variable instantiations. This allows us to rep-
resent BGP instantiations wrt. our completeness entail-
ment procedure. We define a partially mapped BGP as

10 F. Darari et al. / Completeness and Soundness Guarantees for Conjunctive SPARQL Queries

a pair (P, µ) where P is a BGP and µ is a mapping with
dom(µ) ∩ var(P) = ∅. Over a graph G, the evaluation
of (P, µ) is defined as J(P, µ)KG = { µ∪ ν | ν ∈ JPKG }.
It is easy to see that P ≡ (P, µ∅). Furthermore, we de-
fine the evaluation of a set of partially mapped BGPs
over a graph G as the union of the evaluations of each
of them over G.

Example 3. Consider our motivating scenario. Over
the BGP P0 of the query Q0, instantiating the vari-
able ?m to ger results in the BGP P1 of the query Q1.
Pairing P1 with this instantiation gives the partially
mapped BGP (P1, { ?m 7→ ger }). Moreover, it is
the case that J(P1, { ?m 7→ ger })KGcou = { { ?m 7→
ger, ?l 7→ de } }.

Next, we formalize when two partially mapped
BGPs are equivalent wrt. a set C of completeness state-
ments and a graph G. Essentially, this is the case if
they return the same answers over all possible exten-
sions of G. We need this notion to capture the equiva-
lence of the BGP instantiations that resulted from the
evaluation of complete BGP parts.

Definition 12 (Equivalence under C and G). Let (P, µ)
and (P′, ν) be partially mapped BGPs, C be a set
of completeness statements, and G be a graph. Then
(P, µ) is equivalent to (P′, ν) wrt. C and G, written
(P, µ) ≡C,G (P′, ν), if for all (G,G′) |= C, it holds that
J(P, µ)KG′ = J(P′, ν)KG′ .

The above definition naturally extends to sets of par-
tially mapped BGPs.

Example 4. Consider the queries in our motivat-
ing scenario in Section 3.1.1. The equivalences dis-
cussed there can now be stated as { (P0, µ∅) } ≡Ccou,Gcou

{ (P1, { ?m 7→ ger }), (P2, { ?m 7→ usa }) } ≡Ccou,Gcou

{ (P3, { ?m 7→ ger, ?l 7→ de }) }.
Next, we would like to figure out which parts of a

BGP contain variables that can be instantiated com-
pletely over G wrt. C, in the sense that over any legiti-
mate extension of G that is still respecting C, there are
no additional mappings for these variables. The idea is
that, we ‘match’ completeness statements to the BGP
and the graph, and return the matched parts of the BGP.
Note that in the matching we consider also the graph
since it might be the case that for a single complete-
ness statement, some parts of it have to be matched to
the BGP, and the remaining parts are matched to the
graph. For this reason, using the transfer operator from
Definition 5, we define

crucC,G(P) = P ∩ ĩd
−1

(TC(P̃ ∪G)) (1)

as the crucial part of P wrt. C and G. In the crucial
part computation, we evaluate the TC operator over the
union of the prototypical graph P̃ and the graph G in
order to obtain the complete parts wrt. the set C of
completeness statements.15 However, we are only in-
terested in the complete parts that are overlapping with
our BGP P. Therefore, we undo the ‘freezing’ effect
of the prototypical graph by the melt operator ĩd

−1
to

transform it back into a BGP, and then compute the
intersection with the BGP P to get the complete parts
that are relevant to P.16

By its construction, we are complete for the crucial
part, that is, C,G |= Compl(crucC,G(P)). Later on, we
will see that the crucial part can be used to guide the
instantiation process during completeness entailment
checking.

Example 5. Consider the query Q0 = (W0, P0) in
our motivating scenario. Applying the freeze map-
ping ĩd = { ?m 7→ m̃, ?l 7→ l̃ } to P0, we obtain
P̃0 = {(UN,member, m̃), (m̃, lang, l̃)}. Among the
three completeness statements in Ccou, only Cun and
Cger can be applied to P̃0 ∪ Gcou and their applica-
tion results in TCcou(P̃0∪Gcou) = {(UN,member, usa),
(UN,member, ger), (UN,member, m̃), (ger, lang, de)}.
Undoing the freezing and intersecting with P0 results
in crucCcou,Gcou(P0) = P0 ∩ ĩd

−1
(TCcou(P̃0 ∪ Gcou)) =

{ (UN,member, ?m) }. Consequently, the graph Gcou

provides us with a complete instantiation of the UN
members.

Consider next the pattern P2 = {(UN,member, usa),
(usa, lang, ?l)}. Now, all completeness statements in
Ccou apply to the frozen version of P2 and the graph,
which gives us TCcou(P̃2∪Gcou) = {(UN,member, ger),
(UN,member, usa), (ger, lang, de), (usa, lang, l̃)}. Melt-
ing the frozen variable and intersecting with P2 then
results in crucCcou,Gcou(P2) = P2.

Consider now the pattern P3 = {(UN,member, ger),
(ger, lang, de)}. Then P3 is ground and P3 = P̃3 ⊆
Gcou. Only the statements Cun and Cger apply to Gcou,
yielding TCcou(P̃3 ∪Gcou) = TCcou(Gcou) = Gcou. Thus,
crucCcou,Gcou(P3) = P3 ∩Gcou = P3.

15An example demonstrating why the graph is necessary to be in-
cluded in the TC application is provided in Appendix B. The formal
part of the example uses the notions we will define in the following
parts of this section.

16Here we slightly abuse the notation by performing a mapping
(which itself is actually a ‘reverse’ mapping) over a graph instead of
a BGP.

F. Darari et al. / Completeness and Soundness Guarantees for Conjunctive SPARQL Queries 11

The operator below implements the instantiations of
a partially mapped BGP wrt. its crucial part.

Definition 13 (Equivalent Partial Grounding). Let C
be a set of completeness statements, G be a graph, and
(P, ν) be a partially mapped BGP. We define the oper-
ator equivalent partial grounding:

epg((P, ν), C,G) = { (µP, ν ∪ µ) |

µ ∈ JcrucC,G(P)KG }.

The following shows that such instantiations pro-
duce a set of partially mapped BGPs equivalent to the
original partially mapped BGP, hence the name equiv-
alent partial grounding. It holds basically since the in-
stantiation is done over the crucial part, which is com-
plete wrt. C and G.

Proposition 3 (Equivalent Partial Grounding). Let C
be a set of completeness statements, G a graph, and
(P, ν) a partially mapped BGP. Then

{ (P, ν) } ≡C,G epg((P, ν), C,G).

Example 6. Consider our motivating scenario. Recall
from Example 5 the crucial parts of the BGPs P2, P3,
and P0 from our motivating example:

– crucCcou,Gcou(P2) = P2;
– crucCcou,Gcou(P3) = P3;
– crucCcou,Gcou(P0) = Pun = {(UN,member, ?m)}.

Evaluating the crucial parts over the graph Gcou yields

– JP2KGcou = ∅;
– JP3KGcou = { µ∅ };
– JPunKGcou = {{ ?m 7→ ger }, { ?m 7→ usa }}.

The corresponding equivalent partial groundings are

– epg((P2, { ?m 7→ usa }), Ccou,Gcou) = ∅;
– epg((P3, { ?m 7→ ger, ?l 7→ de }), Ccou,Gcou) =
{(P3, {?m 7→ ger, ?l 7→ de})};

– epg((P0, µ∅), Ccou,Gcou) = { (P1, { ?m 7→ ger }),
(P2, { ?m 7→ usa }) }.

Generalizing from the example above, there are
three cases of the operator epg((P, ν), C,G):

– If JcrucC,G(P)KG = ∅, it returns the empty set.
– If JcrucC,G(P)KG = { µ∅ }, it returns {(P, ν)}.
– Otherwise, it returns a non-empty set of partially

mapped BGPs, where some variables in P are in-
stantiated.

Let us describe what these three cases mean to our
completeness entailment procedure, and how their ap-
plications lead to termination. The first case corre-
sponds to the non-existence of the query answer in any
possible extension of the graph that satisfies the set of
completeness statements (e.g., the USA’s official lan-
guages case). As demonstrated in Example 6, the first
case removes partially mapped BGPs. This is due to
the emptiness of the crucial parts. Now, for the third
case, it corresponds to the instantiation of complete
parts (that is, the crucial parts) of the BGP. The third
case generates more specific partially mapped BGPs
that are equivalent to the original partially mapped
BGP.

As for the second case, it generates exactly the same
partially mapped BGP as the original one. This means
that the crucial part computation cannot find any more
variables that can be instantiated completely. Here, we
need a special treatment. We first define that a par-
tially mapped BGP (P, ν) is saturated wrt. C and G, if
epg((P, ν), C,G) = { (P, ν) }, that is, if the second case
above applies. Note that the notion of saturation is in-
dependent of the mapping in a partially mapped BGP:
given a mapping ν, a partially mapped BGP (P, ν) is
saturated wrt. C and G iff (P, ν′) is saturated wrt. C
and G for any mapping ν′. Thus, wrt. C and G we say
that a BGP P is saturated if (P, µ∅) is saturated.

Saturated BGPs hold the key as to whether our com-
pleteness entailment check succeeds or not: complete-
ness of saturated BGPs is simply checked by test-
ing whether they are contained in the graph G. Fur-
thermore, once the repeated epg applications with the
above three cases hit the saturated case (i.e., the sec-
ond case), we can readily check completeness entail-
ment.17 Note that this ensures also the termination of
the epg applications.

Lemma 1 (Completeness Entailment of Saturated
BGPs). Let P be a BGP, C a set of completeness state-
ments, and G a graph. Suppose P is saturated wrt. C
and G. Then:

C,G |= Compl(P) iff P ⊆ G.

By consolidating all the above notions, we are ready
to provide an algorithm to check data-aware complete-
ness entailment.

17Essentially, it might be that the epg applications hit the first case
only, that is, there are no more partially mapped BGPs that have to
be checked for completeness. For this case, completeness entailment
trivially holds.

12 F. Darari et al. / Completeness and Soundness Guarantees for Conjunctive SPARQL Queries

4.2. Algorithm

From the above notions, we have defined the cruc
operator to find parts of a BGP that can be instantiated
completely. The instantiation process wrt. the crucial
part is facilitated by the epg operator. We have also
learned that repeating the application of the epg oper-
ator results in saturated BGPs for which we have to
check whether they are contained in the graph or not, in
order to know whether our original BGP is complete.
Algorithm 1 computes a function that, given a set of
completeness statements C, a graph G, and a BGP P,
returns the set

sat(P, C,G)

of all mappings that have two properties: each BGP
instantiation of the mappings constitutes a saturated
BGP wrt. C and G; and the original BGP is equiva-
lent wrt. C and G with the BGP instantiations produced
from all the resulting mappings of the algorithm.

ALGORITHM 1: sat(Porig, C,G)

Input: A BGP Porig, a set C of completeness
statements, a graph G

Output: A set Ω of mappings
1 Pworking ← { (Porig, µ∅) }
2 Ω← ∅
3 while Pworking 6= ∅ do
4 (P, ν)← takeOne(Pworking)
5 Pequiv ← epg((P, ν), C,G)
6 if Pequiv = { (P, ν) } then
7 Ω← Ω ∪ { ν }
8 else
9 Pworking ← Pworking ∪Pequiv

10 end
11 end
12 return Ω

Let us now describe how Algorithm 1 works. Con-
sider a BGP Porig, a set C of completeness state-
ments, and a graph G. First, we transform our origi-
nal BGP Porig into its equivalent partially mapped BGP
(Porig, µ∅) and put it in Pworking. Then, in each iter-
ation of the while loop, we take and remove a par-
tially mapped BGP (P, ν) from Pworking via the method
takeOne. Afterwards, we compute epg((P, ν), C,G).
As discussed above there can be three result cases here:
(i) If epg((P, ν), C,G) = ∅, then we simply remove
(P, ν) and will not consider it anymore in the later iter-
ation; (ii) If epg((P, ν), C,G) = { (P, ν) }, that is, (P, ν)

is saturated, then we add the mapping ν to the set Ω;
and (iii) otherwise, we add to Pworking a set of partially
mapped BGPs instantiated from (P, ν). We keep iterat-
ing until Pworking = ∅, and finally return the set Ω.

The next proposition about the function computed
by Algorithm 1 follows from the construction of the
algorithm and Proposition 3.

Proposition 4. Let P be a BGP, C a set of complete-
ness statements, and G a graph. Then the following
properties hold:

– {(P, µ∅)} ≡C,G { (µP, µ) | µ ∈ sat(P, C,G) };
– µP is saturated wrt. C and G, for all mappings
µ ∈ sat(P, C,G).

From the above proposition, we can derive the fol-
lowing theorem, which shows the soundness and com-
pleteness of the algorithm to check completeness en-
tailment.

Theorem 1 (Completeness Entailment Check). Let P
be a BGP, C a set of completeness statements, and G a
graph. Then the following are equivalent:

1. C,G |= Compl(P);

2. µP ⊆ G, for all µ ∈ sat(P, C,G).

Example 7. Consider our motivating scenario. Then
sat(P0, Ccou,Gcou) = { { ?m 7→ ger, ?l 7→ de } }.
For every mapping µ in sat(P0, Ccou,Gcou), it holds
that µP0 ⊆ Gcou. Thus, by Theorem 1 the entailment
Ccou,Gcou |= Compl(P0) holds.

From looking back at the initial characterization of
completeness entailment in Proposition 1, it actually
does not give us a concrete way to compute a set of
mappings to be used in checking completeness entail-
ment. Now, by Theorem 1 it is sufficient for complete-
ness entailment checking to consider only the map-
pings in sat(P, C,G), which we know how to compute.

4.2.1. Simple Practical Considerations
Following from the aforementioned algorithm to

compute saturated mappings, and Theorem 1, a corre-
sponding algorithm for checking completeness entail-
ment can be easily derived. In what follows we provide
two simple heuristic techniques of the completeness
checking algorithm: early failure detection and com-
pleteness skip. More elaborate heuristics are given in
Section 6.

Early Failure Detection. In our algorithm, the contain-
ment checks for saturated BGPs are done at the end.

F. Darari et al. / Completeness and Soundness Guarantees for Conjunctive SPARQL Queries 13

Indeed, if there is a single saturated BGP not contained
in the graph, we cannot guarantee query completeness
(recall Theorem 1). Thus, instead of having to col-
lect all saturated BGPs and then check the containment
later on, we can improve the performance of the algo-
rithm by performing the containment check right af-
ter the saturation check (Line 6 of the algorithm). So,
as soon as there is a failure in the containment check,
we stop the loop and conclude that the completeness
entailment does not hold.

Completeness Skip. Recall the definition of epg as
epg((P, ν), C,G) = { (µP, ν∪µ) | µ ∈ JcrucC,G(P)KG },
which relies on the cruc operator. Now, suppose that
crucC,G(P) = P, implying that we are complete for
the whole part of the BGP P. Thus, we actually do
not have to instantiate P in the epg operator, since we
know that the instantiation results will be contained
in G anyway due to P’s completeness wrt. C and G. In
conclusion, whenever crucC,G(P) = P, we just remove
the corresponding (P, ν) from Pworking and thus skip its
instantiations.

4.3. Complexity

In this subsection, we analyze the complexity of
the problem of data-aware completeness entailment.
While the complexity of checking data-agnostic com-
pleteness entailment is NP-complete [4], the addi-
tion of the data graph to the entailment increases the
complexity, which is now ΠP

2-complete. The hardness
is shown by a reduction of the validity problem for
∀∃3SAT formulas.

Proposition 5. Deciding the entailment C,G |=
Compl(P), given a set C of completeness statements, a
graph G, and a BGP P, is ΠP

2-complete.

One might wonder, if some parts of the inputs were
fixed, what would be the complexity of the entailment
problem. We answer this question in the following se-
ries of propositions.

The following proposition follows from the reduc-
tion proof of Proposition 5, in which the graph is fixed.

Proposition 6. Let G be a graph. Deciding the entail-
ment C,G |= Compl(P), given a set C of completeness
statements and a BGP P, is in ΠP

2 . There is a graph for
which the problem is ΠP

2-complete.

Now, we want to see the complexity when the
BGP P is fixed. Recall that in the algorithm, P domi-

nates the complexity of the instantiation process in the
epg operator. When it is fixed, the size of the instantia-
tions is bounded polynomially, reducing the complex-
ity of the entailment problem to NP-complete. Note it
is still NP-hard even when the input graph G is fixed.

Proposition 7. Let P be a BGP. Deciding the entail-
ment C,G |= Compl(P), given a set C of completeness
statements and a graph G, is in NP. There is a BGP
for which the problem is NP-complete. This still holds
when the graph is fixed.

Let us now see the complexity when the set of state-
ments C is fixed. In the algorithm, C dominates the
complexity of the TC operator used in computing the
crucial part. When it is fixed, the TC operator can
be applied in PTIME, reducing the complexity of the
entailment problem to CoNP-complete. Again, fixing
also the graph does not change the complexity.

Proposition 8. Let C be a set of completeness state-
ments. Deciding the entailment C,G |= Compl(P),
given a graph G and a BGP P, is in CoNP. There is a
set C of completeness statements for which the prob-
lem is CoNP-complete. This still holds when the graph
is fixed.

Finally, the following proposition tells us that fixing
both the set of statements C and the BGP P reduces the
complexity to PTIME.

Proposition 9. Let C be a set of completeness state-
ments and P be a BGP. Deciding the entailment C,G |=
Compl(P), given a graph G, is in PTIME.

This result corresponds to some practical cases when
queries are assumed to be of limited length18 and
hence, so are completeness statements (which are es-
sentially also queries).

Table 1

Complexity table for the data-aware completeness entailment prob-
lem with various inputs fixed (‘×’ denotes ‘fixed’)

input complexity

C G P

X X X ΠP
2-complete

X × X ΠP
2-complete

X X × NP-complete

X × × NP-complete

× X X CoNP-complete

× × X CoNP-complete

× X × in PTIME

18as also customary in database theory when analyzing the data
complexity of query evaluation [13]

14 F. Darari et al. / Completeness and Soundness Guarantees for Conjunctive SPARQL Queries

Our complexity results with various inputs fixed are
summarized in Table 1. From this complexity study,
it is therefore of our interest to investigate how well
the problem of completeness entailment may be solved
in practice. In later sections, we will provide heuristic
techniques, as well as experimental evaluations of the
problem.

Completeness of Queries with Projections The above
formalization deals with the completeness of queries
with no projections (that is, where all variables in the
BGP are distinguished). One may wonder, what hap-
pens when not all variables are distinguished? The an-
swer depends on whether bag or set semantics is used.

With bag semantics, due to the monotonicity of
BGPs, and answer-multiplicity being preserved, our
results immediately transfer to queries with projec-
tions: a query with projections is complete if and only
if the projection-free version of the query is complete.

We do not know a characterization of complete-
ness for queries with projections under set semantics.
Nevertheless, Theorem 1 derives a sufficient condition
for completeness in this case: whenever the BGP of a
query with projections is complete, then the query is
also complete under set semantics.

5. Checking Query Soundness

In this section, we leverage completeness reasoning
for checking answer and pattern soundness.

5.1. Checking Answer Soundness

We will use data-aware completeness reasoning to
judge whether an answer obtained by evaluating a
graph pattern over a graph is sound.

Example 8. Remember the motivating scenario of
answer soundness in Section 3.2.1. Consider the
mapping {?c 7→ usa} ∈ JPlKGl . After instantiat-
ing the variable ?c in the two negated subpatterns
with usa, we obtain the patterns (usa, lang, en) and
(usa, lang, ?l), (?f , lang, ?l), (EU, founder, ?f). Using
the techniques for completeness checking in Sec-
tion 4, we find that both the entailment Cl,Gl |=
Compl((usa, lang, en)) and the entailment

Cl,Gl |= Compl((usa, lang, ?l), (?f , lang, ?l),
(EU, founder, ?f))

hold. Therefore, these subpatterns will fail over every
extension of Gl compatible with Cl, and {?c 7→ usa}

will continue to be an answer, that is formally, Cl,Gl |=
Sound({?c 7→ usa}, Pl).

In contrast, consider the mapping {?c 7→ sgp} ∈
JPlKGl . For the extension G′l = Gl ∪ {(sgp, lang, en)},
however, we have {?c 7→ sgp} /∈ JPlKG′

l
, since

instantiating the negated subpattern (?c, lang, en) to
(sgp, lang, en) results in a triple satisfied by G′l .
Clearly, (Gl,G′l) |= Cl, from which we conclude that
Cl,Gl 6|= Compl((sgp, lang, en)). In short, {?c 7→ sgp}
is not a sound answer for Pl over Gl, because Cl and Gl

do not entail the completeness of the instantiated triple
pattern {?c 7→ sgp}(?c, lang, en).

The main theorem of this subsection generalizes the
observations of the example. Intuitively, it states that
the soundness of some answer-mapping of a graph
pattern over a graph is guaranteed exactly if all the
graph pattern’s NOT-EXISTS-BGPs, after applying the
answer-mapping to them, are complete for the graph.

Theorem 2. (ANSWER SOUNDNESS) Let G be a
graph, C a set of completeness statements, P a graph
pattern, and µ ∈ JPKG a mapping. Then the following
are equivalent:

1. C,G |= Sound(µ, P);
2. C,G |= Compl(µPi), for all Pi ∈ P−.

In fact, Theorem 2 holds for a wider class of graph
patterns than defined in this article. We only need the
positive part of the pattern to be monotonic, that is,
a mapping remains a solution over all extensions of
the graph G. We do not make this formal to keep the
exposition simple.

Complexity From Theorem 2, the check of whether
an answer is sound wrt. a set of completeness state-
ments and a graph can be reduced to a linear number of
data-aware completeness checks (as discussed in Sec-
tion 4). From this, it follows that the complexity of the
answer soundness entailment problem is in ΠP

2 . More-
over, the answer soundness problem is also ΠP

2-hard as
the completeness problem can be reduced to it by us-
ing Theorem 2. Nevertheless, from a practical perspec-
tive, one may expect graph patterns (including BGPs
used to construct completeness statements) to be short,
giving us a potentially manageable answer soundness
check. Section 7 reports an experimental study of an-
swer soundness checking in practical settings.

5.2. Checking Pattern Soundness

As shown in our motivating scenario, it might be
the case that completeness statements guarantee the

F. Darari et al. / Completeness and Soundness Guarantees for Conjunctive SPARQL Queries 15

soundness of a graph pattern as such, that is, all an-
swers returned by the graph pattern are known to be
sound, no matter the specifics of the graph. To charac-
terize pattern soundness, we follow the same strategy
as before: we reduce the problem of soundness check-
ing to completeness checking.

First, we generalize completeness statements to con-
ditional completeness statements, which express the
completeness of a BGP under the condition of an-
other BGP. Given two BGPs P and P′, the complete-
ness of P wrt. P′ is denoted as Compl(P | P′). Given
an extension pair (G,G′), we define that (G,G′) |=
Compl(P | P′) if J(var(P), P∪ P′)KG′ ⊆ JPKG.19 This
means that the conditional completeness statement is
satisfied by the extension pair, whenever the evaluation
of the BGP P over the graph G contains the evalua-
tion of P under the condition of P′ over the graph G′.
For example, the conditional completeness statement
Compl((?c, lang, en) | (?c, a, country)) denotes the
completeness of all things having English as their lan-
guage, provided that those things are of type coun-
try. Note that conditional completeness statements are
more general than completeness statements as intro-
duced in Section 2.2, since a completeness statement
Compl(P) can be expressed as a conditional complete-
ness statement with the empty condition Compl(P | ∅).
We define that the entailment C |= Compl(P | P′)
holds if for all extension pairs (G,G′) satisfying C, it is
the case that (G,G′) |= Compl(P | P′). The following
proposition states that such an entailment holds iff the
application of the transfer operator TC to the prototyp-
ical graph P̃∪ P̃′ contains P̃. Recall that the prototypi-
cal graph represents any possible graph that satisfies a
BGP.

Proposition 10. For a set C of completeness state-
ments and BGPs P and P′, it is the case that

C |= Compl(P | P′) iff P̃ ⊆ TC(P̃ ∪ P̃′).

In the motivating scenario of pattern soundness, it
holds that C f |= Compl((?c, lang, en) | (?c, a, country))
due to the inclusion

{(c̃, lang, en)} ⊆ {(c̃, lang, en)(c̃, a, country)}

= TC f ({(c̃, lang, en), (c̃, a, country)})}.

19Though redundancies may occur in the left-hand side due to the
projection, for our characterizations here the ⊆ operation is done
under set semantics. Hence, the redundancies are ignored.

This means that the set C f of statements guarantees the
completeness of all things whose official language is
English, under the condition that those things are of
type country.

The following lemma states that the soundness of
a graph pattern can be guaranteed if each BGP of the
NOT-EXISTS patterns is complete under the condition
of the positive part of the graph pattern.

Lemma 2. Let C be a set of completeness statements
and P a graph pattern. Then C |= Sound(P) provided
that C |= Compl(Pi | P+) for all Pi ∈ P−.

One might wonder whether the converse of the
above lemma also holds. However, the following coun-
terexample shows that it does not.

Example 9. Consider the following graph patterns:

P1 = {(?c, a, country),¬∃{(?c, lang, en)},
¬∃{(?c, lang, en), (?c, lang, fr)}}

P2 = {(?c, a, country),

¬∃{(?c, lang, en), (?c, lang, ?l)}}.

Suppose both return as answers mappings { ?c 7→ c }
for an IRI c. It is the case that c is a country that
does not have the language en. The reason is that, af-
ter instantiating ?c with c, all three negated subpat-
terns are empty over a graph G if and only if the triple
(c, lang, en) is not present in G. Consider next also the
completeness statement C = {Compl((?c, lang, en))}.
If the triple (c, lang, en) is not present in G, and
(G,G′) |= C, then the triple is not present in G′ either.
Hence, all three negated subpatterns fail and { ?c 7→
c } persists to be an answer to P1 and P2 over G′. We
thus have C |= Sound(P1) and C |= Sound(P2) despite
the violation of the right-hand side of Lemma 2.

Taking a closer look, one notices that both graph
patterns in fact contain redundancies, which can be
checked via query containment under set semantics
(written vs). For P1, the second NOT-EXISTS pattern
is superfluous due to the first one being more gen-
eral; whereas for P2, the triple pattern (?c, lang, ?l)
is superfluous since the emptiness of the BGP of the
NOT-EXISTS pattern only depends on the triple pat-
tern (?c, lang, en). Consequently, for both cases having
only the completeness statement Compl((?c, lang, en))
is sufficient to guarantee their soundness.

To identify such redundancies, we associate to each
pattern Pi ∈ P− the query (var(P+), P+ ∪ Pi).
These are essentially conjunctive queries, which can

16 F. Darari et al. / Completeness and Soundness Guarantees for Conjunctive SPARQL Queries

be checked for set containment and which can be min-
imized (see [14]). Specifically, we propose a normal
form for graph patterns, called non-redundant form
(NRF). A graph pattern P is in NRF if it satisfies two
conditions: there are no redundant negated patterns,
and there are no non-minimal negated patterns. This
can be formalized as follows:

– The BGP Pi ∈ P− is redundant if there is a dis-
tinct P j ∈ P− such that

(var(P+), P+ ∪ Pi) vs (var(P+), P+ ∪ P j).

– The BGP Pi ∈ P− is non-minimal if there is a
non-empty strict subpattern P′i ⊂ Pi such that

(var(P+), P+ ∪ P′i) vs (var(P+), P+ ∪ Pi).

With this notion in place, we can obtain the main
theorem of this subsection. The theorem states that
given an NRF graph pattern, the check of whether it is
sound can be reduced to checking whether each BGP
among the NOT-EXISTS patterns is complete under the
condition of the positive part. Thus, the theorem en-
sures that the converse of Lemma 2 holds for NRF
graph patterns.

Theorem 3. (PATTERN SOUNDNESS) Let C be a set
of completeness statements and P a graph pattern in
NRF. Then the following are equivalent:

1. C |= Sound(P);
2. C |= Compl(Pi | P+) for all Pi ∈ P−.

Example 10. In the motivating scenario of pattern
soundness, it holds that

C f |= Compl((?c, lang, en) | (?c, a, country))

C f |= Compl((EU, founder, ?c) | (?c, a, country)).

By Theorem 3, it is the case C f |= Sound(P f).

Complexity If P is a graph pattern (which may have
negated parts) and P̄ is obtained from P by eliminat-
ing redundant negated patterns and minimizing the re-
maining ones, we say that P̄ is an NRF of P. Clearly,
P and every such P̄ are equivalent. According to The-
orem 3, a straightforward attempt at implementing a
soundness check for patterns P would be to compute
an NRF P̄ of P and then perform the completeness
entailment checks specified by the theorem. Such a P̄
can be computed by a function that runs in polynomial
time and makes several calls to an NP-oracle, while the

entailment checks can be performed in NP. This gives
us PNP as an upper complexity bound for checking pat-
tern soundness. We will show that the problem is even
in NP.

For that purpose we introduce a relationship be-
tween patterns with negation of which the relationship
between a pattern and its NRF is a special case. We say
that two graph patterns P, P̄ are negation-similar if the
following holds:

– P+ = P̄+;
– for every Pi ∈ P−, there is a P̄ j ∈ P̄− such that

(var(P+), P+ ∪ Pi) vs (var(P̄+), P̄+ ∪ P̄ j);
– for every P̄ j ∈ P̄−, there is a Pi ∈ P− such that

(var(P̄+), P̄+ ∪ P̄ j) vs (var(P+), P+ ∪ Pi).

Note that negation-similarity is in NP, since it can be
checked by guessing for every Pi a corresponding P̄ j,
for every P̄′j a corresponding P′i and then performing
containment checks by guessing and verifying query
homomorphisms (see [14]).

Negation-similarity is a key-property here because
it preserves equivalence.

Proposition 11. Negation-similar graph patterns are
equivalent.

With this background we can design an NP sound-
ness check for patterns P by, intuitively, first guess-
ing P̄, verifying that it is negation-similar to P, and
running the completeness entailment checks of the the-
orem. We first make the step of guessing P̄ more for-
mal.

Proposition 12. Let P be a graph pattern. Then there
exists a graph pattern P̄ such that

– P̄ is in NRF;
– P̄ is obtained from P by dropping negated pat-

terns and by dropping atoms from negated pat-
terns;

– P̄ is negation-similar to P.

We can obtain such a P̄ as an NRF of P by first drop-
ping redundant negated patterns until there are no re-
dundancies any more and then dropping atoms from
the remaining Pi ∈ P− during the minimization of the
(var(P+), P+ ∪ Pi). Clearly, the redundancy removal
and minimization steps preserve negation-similarity.

Now we have all ingredients in place for an NP-
algorithm that checks whether a set of completeness
statements C entails the soundness of a graph pat-
tern P:

(i) nondeterministically drop negated patterns
from P;

F. Darari et al. / Completeness and Soundness Guarantees for Conjunctive SPARQL Queries 17

(ii) nondeterministically drop atoms from the remain-
ing negated patterns;

(iii) verify that the resulting pattern P̄ is negation-
similar to P;

(iv) verify that C |= Compl(P̄ j | P̄+) for every
P̄ j ∈ P̄−.

Clearly, the first two steps can be performed in non-
deterministic polynomial time. As seen above, also,
negation-similarity can be checked in nondeterministic
polynomial time. Finally, by Proposition 10, the com-
pleteness checks in Step (iv) can be reduced to a linear
number of TC applications, which are basically evalua-
tions of conjunctive CONSTRUCT queries and are there-
fore in NP. Thus, all the checks together can be per-
formed in NP.

If the resulting P̄ passes the completeness checks,
then we have found a query that is sound by Lemma 2
and is equivalent to P by Proposition 11 so that P is
sound. If P is sound, then any NRF of P is a pattern that
can be guessed and verified by the above algorithm.
This shows membership in NP.

NP-hardness is clear, since Theorem 3 also shows
that completeness checking can be reduced to sound-
ness checking.

Proposition 13. Soundness checking of graph patterns
is NP-complete.

From a practical viewpoint, one may expect graph
patterns of queries and BGPs of completeness state-
ments to be short, potentially allowing for a feasible
soundness check. Section 7 reports an experimental in-
vestigation of pattern soundness checking in practical
cases.

Soundness of Queries with Projections We have
provided a full characterization of the soundness of
queries with negation where no projections are in-
volved (or where the projection is over all variables in
the query body). One may wonder whether our charac-
terization here can also be used for queries with nega-
tion that involve generic projections (that is, where
some variables can be non-distinguished). The next ex-
ample shows that in general, the condition from The-
orem 3 is not a necessary condition for pattern sound-
ness entailment of queries with projection.

Example 11. Consider the following boolean query,
which asks whether there is some triple that cannot be
right-shifted.

Q = ({}, {(?x, ?y, ?z),¬∃{ (?z, ?x, ?y) }}).

Consider also the singleton set containing a complete-
ness statement of three possible shifts of triples:

C={Compl((?x, ?y, ?z),(?z, ?x, ?y),(?y, ?z, ?x))}.

If we assume bag semantics, Q returns a bag of empty
mappings µ∅ when evaluated over a graph G, one for
each answer to the graph pattern of the query. We
show that if G′ is such that (G,G′) |= C, then the num-
ber of empty mappings returned by Q over G′ is no
less than the number retrieved over G (as otherwise, it
will be not sound). Now suppose that Q returns a copy
of µ∅ over G. Then there is a triple (a, b, c) ∈ G such
that (c, a, b) /∈ G. If also (c, a, b) /∈ G′, then Q over G′

continues to return a copy of µ∅ for the same reason as
before. Consider therefore the case that (c, a, b) ∈ G′.
If (b, c, a) /∈ G′, then Q returns again a copy of µ∅,
this time because the triple (c, a, b) ∈ G′ does not have
its right shift in G′. If, however, also (b, c, a) ∈ G′,
then the completeness statement kicks in and enforces
that (c, a, b) ∈ G, which contradicts our original as-
sumption. Thus, C entails the pattern soundness of Q,
even though C does not entail Compl((?z, ?x, ?y) |
(?x, ?y, ?z)).

We do not know a characterization of pattern sound-
ness for queries involving projections. Nevertheless,
Theorem 3 still gives a sufficient condition for sound-
ness in this case.

Combining Soundness and Completeness Reasoning
A graph pattern with negation can be both sound and
complete. Theorem 3 characterizes when a graph pat-
tern P in NRF is sound wrt. a set C of complete-
ness statements. One can show that P is complete if
and only if the positive part P+ is complete. For the
right-to-left direction, it can be seen that whenever the
positive part is complete, if there is an extension to
the graph G, the whole graph pattern P can only re-
move mappings (that is, it cannot add new mappings).
Hence, the evaluation result of P over G is guaranteed
to contain that over G′. For the left-to-right direction,
whenever the positive part cannot be guaranteed to be
complete wrt. the set C of completeness statements,
we can build a counterexample extension pair of the
pattern soundness entailment by putting the freeze ver-
sion of the positive part as the graph G′, and the TC
application over G′ as the graph G. Via both charac-
terizations, we can then check whether a graph pattern
is sound and/or complete.

18 F. Darari et al. / Completeness and Soundness Guarantees for Conjunctive SPARQL Queries

6. Heuristics for Completeness Checking

So far, we have formally characterized completeness
entailment, and, for soundness entailment, provided a
reduction to completeness entailment. In this section
we investigate how completeness checks can actually
be implemented in practice. A vanilla implementation
of completeness reasoning over a Wikidata-based ex-
periment setting took about 15 s on average for a single
completeness check, whereas query evaluation took
just about 1 ms. Such a considerable overhead over
query evaluation may hinder the adoption of our com-
pleteness framework in practical settings. This moti-
vates the need for heuristic techniques that may pro-
vide speed-ups. In this section we discuss several pos-
sible heuristics for completeness checking, then evalu-
ate their performance in the next section in a realistic
setting based on Wikidata.

Before delving further into the discussion of heuris-
tic approaches for completeness checking, we provide
basic practical assumptions underlying the develop-
ment of the heuristics. Our first assumption concerns
the length of completeness statements. Similarly to
queries, which in many practical cases consist of a
limited number of triple patterns [15,16,17], we con-
jecture that also completeness statements would be
of limited length. At the same time, it is conceivable
that the number of completeness statements is large
in practice, in particular since big KBs such as Wiki-
data may have many parts of data that are actually
complete. Nevertheless, for a given query, most state-
ments are likely to be irrelevant. For example, the
statement “All players of Arsenal” is irrelevant to the
query “Give founders of the EU.” Consequently, an
efficient implementation should filter out such irrele-
vant statements. Moreover, as users are likely to pro-
vide completeness statements for similar topics, we in-
troduce generic completeness templates. By providing
a compact representation of completeness statements,
completeness templates enable multiple statements to
be processed simultaneously. We also provide a heuris-
tic called prioritized evaluation, which tunes the way
the crucial part is computed in data-aware complete-
ness reasoning (cf., Eq. (1)).

In the next subsections, we first provide a heuristic
technique for a simpler problem, that is, data-agnostic
completeness checking, followed by several heuristic
techniques for data-aware completeness checking.

6.1. Data-agnostic Completeness Checking

We now address a heuristic technique for data-
agnostic completeness checking, originally proposed
in [6], which can also be leveraged for pattern sound-
ness checking, thanks to the characterization in The-
orem 3. The theorem states that pattern soundness
checking can be reduced to the (data-agnostic) checks
of whether a set C of completeness statements en-
tails conditional completeness statements of the form
Compl(P | P′). By Proposition 10, such a check can
be done by evaluating the union of the CONSTRUCT

queries QC , for every completeness statement C ∈ C,
over the prototypical graph P̃ ∪ P̃′. A statement C
contributes to this evaluation only if the result of QC

over this graph is non-empty. Clearly, a necessary con-
dition for C to contribute is that all terms in C (i.e.,
IRIs and literals) occur among the terms in P ∪ P′,
written terms(C) ⊆ terms(P ∪ P′). We call such a C
term-relevant for Compl(P | P′). We can retrieve all
such term-relevant C by evaluating the subset query
asking for the statement set {C ∈ C | terms(C) ⊆
terms(P ∪ P′) }.

A simple way (yet efficient, as we will show in Sec-
tion 7) to implement such subset queries is to build
a hashmap of all statements where the key of C is
terms(C). With this hashmap, we can answer the sub-
set query by retrieving for all non-empty subsets S ⊆
terms(P ∪ P′) the statements C with terms(C) = S .
The completeness check can then be done only with
these statements, which are potentially far fewer than
the original statements.

Example 12. Consider the following set Corg of 10,000
completeness statements:

– Clang = Compl((?c, a, country), (?c, lang, ?l))
– Ceu = Compl((EU, founder, ?f))
– Corg1 = Compl((org1, founder, ?f))
– . . .
– Corg9998 = Compl((org9998, founder, ?f)).

The corresponding hashmap is as follows, where the
keys are sets of terms occurring in the completeness
statements, and the values are sets of completeness
statements with those terms:

– {a, country, lang} 7→ {Clang},
– {EU, founder} 7→ {Ceu},
– {org1, founder} 7→ {Corg1},
– . . .
– {org9998, founder} 7→ {Corg9998}.

Consider the query P f from Section 3.2.2,

F. Darari et al. / Completeness and Soundness Guarantees for Conjunctive SPARQL Queries 19

P f = {(?c, a, country), ¬∃{ (?c, lang, en) },
¬∃{ (EU, founder, ?c) }},

and let P1 = {(?c, lang, en)} (i.e., the BGP of the first
NOT-EXISTS pattern) and P2 = {(EU, founder, ?c)}
(i.e., the BGP of the second NOT-EXISTS pattern). To
verify query soundness wrt. Corg, according to Theo-
rem 3 we check whether both Corg |= Compl(P1 | P+

f)

and Corg |= Compl(P2 | P+
f). By applying TCorg ac-

cording to Proposition 10, we conclude that both en-
tailments hold. However, rather than evaluating all
10,000 statements in Corg over the prototypical graph,
we can now use the term hashmap to rule out irrele-
vant statements, as follows. Consider the first check.
The set of terms from the BGP is terms(P1 ∪ P+

f) =
{ a, country, lang, en }. From these four terms, we gen-
erate 15 non-empty subsets: {a}, {country}, . . . , and
the set terms(P1 ∪ P+

f) itself. By looking up the state-
ments for these subsets using the hashmap, we end
up with the singleton set {Clang }. Note that the other
9,999 statements are irrelevant and thus are left out. By
performing an analogous operation for the latter case,
we retrieve the singleton {Ceu }. Thus, instead of con-
sidering 10,000 statements in the reasoning, we now
consider only 2.

A potential, theoretical drawback of this heuristic
technique is that when queries are long, the number of
term subsets generated for hashmap lookups would be-
come large. More precisely, the number of term sub-
sets grows exponentially with the query length (i.e.,
number of triple patterns). Nevertheless, as discussed
above, we expect that queries in the real world are of
limited length [15,16,17].

6.2. Data-aware Completeness Checking

For the data-aware setting, reasoning needs also ac-
cess to the data graph. The previous heuristic of data-
agnostic reasoning, which leaves out statements whose
terms are not among the terms of the query, is no more
applicable, since parts of the statements can now be
mapped to the data graph. We present three heuristic
techniques: completeness templates, partial matching,
and prioritized evaluation. Their individual and com-
bined impacts on reasoning time are reported in Sec-
tion 7.

6.2.1 Completeness Templates Templates support
users in creating completeness statements about simi-
lar topics, as they occur for instance in IMDb, which

reports completeness for movie cast and crew,20 or in
OpenStreetMap, which uses a wiki to record the com-
pleteness of objects in different geographical areas.21

A completeness template is a 3-tuple τ = (C,Vτ,Ω),
where C is a completeness statement, Vτ ⊆ var(C)
is a set of variables, called meta-variables, and Ω is
a set of mappings from Vτ to terms (i.e., IRIs or lit-
erals). We also refer to the BGP of the completeness
statement C of the template τ as Pτ. As an example of
a completeness template, we generalize the statement
set

{Compl((en, lang, ?l)),Compl((ger, lang, ?l)),

. . . ,Compl((spa, lang, ?l))}

to the template (Compl((?c, lang, ?l)), {?c},Ω), where
Ω = { { ?c 7→ en }, { ?c 7→ ger }, . . . , { ?c 7→ spa } }.
A template τ = (C,Vτ,Ω) represents the statement set
Cτ = {Compl(µPC) | µ ∈ Ω }, obtained by instanti-
ating C with the mappings in Ω. This definition natu-
rally extends to sets of completeness templates, that is,
the set CT is the union of all statements in Cτ for every
τ ∈ T . Note that a completeness statement C can be
expressed as the completeness template (C, ∅, {µ∅}),
where µ∅ is the empty mapping.

A key part of the algorithm for data-aware com-
pleteness checking, given a statement set C and a data
graph G, is to identify the crucial part P0 of P, that is,
the maximal subset P0 ⊆ P such that P̃0 ⊆ TC(P̃∪G),
where TC is the transfer operator for C. Given a set T
of completeness templates, analogously to Eq. (1),
such a part satisfies the equation

P0 = P ∩ ĩd
−1

(TCT (P̃ ∪G)). (2)

A baseline approach to compute P0 in Eq. (2) is to in-
stantiate templates to yield completeness statements,
and then apply the TC-operator wrt. the statements.
This may be costly if there are many instances of those
templates. Now, templates allow us to leverage query
evaluation for data-aware completeness reasoning by
exploiting that a template represents many statements.
Essentially, to check whether the TC-operator maps a
triple in P̃ by an instantiation of a template τ, we first
evaluate Pτ (by treating the meta-variables like vari-

20See e.g., http://www.imdb.com/title/tt0105236/
fullcredits

21See e.g., http://wiki.openstreetmap.org/wiki/
Abingdon

http://www.imdb.com/title/tt0105236/fullcredits
http://www.imdb.com/title/tt0105236/fullcredits
http://wiki.openstreetmap.org/wiki/Abingdon
http://wiki.openstreetmap.org/wiki/Abingdon

20 F. Darari et al. / Completeness and Soundness Guarantees for Conjunctive SPARQL Queries

ables) over the union graph P̃ ∪ G, and verify in a
second step which of the resulting mappings are com-
patible22 with the instantiations of the template τ. In
this way, all instances of τ can be processed simulta-
neously. To formally represent the above idea, given a
set T of completeness templates, a frozen BGP P̃, and
a graph G, we define a template-based transfer opera-
tor

TT (P̃ ∪G) =
⋃
τ ∈ T

τ = (C, Vτ,Ω)

{µPτ | µ ∈ JPτKP̃∪G on Ω}.

The above operator computes for each template τ the
evaluation of the BGP Pτ over P̃∪G, keeps only those
mappings compatible with Ω, and then takes the union.
The crucial point here is that instead of evaluating the
whole set of (instantiated) completeness statements,
we only have to evaluate the (potentially far fewer)
completeness templates. By the definition of complete-
ness templates and the construction of TT , the BGP P0

in Eq. (2) can alternatively be computed using TT .

Proposition 14. Given a BGP P, a graph G, and a
set T of completeness templates, it is the case that

P0 = P ∩ ĩd
−1

(TCT (P̃ ∪G))

= P ∩ ĩd
−1

(TT (P̃ ∪G)).

The proposition holds basically because the map-
pings that result from the evaluation of a template over
P̃ ∪G and are compatible with Ω are exactly the same
as those of the instantiated completeness statements of
the template that can be applied over P̃ ∪G.

6.2.2 Partial Matching While the above heuristic
technique concerns a data structure, called complete-
ness templates, that bundles similar completeness
statements, here we develop a heuristic for filtering
out irrelevant completeness statements. In the previ-
ous data-agnostic heuristic technique, we perform so-
called subset matching: for each statement, collect the
set of terms of the BGP and check if this is a subset
of the set of terms of the query BGP. This technique
is no more applicable because a part of the BGP of a
statement can also be matched to the data graph.

For data-aware completeness reasoning, it is suffi-
cient for a completeness statement to be relevant for

22That is, when those mappings are projected to the meta-
variables of the template, the projected mappings exist in Ω.

a query if the statement partially captures the BGP of
the query, which in the worst case means to capture
just a single triple pattern of the query. This is shown
in the computation of the crucial part (Eq. (1)), where
the transfer operator is evaluated over the union of the
prototypical graph and the data graph, and then is inter-
sected with the BGP of the query. Thus, the notion of
relevance needs to be adapted for the data-aware case:
A completeness statement may potentially be relevant
for a query, if there is at least one triple pattern of the
statement which is more general than a triple pattern
of the query. The notion of generality is defined as fol-
lows: a triple pattern (s, p, o) is more general than an-
other triple pattern (s′, p′, o′) if in the corresponding
position, say, the subject (and analogously for the pred-
icate and object), either s is the same term as s′ or s is
a variable. Note that as opposed to the data-agnostic
heuristic that supports the matching of the whole state-
ment BGP, we now need to support matchings of sin-
gle triple patterns. Such a matching of a single triple
pattern of a BGP is called a partial matching of the
BGP.

Let us first sketch a way how to retrieve such par-
tially matched statements. Again, we rely on hashmaps.
We use each triple pattern of a statement as a hashkey,
by which the statement can be retrieved. Thus, a state-
ment with three triple patterns, for example, can be re-
trieved in three different ways. To find statements that
are potentially applicable to a frozen BGP P̃, we per-
form a hashmap lookup for each triple pattern of P
and for all possible generalizations of that triple pat-
tern where non-predicate terms are replaced by a vari-
able.23

Let us formalize the above sketch. Our main goal
here is partial matching: retrieving only completeness
statements having a triple pattern that can potentially
be mapped to a triple in a frozen BGP P̃. To this end,
we first introduce the signature operator σ(·) that ab-
stracts away concrete variables by replacing every oc-
currence of a variable with the reserved IRI _var. It
can be applied to any syntactic object. As an illustra-
tion, the signature of the BGP Pusa = { (usa, lang, ?l) }
is σ(Pusa) = { (usa, lang,_var) }.

Next, we index completeness statements according
to (the signatures of) their triple patterns. For this pur-
pose, we define a mapping M from signature triples to

23Technically, the predicate can be a variable too. Yet, in relation
to completeness statements, we believe that to be complete for all
possible relationships between two entities might not be reasonable
in practice. Hence, only non-predicate terms are generalized.

F. Darari et al. / Completeness and Soundness Guarantees for Conjunctive SPARQL Queries 21

sets of completeness statements such that the signature
triple is in the signature of the statement’s BGP:

M((s, p, o)) = {C ∈ C | (s, p, o) ∈ σ(PC) }.

In practice, such a mapping can be realized by standard
hashmaps. Given a signature triple (s, p, o), the gen-
eralization operator gen((s, p, o)) computes the set
of all generalizations where non-predicate terms can
become variables. As an illustration, the generaliza-
tion of the signature triple (usa, lang,_var) is the set
{ (usa, lang,_var), (_var, lang,_var) }.

Now, we are ready to define the operator pmatch
that, given a set of statements C, retrieves those el-
ements of C that can potentially ‘transfer’ at least
one triple in the frozen BGP P̃. Technically, pmatch
maps P and C to the set of partially matched statements
wrt. P and C, denoted pmatch(P, C), and defined as⋃
(s,p,o)∈σ(P)

{M((s′, p′, o′)) | (s′, p′, o′) ∈ gen((s, p, o))}.

The operator computes, for each triple in the signa-
ture of the BGP P, the generalizations of that triple
and then maps the generalizations to their correspond-
ing statements in C. By the construction of the map-
ping M and the generalization operator, it is the case
that pmatch(P, C) preserves the crucial-part operator
in Eq. (1), as stated in Proposition 15.

Proposition 15. Given a BGP P, a graph G, and a
set C of completeness statements, it holds that

crucC,G(P) = P ∩ ĩd
−1

(TC(P̃ ∪G))

= P ∩ ĩd
−1

(Tpmatch(P,C)(P̃ ∪G)).

This means that instead of taking all the state-
ments in C, it is enough to consider only the subset
pmatch(P, C), which is potentially smaller than C.
The proposition holds since all applicable complete-
ness statements over P̃ ∪ G are actually partially
matched statements (and by construction, all partially
matched statements appear in C).

Partial matching can also be leveraged immediately
to support completeness templates: we simply take the
(uninstantiated) statements of the completeness tem-
plates for building the hashmap in partial matching
(that is, the C part in the template (C,Vτ,Ω)). The rest
of the matching procedure can then be adapted accord-
ingly.

6.2.3 Prioritized Evaluation An important operator
in checking data-aware completeness is the crucial-
part operator,

crucC,G(P) = P ∩ ĩd
−1

(TC(P̃ ∪G)),

which computes the maximal part of a BGP containing
variables that can be instantiated completely, which is
needed for subsequent steps in the data-aware com-
pleteness checking procedure. In the above operator,
CONSTRUCT queries of completeness statements are
evaluated over the union of the prototypical graph
and the data graph, and then (after the melting) are
intersected with the query BGP. This means that to
check whether the TC-operator maps a triple in P̃ by
a statement C, we first evaluate PC over the union
graph P̃ ∪G, with the condition that at least one triple
pattern in PC is mapped to a triple in P̃ (since oth-
erwise the mapping does not have any contribution).
Here, instead of directly evaluating the CONSTRUCT

query QC over the union graph, which can be large in
size (due to G), but may potentially waste computation
time, what if the evaluation is done by prioritizing the
part P̃ and then, only if QC can be partially mapped to
some parts of P̃, the remaining parts of QC are eval-
uated over the data graph. This way, not all QC’s are
evaluated over the data graph, but only those that may
be useful for guaranteeing the completeness of parts of
the BGP.

To formalize the above idea, we define prioritized
evaluation of a BGP over a pair of graphs (G1,G2).
In such an evaluation, we consider the first graph G1

as the mandatory graph and the second as the op-
tional graph, which means that at least one triple pat-
tern of the BGP is mapped to a triple in G1, while
there is no need to map any triple pattern to G2.
Formally, prioritized evaluation of a BGP P over
(G1,G2) is defined as JPK(G1,G2) = { µ ∈ JPKG1∪G2

|
µP′ ⊆ G1 for some P′ ⊆ P, P′ 6= ∅ }. In the case of
completeness checking, the mandatory graph will be
the frozen BGP P̃ and the optional graph will be the
data graph G. In our transfer operator, prioritized eval-
uation is performed (instead of the standard evalua-
tion) when the CONSTRUCT queries of the statements
are evaluated over the prototypical graph and the data
graph. Note that by the definition of prioritized evalu-
ation and the crucial operator, it is the case that both
evaluation methods (i.e., the prioritized evaluation and
the prioritized evaluation) produce the same result.

22 F. Darari et al. / Completeness and Soundness Guarantees for Conjunctive SPARQL Queries

Example 13. Consider the BGP Pusa ={(usa, lang, ?l)},
asking for languages of the USA, the graph

Gorg= {(org1, founder, ger), (ger, lang, de),
(org2, founder, usa), (org2, founder, ger)},

and the completeness statement

C = Compl((?c, lang, ?lang), (?org, founder, ?c)).

Then, with PC as the BGP of the statement C, we have
that JPCK(P̃usa,Gorg)

= {{ ?c 7→ usa, ?lang 7→ l̃, ?org 7→
org2 }}. The reason is that in a prioritized evaluation,
at least one triple of PC has to be matched to the triple
in P̃usa. The only way to do that is to map ?c 7→ usa
and ?lang 7→ l̃. This leaves only one possibility to
match (?org, founder, ?c) to Gorg.

Next, in the prioritized evaluation of a BGP PC

over (P̃,G), we apply a pruning technique based on
the following observation. Each answer mapping µ ∈
JPCK(P̃,G) determines a non-empty subset P′C ⊆ PC

such that µP′C ⊆ P̃ and µP′′C ⊆ G for its complement
P′′C := PC \ P′C . Since frozen variables only occur in
P̃ and not in G, we conclude that for every variable ?v
that occurs both in P′C and P′′C it must be the case that
µ(?v) is not a frozen variable.

The algorithm with pruning proceeds as follows.
For each non-empty subset P′C ⊆ PC , we first eval-
uate P′C over P̃, which yields partial answers λ. We
try to complete each such partial answer λ by evalu-
ating the instantiated complement λ(P′′C) over G and
joining the answers resulting from this with λ itself.
We prune the answers λ of the first evaluation step by
keeping only those mappings for which no term λ(?v),
?v ∈ var(P′′C), is a frozen variable. We call such a λ
pure. Clearly, for non-pure mappings the subsequent
evaluation of λ(P′′C) over G can only result in the empty
set. Formally, we compute the union⋃

P′
C ⊆ PC

P′
C 6= ∅

⋃
λ ∈ JP′

CKP̃
λ is pure

{ λ } on Jλ(PC \ P′C)KG,

which equals JPCK(P̃,G). The equality holds for the rea-
son discussed: the union above considers all possible
subsets of PC (except the empty set), and non-pure in-
stantiations cannot be evaluated over the data graph G.

The above discussion concerns the prioritized eval-
uation of the transfer operator that uses plain com-
pleteness statements. For completeness templates, the

template-based transfer operator TT as in Section 6.2.1
is slightly modified to account for a prioritized evalua-
tion in the way the BGP of the template’s statement is
evaluated, as follows, where T is a set of completeness
templates, P̃ is a frozen BGP and G is a graph:

TT (P̃,G) =
⋃
τ ∈ T

τ = (C, Vτ,Ω)

{µPτ | µ ∈ JPτK(P̃,G) on Ω}

As shown above, instead of evaluating the BGP Pτ of
a template τ ∈ T using the standard evaluation over
the union of P̃ and G, the prioritized evaluation is used
instead.

Trade-offs of the Heuristics A potential benefit of the
templates are that they can be used to group (possibly
many) similar completeness statements into one, and
hence we can reduce the number of evaluations in the
transfer operator. A potential drawback of using tem-
plates are that since their BGPs are by construction
more general than completeness statements, the eval-
uation of the template’s BGP over the data graph may
return many results which have to be checked for com-
patibility wrt. the set Ω of mappings of the template.

As for partial matching, in principle it may filter out
many completeness statements (and templates). Still,
a potential drawback is that when the statements con-
tain many overlapped parts to each other, then par-
tial matching may consider many partially matched
completeness statements, too. Hence, the reduction of
the number of completeness statements that need to
be considered in completeness reasoning might not be
substantial.

As for prioritized evaluation, using it alone can still
be expensive when there are a large number of com-
pleteness statements that need to be considered. Com-
bining prioritized evaluation with completeness tem-
plates may provide a remedy to the generality of the
BGPs of the completeness templates, since in this case,
the BGPs of the templates have to be checked first if
they may capture parts of the query, and only if so, they
can be evaluated over the graph.

In Section 7, we will study how such trade-offs may
behave in a practical setting, for all possible combina-
tions of heuristics (that is, they may be applied alone,
or together).

F. Darari et al. / Completeness and Soundness Guarantees for Conjunctive SPARQL Queries 23

7. Experimental Evaluation

In this section, we report on our experimental evalu-
ation of query completeness and query soundness rea-
soning. We have proposed in Section 6 three heuristic
techniques for completeness reasoning, namely com-
pleteness templates, partial matching, and prioritized
evaluation. Consequently, the practical impact of these
techniques (and their interplay) on completeness rea-
soning needs to be validated. Furthermore, in the light
of the query soundness problem, we want to study the
performance of answer and pattern soundness check-
ing in a realistic setting. The goal of our experimental
evaluation is therefore two-fold:

1. To study how effective are completeness tem-
plates, partial matching, and prioritized evalua-
tion, as well as their combinations, for complete-
ness reasoning; and

2. to show the feasibility of soundness reasoning
(which in turn reduces to completeness reason-
ing) in a realistic setting.

7.1. Query Completeness Evaluation

In this subsection, we first describe the experimental
setup, followed by the discussion of the results of the
experiments.

7.1.1. Experimental Setup
Given the three heuristic techniques for complete-

ness reasoning, that is, completeness templates (temp),
partial matching (match), and prioritized evaluation
(peval), we want to analyze to which degree those
techniques may provide speed-up to completeness rea-
soning. Specifically, not only do we want to study the
effects of every individual heuristic, but also those
of the combinations between different heuristics. We
therefore distinguish between eight different heuris-
tic settings: no, temp, match, peval, temp+match,
temp+peval, match+peval, and all. The no is the
baseline setting with no heuristic (that is, the vanilla
implementation of completeness reasoning), whereas
the all is the setting with all heuristics.

As for completeness reasoning, there are three in-
gredients: graph, queries, and completeness state-
ments. While machine-readable completeness state-
ments in the wild are yet to appear, we aim to make our
setup as realistic as possible. We take Wikidata as the
graph for our evaluation. More specifically, we use the
monolingual, direct-statement fragment (i.e., the frag-
ment without qualifiers, references and non-English

labels) of the Wikidata dump released in April 2018.
The graph consists of around 491 mio triples (= 57 GB
in the uncompressed NT format). We choose Wikidata
mainly because of its popularity and good quality.

As for the experiment queries, they have to use
the same vocabulary as the Wikidata graph described
above. We therefore generate the experiment queries
based on human-made, openly available queries on the
Wikidata query page.24 Since our experiment queries
have to be conjunctive in order to be able to be checked
for completeness, we extract the BGPs of the queries
in the Wikidata query page and generate our experi-
ment queries based on these BGPs. We cannot directly
use these BGPs as our experiment queries due to the
limited number of the extracted BGPs. Nevertheless,
these BGPs may serve as a starting point to generate
our experiment queries, in the following way: (i) for
each extracted BGP, we evaluate it over the Wikidata
graph; (ii) we take randomly 20 of the mappings, pro-
jected on the first variable of the BGP;25 and (iii) we
generate experiment queries by instantiating the BGPs
with these projected mappings. We generate in total
1,211 queries with the average query length (i.e., the
number of triple patterns) of 2.7. Note that this average
query length reflects that of real-world queries [17].

Now, for the completeness statements, we generate
them in a similar way as we generate the experiment
queries. The only difference is that, in the second step
above, instead of taking randomly 20 of the mappings,
we obtain randomly 50% of the mappings to create
completeness statements. This is to ensure the gener-
ation of a large number of completeness statements.
In this setting, we also naturally represent complete-
ness statements by completeness templates as follows:
we take the extracted BGP as the template’s BGP, and
the projected mappings as the template’s mappings.
We generate in total 693,928 completeness statements
with the average statement length (i.e., the number of
triple patterns in the BGP of completeness statements)
of 2.4. Moreover, these statements are represented by
65 completeness templates.

Implementation The reasoning program and exper-
iment framework are implemented in Java using the
Apache Jena library.26 The graph of the experimental

24https://www.mediawiki.org/w/index.php?titl
e=Wikibase/Indexing/SPARQL_Query_Examples&ol
did=2099085

25If the number of mappings is below 20, then we just take all the
mappings.

26http://jena.apache.org/

https://www.mediawiki.org/w/index.php?title=Wikibase/Indexing/SPARQL_Query_Examples&oldid=2099085
https://www.mediawiki.org/w/index.php?title=Wikibase/Indexing/SPARQL_Query_Examples&oldid=2099085
https://www.mediawiki.org/w/index.php?title=Wikibase/Indexing/SPARQL_Query_Examples&oldid=2099085
http://jena.apache.org/

24 F. Darari et al. / Completeness and Soundness Guarantees for Conjunctive SPARQL Queries

2 4 6 8

10−1

100

101

102

103

104

no temp match peval temp+match temp+peval match+peval all qeval

Fig. 4. Comparison of completeness checking using different heuristic settings. The x-axis is the query length, and the y-axis is the runtime in
ms.

evaluation is loaded into a Jena TDB triple store. We
measure the runtime of completeness reasoning with
different heuristic settings, as described above, and of
query evaluation. For each query length, we randomly
sample 20 queries to be observed for the runtime, and
take the runtime median between these 20 queries. The
experiments are done on a PC with an Intel Core i7
3.6 GHz-processor, a 16 GB memory, and an HDD of
1 TB.

7.1.2. Results and Discussion
Figure 4 summarizes the results of the experiments.

The figure shows the runtime comparison of complete-
ness checking using different heuristic settings. The
x-axis is the query length, whereas the y-axis shows
the runtime in ms, and is in log-scale. We also add
the query evaluation time to provide an orientation as
to how completeness checking may compare to query
evaluation.

In general, we observe that completeness checking
using all heuristics (that is, the all setting) beats all
the other heuristic settings. The no, temp, and peval

settings are the worst-performing. Using the temp and
peval heuristics alone does not help in speeding up
completeness reasoning, as they only add a slight im-
provement. In the temp setting, despite the lower num-
ber of templates in comparison to the number of state-
ments, completeness templates are by design less se-
lective than completeness statements, and thus tend to
be longer to compute for the transfer operator. The

peval heuristic does not perform well as anyway all
completeness statements have to be evaluated. Inter-
estingly, the match gives a mixed impression: for short
queries, match seems to be a sufficient heuristic for
completeness checking; yet, when the queries become
longer, starting from those of length 3, its runtime in-
creases considerably. The only exception in the queries
of length 6 might be due to the following reason: in
our experiment setup there are only 5 queries that are
of length 6, generated from one extracted BGP only.
Hence, those queries might be queries that do not have
many overlaps with the other queries, which is an ad-
vantage to the match technique (recall that our com-
pleteness statements are generated in a similar way as
the queries). The queries of length 8 (which are not
many in our experiment query set) are in fact the op-
posite of the queries of length 6: that they have many
overlaps with the other queries, hence the runtime in-
crease for queries of length 8.

Let us now observe the performance of combin-
ing the heuristics. Adding partial matching on top of
completeness templates provides a runtime improve-
ment, as can be seen from the temp+match. Here,
only partially matched templates are evaluated instead
of all templates. For the case of temp+peval, we ob-
serve that completeness templates are reasonable for
completeness checking when used together with pri-
oritized evaluation. This is because prioritized evalu-
ation tends to avoid the heavy computation of trans-
fer operator over the graph whenever: (i) no parts of

F. Darari et al. / Completeness and Soundness Guarantees for Conjunctive SPARQL Queries 25

the template can be applied to the prototypical graph;
or (ii) parts of the template can be applied to the pro-
totypical graph, but capturing frozen variables (which
do not exist in the graph). Still, all templates have to
be considered, since there is no partial matching. The
addition of prioritized evaluation to partial matching
only provides a slight improvement, as observed in
the match+peval. Combining all the heuristic tech-
niques, as in the all setting, gives the best perfor-
mance. The reason is that in addition to the benefits
of the temp+peval, as described above, we also ob-
tain the effect of partial matching in filtering out irrel-
evant completeness templates, hence only potentially
relevant templates are considered.

Overall, our experimental evaluation has answered
the question as to how effective are heuristic tech-
niques (and their combinations) for completeness
checking. Partial matching, though seeming promis-
ing for short queries, tends to have a negative effect
for long queries. Templates and prioritized evaluation
are best applied together. Using all the three heuristics
brings the advantages of each heuristic into one.

7.2. Query Soundness Evaluation

Here, we describe the setup of the experiments, and
then discuss the results of the experiments.

7.2.1. Experimental Setup
From the characterizations in Section 5, we are able

to check query soundness by reducing it to query com-
pleteness checking. Pattern soundness checking can
be reduced to data-agnostic completeness checking,
for which we proposed a heuristic technique in Sec-
tion 6.1 that is based on the term-relevance princi-
ple. As for answer soundness checking, we also reduce
it to the problem of data-aware completeness check-
ing. In Section 7.1, we have shown that not only us-
ing all the heuristics of completeness templates, par-
tial matching, and prioritized evaluation yields runtime
improvements over a plain implementation of a com-
pleteness reasoner, but also that the approach where all
these heuristics are applied in combination performs
the best. Given these improvement techniques for com-
pleteness checking, we want to study the feasibility
of soundness checking in a realistic setting. Addition-
ally, we want to know how pattern soundness check-
ing compares to answer soundness checking, and how
soundness checking compares to query evaluation.

For experimentally evaluating query soundness, we
(again) require three ingredients: graph, queries, and

completeness statements. We use the Wikidata graph
that is described as before in the experiments in Sec-
tion 7.1. For the experiment queries, now we need
queries with negation. Similarly as before, we take
Wikidata queries,27 and extract their BGPs to generate
experiment queries, this time with negation. We want
to have queries with negation of various shapes. For
this reason, from the BGPs of the Wikidata queries we
generate different sets of queries with negation, differ-
ing in the triple patterns that are negated:

– QoneTP, the last triple pattern is negated;
– QoneTPoneTP, the last two triple patterns are in-

dependently negated, forming two NOT-EXISTS

patterns;
– QtwoTPs, the last two triple patterns are negated

together, forming one NOT-EXISTS pattern; and
– QthreeTPs, the last three triple patterns are negat-

ed together, forming one NOT-EXISTS pattern.

The number of triple patterns negated is set to at most
three, since most real-world queries are of length up
to three [15]. We project out all variables in the posi-
tive part to correspond to graph pattern evaluation (re-
call the definition of graph pattern in Section 2.1). The
statistics of the generated queries are shown in Table 2.
The number of queries across different cases ranges
from 18 to 59. The median query length is 3 for all
the cases, except the QthreeTPs case with query length
of 4.

Completeness Statements We used two different
methods of generating completeness statements de-
pending on whether we wanted to perform either an-
swer soundness or pattern soundness checking. As for
the generation of statements for answer soundness, we
wanted to perform it in such a way that there will be a
variety of sound and possibly unsound answers. So, we
generated the statements as follows: (i) given a query,
we evaluated the query and obtained all the answer-
mappings; (ii) for 25% of these answer-mappings, we
applied them to the BGP of each NOT-EXISTS pattern
of the query and constructed completeness statements
out of these instantiated BGPs. This way, we can guar-
antee that these 25% answer-mappings are sound.

In this setting, we can naturally represent complete-
ness statements by completeness templates (see Sec-
tion 6.2). We took the BGP of the NOT-EXISTS pat-

27https://www.mediawiki.org/w/index.php?titl
e=Wikibase/Indexing/SPARQL_Query_Examples&ol
did=2099085

https://www.mediawiki.org/w/index.php?title=Wikibase/Indexing/SPARQL_Query_Examples&oldid=2099085
https://www.mediawiki.org/w/index.php?title=Wikibase/Indexing/SPARQL_Query_Examples&oldid=2099085
https://www.mediawiki.org/w/index.php?title=Wikibase/Indexing/SPARQL_Query_Examples&oldid=2099085

26 F. Darari et al. / Completeness and Soundness Guarantees for Conjunctive SPARQL Queries

terns as the templates’ BGP and the sound answer
mappings as the templates’ mappings.

In the particular case of QtwoTPs, however, we
also generated completeness statements in an addi-
tional way, which differs from how we get BGPs for
completeness statements: instead of taking the whole
instantiated BGP of the NOT-EXISTS pattern, we
also generated completeness statements separately per
triple pattern in the instantiated BGP. The first triple
pattern28 in the instantiated BGP was taken as is, and
the second was (again) instantiated with the answer-
mappings from the evaluation of the first triple pattern
over the graph.

For the generation of statements for checking pat-
tern soundness, we simply transformed the union of
the positive part and each BGP of the NOT-EXISTS

patterns to a completeness statement. The statistics
of the generated completeness statements are shown
in Figure 2. The number of statements ranges from
around 61,000 to 454,000.

We had five different cases for our experimental
evaluation by combining different query sets and com-
pleteness statements:

– oneTP is where the last triple pattern is negated;
– oneTPoneTP is where the last two triple patterns

are independently negated;
– twoTPsTO (‘TO’ for together) is where the last

two triple patterns are negated together and the
statements are for the whole BGP;

– twoTPsSE (‘SE’ for separate) is where the last
two triple patterns are negated together, but the
statements are obtained separately per triple pat-
tern; and

– threeTPsTO (‘TO’ for together) is where the last
three triple patterns are negated together and the
statements are for the whole BGP.

In each case, to perform answer soundness check-
ing, we did not use the statements generated based
on pattern soundness since that would have made all
the answers sound. On the other hand, to perform pat-
tern soundness checking, we also used all the state-
ments generated based on answer soundness, as oth-
erwise there would have been too few statements (=
the number of queries per case). We measured the run-
time of soundness reasoning for both pattern and an-
swer, and also that of query evaluation. For each case,
we removed the measurements where the query evalu-

28We fixed an ordering.

ation returned 0 answers, as answer soundness check-
ing would have become trivial. Each measurement was
repeated 15 times and we took the median. Moreover,
to get the result summary of each experiment case, we
also took the median over the case’s results. We used
median to avoid the effect of extreme values (that is,
some queries returned a large number of results, up to
about 490,000 results). The experiments were done on
a PC with an Intel Core i7 3.6 GHz-processor, a 16 GB
memory, and an HDD of 1 TB.

7.2.2. Experimental Results and Discussion
Table 2 summarizes the results of the soundness rea-

soning experiments for five cases. In the table, query
evaluation time ranges from 20 ms to 89 ms. Pattern
soundness checking always takes less than 0.3 ms. The
term-relevance principle is likely to help rule out ir-
relevant completeness statements before performing
the actual pattern soundness checking. Note that the
pattern soundness checking time for the oneTPoneTP
case takes the longest due to two data-agnostic com-
pleteness checks that have to be performed for ev-
ery pattern soundness checking (recall the reduction in
Theorem 3). In comparison to query evaluation, pat-
tern soundness checking is much faster, particularly
due to its data-agnostic behavior.

As for answer soundness checking, we observe
that the runtime ranges from 2 ms to 592 ms. The
threeTPsTO takes longer due to the large number of
query answers that have to be checked for soundness.
When we break down the time per answer, the compu-
tation takes less than 0.4 ms. Also, it is likely that the
more triple patterns there are in the negation part, the
longer the soundness check per answer takes. In com-
parison to query evaluation, answer soundness check-
ing is quite competitive. Yet, when compared to pat-
tern soundness checking, answer soundness checking
is slower due to its data-aware behavior.

Let us look more closely at answer soundness
checking. Figure 5 shows the comparison between
the number of query answers, query evaluation time,
and answer soundness checking time for cases oneTP,
twoTPsTO, and threeTPsTO. We omitted the figure
of oneTPoneTP since it is similar to that of oneTP,
and of twoTPsSE as it is similar to that of twoTPsTO.
The x-axis is the query order based on the number of
query answers in an ascending manner. The y-axis is in
log-scale and shows the respective unit (number for the
query answers, and ms for the runtime). There is strong
evidence of a positive correlation between the number
of query answers and the answer soundness checking

F. Darari et al. / Completeness and Soundness Guarantees for Conjunctive SPARQL Queries 27

Table 2

The number of statements |C|, the number of queries NQ, and the
median of query length |Q|, of query answers |JQKG|, of query eval-
uation time tQ, of answer soundness checking time tAS, of answer
soundness checking time per answer tAS/a, and of pattern soundness
checking time tPS for different cases. All times are in ms.

Case |C| NQ |Q| |JQKG| tQ tAS tAS/a tPS

oneTP 61,971 59 3 51 21 2.03 0.043 0.13

oneTPoneTP 454,131 30 3 374 89 17.4 0.046 0.21

twoTPsTO 395,399 41 3 198 20 26.5 0.15 0.13

twoTPsSE 414,321 41 3 198 20 12.7 0.06 0.13

threeTPsTO 335,852 18 4 2,671 89 592 0.39 0.15

0 10 20 30 40 50 60

10−1

100

101

102

103

104

105

0 10 20 30 40

100

101

102

103

104

105

106

0 5 10 15

10−1

100

101

102

103

104

105

106

|JQKG| tQ tAS

Fig. 5. Comparison between the number of query answers (|JQKG|), query evaluation time (tQ), and answer soundness checking time (tAS) for
the experiment cases: oneTP, twoTPsTO, and threeTPsTO. The x-axis is for query rank (from the lowest to the highest of number of
query answers) and the y-axis is for both number of answers and runtime in ms.

time. Moreover, we also see the following trend for
all the cases: At first, when query answers are just a
few, query evaluation tends to be slower than answer
soundness checking. When the number of query an-
swers increases, the answer soundness checking time
outgrows the query evaluation time. When queries be-
come more complicated, the cross-over point happens
earlier. This probably has to do with the increasing
soundness checking time per answer whenever the
number of negated triple patterns increases, as dis-
cussed above.

To summarize, we have performed an experiment
evaluation for soundness checking over a realistic set-
ting based on Wikidata. Soundness checking using the
heuristic techniques as proposed in Section 6 has been
validated to be feasible for our experiment cases. To
get an idea of how long soundness checking may take
without using any heuristics, we perform vanilla an-
swer soundness checking for the oneTP case, and it

can take more than 300 s for just a single query. In
comparison to query evaluation and answer sound-
ness checking, pattern soundness checking runs much
faster. We would recommend that in practice, before
applying answer soundness checking, pattern sound-
ness checking should be done first since it takes less
time, and by Proposition 2, if pattern soundness holds,
then all answers are sound.

8. Related Work

In this section, we discuss related work for query
completeness and query soundness.

Query Completeness Data completeness concerns
the breadth, depth, and scope of information [18] and
is deemed to be one of the most significant data quality
dimensions [19]. In the field of relational databases,
Motro [20] and Levy [21] were among the first to

28 F. Darari et al. / Completeness and Soundness Guarantees for Conjunctive SPARQL Queries

investigate data completeness. Motro modeled com-
pleteness of an available database instance in terms of
its relationship with a hypothetical, unknown instance
that represents the real world. This model has been
taken up in the present paper by the notion of extension
pairs. Motro also defined completeness constraints,
which correspond to our completeness statements and
developed a sound technique to check query complete-
ness of conjunctive queries in the data-agnostic set-
ting. Levy generalized completeness constraints to lo-
cal completeness statements, which correspond to the
conditional statements in Section 3.2.2 and are more
expressive than the statements in the framework stud-
ied here.

Razniewski and Nutt [22] further extended this work
by reducing completeness reasoning to containment
checking, for which many algorithms are known, and
by characterizing the complexity of reasoning for dif-
ferent classes of conjunctive queries. While their in-
vestigations were largely at the schema level (that is,
data-agnostic), they also showed that for conditional
statements the combined complexity of completeness
checking in the data-aware setting is ΠP

2-complete and
the data complexity is polynomial. Since conjunctive
SPARQL queries can be seen as a special case of
conjunctive queries in the relational framework, and
since our completeness statements are unconditional,
the ΠP

2-hardness result in the present paper strengthens
the one in [22], while the result on data complexity can
be deduced from theirs.

This line of work on data-agnostic reasoning was
later continued by Darari et al. [4,6], incorporating or-
thogonal aspects such as time-awareness and federa-
tion. In contrast, the present work focuses on more re-
strictive, yet also more intuitive unconditional com-
pleteness statements, for which it provides an in-depth
complexity analysis and implementation techniques
for data-aware reasoning. The problems of answer and
pattern soundness are also completely new. In [23],
Razniewski et al. proposed completeness patterns and
defined a pattern algebra to check the completeness
of queries. The work incorporated database instances,
yet provided only a sound algorithm for completeness
checking. In our work, a sound and complete algorithm
for data-aware completeness checking and a compre-
hensive complexity analysis of the checking are given.

On a more abstract level, Fürber and Hepp [24]
distinguished three types of completeness: ontology
completeness, concerning which ontology classes and
properties are represented; population completeness,
referring to whether all objects of the real-world

are represented; and property completeness, measur-
ing the missing values of a specific property. Those
three types of completeness together with the inter-
linking completeness, i.e., the degree to which in-
stances in the dataset are interlinked, are considered
to be the bases of the completeness dimension for
RDF data sources [25]. Our work considers com-
pleteness statements which are built upon BGPs, and
hence have more flexibility in expressing complete-
ness (e.g., “complete for all children of the US presi-
dents who were born in Hawaii”). Mendes et al. [26]
proposed Sieve, a framework for expressing quality
assessment and fusion methods, where completeness
is also considered. With Sieve, users can specify how
to compute quality scores and express a quality pref-
erence specifying which characteristics of data indi-
cate higher quality. Ermilov et al. [27] presented LOD-
Stats, a statistics aggregation of RDF datasets pub-
lished over various data portals such as data.gov,
publicdata.eu, and datahub.io. They discussed
several use cases that could be facilitated from such
an aggregation, including coverage analysis (e.g., most
frequent properties and most frequent namespaces of a
dataset). As opposed to Sieve and LODStats, our work
puts more focus on describing completeness of data
sources, and leveraging such completeness descrip-
tions for checking query completeness (and sound-
ness). In the context of crowdsourcing, Chu et al. [28]
developed KATARA, a hybrid data cleaning system,
which not only cleans data, but may also add new
facts to increase the completeness of the KB; whereas
Acosta et al. [29] developed HARE, a hybrid SPARQL
engine to enhance answer completeness. As opposed
to our work, KATARA and HARE cannot be used to
check whether queries are complete in the sense that
all answers are returned, as they concentrate more on
increasing the degree of KB and query completeness.

Galárraga et al. [30] proposed a rule mining sys-
tem that is able to operate under the Open-World As-
sumption (OWA) by simulating negative examples us-
ing the Partial Completeness Assumption (PCA). The
PCA assumes that if the dataset knows some r-attribute
of x, then it knows all r-attributes of x. This heuristic
was also employed by Dong et al. [31] (called Local
Closed-World Assumption in their paper) to develop
Knowledge Vault, a Web-scale system for probabilis-
tic knowledge fusion. Our completeness statements are
in fact a generalization of the assumption used in the
above work.

data.gov
publicdata.eu
datahub.io

F. Darari et al. / Completeness and Soundness Guarantees for Conjunctive SPARQL Queries 29

Query Soundness The use of negation in querying
can be traced back to Codd’s relational calculus [32],
where a tuple is included in the complement of a re-
lation if it is not explicitly given in the relation. Re-
iter [33] and Clark [34] generalized this to rule-based
systems. They assumed that the failure to find a proof
of a fact implies that the negation is true, and called this
the closed-world assumption (CWA). SPARQL, the
standard query language for RDF, supports negation by
such a non-existence check [35,5]. However, since the
semantics of RDF imposes the open-world assump-
tion (OWA) [2], there remains a conceptual mismatch
when negation in SPARQL over RDF datasets is eval-
uated in a closed-world style. In other words, there is a
missing gap between the normative semantics of nega-
tion in SPARQL, which is based on the negation-as-
failure (‘negation from the failure to find a proof of
the fact’) [36], and the classical negation (‘the negated
fact truly holds’) [37] due to RDF’s openness. More-
over, the fact that RDF is a positive language, means
that one viable way of having negated facts in RDF is
by imposing some (partial) completeness assumption
over RDF data: whenever P is complete, then all facts
not in P are false.

In the Semantic Web, Polleres et al. [38] first ob-
served this mismatch. They proposed to restrict the
scope of negation to particular data sources, thus limit-
ing the search for negative information. In their work,
no assumption was made as to whether the knowl-
edge in these data sources is complete. In description
logics (DLs), Lutz et al. [39] proposed closed predi-
cates, that is, concepts and roles that are interpreted to
be complete, to enable a combination between open-
and closed-world reasoning. A similar concept was
also employed by Analyti et al. [40]. They proposed
ERDF, an extended RDF that supports negation, as
well as derivation rules. ERDF allows one to have lo-
cal closed-world information via default closure rules
for properties and classes. As opposed to these two ap-
proaches, which considered only a simple partial CWA
over atomic classes and properties (e.g., all cars, all
child relationships, . . .), our work supports more ex-
pressive completeness information in the sense that we
can use BGPs to capture completeness. From the prac-
tical side of the Semantic Web, negation is featured
in test queries of many popular SPARQL benchmarks
such as SP2Bench [41], Berlin SPARQL Benchmark
(BSBM) [42], and FedBench [43], in which the closed-
world assumption (CWA) is employed. Our work does
not only provide formalizations, but also optimization
techniques for checking the soundness of queries with

negation, for which we have experimentally shown to
improve the feasibility of the soundness checking in
realistic settings based on Wikidata.

More recently, Gutierrez et al. [44] proposed an al-
ternative semantics for SPARQL based on certain an-
swers. They argued that the proposed semantics is
more suitable to capture RDF peculiarities, such as
OWA, unique name assumption (UNA), and blank
nodes. For queries with negation, they showed that the
queries do not have certain answers, since more facts
can be arbitrarily added to falsify the query answers.
In our work, we combine between open- and closed-
information in RDF, enabling SPARQL queries with
negation to have answers that are guaranteed to re-
main. That is, when queries are guaranteed to be sound
by completeness statements, new data that might be
added to the graph is restricted by the statements,
hence the answers will not be falsified.

Weak Monotonicity The open-world semantics of
RDF has led to the question which type of queries ap-
propriately reflects this fact. Arenas and Pérez noted
that for positive graph patterns, that is, patterns com-
posed by the operators AND, UNION, and FILTER,
the semantics of SPARQL reflects the open-world se-
mantics in that the answers for such a pattern are ex-
actly the certain answers [45].

As an additional feature that supports querying in-
complete information, SPARQL offers the OPT con-
structor that binds variables if they can be matched
to the data, and leaves them unbound otherwise. Pat-
terns with OPT are not necessarily monotone because
adding triples to a data graph may lead to bindings
for variables that were not bound previously. Such pat-
terns may however be weakly monotone, that is, for ev-
ery answer mapping returned over the smaller graph
there is an answer over the larger graph that extends
it. Thus, weakly monotone patterns do not not lose in-
formation when new information becomes available,
although they may not preserve the shape of answers.

While not all patterns with OPT are weakly mono-
tone, this is the case for the class of well-designed pat-
terns [45]. It has been shown, though, that there also
weakly monotone patterns beyond the well-designed
patterns. Arenas and Ugarte have investigated pat-
terns that are weakly monotone over potentially infi-
nite graphs and characterized them by applying inter-
polation techniques from first-order logic [46].

In the presence of incomplete data, OPT can be in-
terpreted in two different ways. For example, the pat-
tern { (?p, livesIn, bolzano) OPT (?p, hasEmail, ?e) }

30 F. Darari et al. / Completeness and Soundness Guarantees for Conjunctive SPARQL Queries

can be interpreted as asking for all persons living in
Bolzano, together with the email addresses present in
the data, or for all such persons together with all their
email addresses, if they have any. Over complete data,
where no information is added, only the second inter-
pretation is meaningful.

Darari et al. have characterized completeness of
well-designed patterns in the data-agnostic setting [4,
6]. We conjecture that techniques from that work and
from the current paper can be combined to reason
about the completeness of well-designed patterns in
the presence of data.

9. Discussion

Here we discuss issues related to our framework:
creation of completeness information, no-value infor-
mation, blank nodes, and RDFS extension.

Creation of Completeness Information Our frame-
work relies on the availability of machine-readable
completeness information. We found a widespread in-
terest in collecting completeness information in var-
ious forms, for example on Wikipedia, IMDb, and
OpenStreetMap. The techniques we develop may serve
as an incentive to standardize such information and to
make it available in RDF, since then not only is such
information useful for managing data quality, but also
for assessing query quality in terms of completeness
and soundness.

Ideas for approaches to automating the generation
of completeness information were collected in [47].
Galárraga et al. [48] investigated various signals, such
as popularity, update frequency, and cardinality, that
can be used to identify complete parts of a KB via
rule-mining techniques. Mirza et al. [49,50] developed
techniques for relation cardinality extraction from text,
which can be leveraged to generate completeness state-
ments in the following way: when the extracted cardi-
nality of a relation matches with the relation count in a
KB, then a completeness statement can be generated.
COOL-WD is a collaborative, web-based system for
managing and consuming completeness information
about Wikidata, which currently stores over 10,000
real completeness statements [51], and is available
at http://cool-wd.inf.unibz.it. Additionally,
COOL-WD demonstrates how provenance informa-
tion, such as authorship, timestamp, and external refer-
ence, can be added to completeness statements, which
can then serve as a basis for trust determination over

query completeness and soundness checking (e.g.,
“this query is complete based on the completeness as-
sertions X, Y , and Z, given by A and B on date D, with
references to R and S ”).

No-Value Information Completeness statements can
also be used to represent no-value information. Such
information is particularly useful to distinguish be-
tween a value that does not exist due to data incom-
pleteness or due to its inapplicability. Wikidata, for in-
stance, contains about 19,000 pieces of no-value infor-
mation over 269 properties.29 In our motivating sce-
nario, there is the completeness statement about the
official languages of the USA with no corresponding
data in the graph. In this case, we basically say that the
USA has no official languages. As a consequence of
having no-value information, we can be complete for
queries despite having the empty answer. Such a fea-
ture is similar to that proposed in [52]. The only differ-
ence is that here we need to pair completeness state-
ments with a graph that has no corresponding data cap-
tured by the statements, while in that work, no-value
statements are used to directly say that some parts of
data do not exist.

SPARQL Fragment In this paper we have focused
on conjunctive SPARQL, that is, SPARQL without
UNION, OPTIONAL , or arithmetic comparisons. Con-
junctive SPARQL is the foundational fragment under-
lying all extensions [9,10], thus we believe that the
study of completeness and soundness reasoning for
this fragment provides a solid theoretical basis for fur-
ther analysis of richer fragments. Our main results can
be translated to richer fragments as sufficient condi-
tions for completeness and soundness. We conjecture
that also necessary conditions can be established in
analogy to the data-agnostic case [6], for UNION in
terms of completeness and soundness of the disjuncts,
or for well-designed patterns with OPTIONAL in terms
of completeness and soundness of pattern trees [53],
and for patterns with arithmetic comparisons by the
use of representative orderings for the containment
checks [54].

Blank Nodes The use of blank nodes in RDF has
been a controversial topic in the Semantic Web com-
munity [55,56]. In Linked Data applications, blank
nodes add complexity to data processing and data in-
terlinking due to the local scope of their labels [57,
58]. With respect to SPARQL, there are semantic

29as of Feb 18, 2017

http://cool-wd.inf.unibz.it

F. Darari et al. / Completeness and Soundness Guarantees for Conjunctive SPARQL Queries 31

mismatches with the RDF semantics of blank nodes,
e.g., when COUNT and NOT-EXISTS features are em-
ployed [59]. Nevertheless, blank nodes are used in
practice to some degree: (i) for modeling unknown
nulls [59,52], and (ii) for modeling n-ary relations as
auxiliary instances in reification [60].

For the former usage, completeness of a topic that
contains a blank node is contradictory, as we argue that
completeness statements should capture only “known
and complete” information. For instance, one may
state that a graph is complete for triples of the form
(john, child, ?y), while the graph contains the triple
(john, child,_:b), indicating that John is complete for
his unknown child, which does not really make sense.
Nevertheless, a graph with completeness statements
may still have blank nodes as long as they are not cap-
tured by the statements.

For the latter case, Skolemization as a way to sys-
tematically replace blank nodes with fresh, Skolem
IRIs may be leveraged with almost interchangeable be-
havior [61,2,62], except that Skolem IRIs have a global
scope instead of a local scope. This way, completeness
statements can capture n-ary relation information en-
coded originally with blank nodes, and completeness
reasoning (which involves SPARQL queries) behaves
well (i.e., no semantic mismatches as per [59]). Nev-
ertheless, in practice Semantic Web developers often
tend to directly use IRIs instead of blank nodes for
representing auxiliary resources, for instance by Wiki-
data [58].30

RDFS Extension RDFS [63] adds lightweight se-
mantics to describe the structure and interlinking
of data, usually sufficient for Linked Data publish-
ers [57]. Main RDFS inference capabilities consist of
class and property hierarchies, as well as property do-
mains and ranges [57,64], which are widely used in
practice [65]. Darari et al. [4] formalized the incor-
poration of RDFS in data-agnostic completeness rea-
soning. Using a similar technique as in [4], it is also
relatively easy to extend our data-aware completeness
reasoning framework with the RDFS semantics. The
idea is that we strengthen our syntactic characteriza-
tion of computing the epg operator (see Section 4.1)
via the closure operation wrt. RDFS ontologies [64].
More precisely, in the crucial part, the closure has to be

30For instance, the resource IRI of Wikidata for the
marriage between Donald Trump and Ivana Trump is
http://www.wikidata.org/entity/statement/
q22686-f813c208-48b2-9a72-3c53-cdaed80518d2.

computed before and after the TC operation over P̃∪G.
Also, the evaluation of the crucial part needs to be done
over the materialized graph G wrt. the RDFS ontology.
As for query soundness checking, a similar procedure
based on RDFS closure needs to be employed as well.
For pattern soundness reasoning, we include the clo-
sure computation in the query set containment check-
ing for Non-Redundant Form (NRF), and in the query
completeness checking (as in Proposition 10). For an-
swer soundness checking, we can simply rely on the
data-aware completeness checking with RDFS incor-
poration we just sketched. In summary, the addition of
the closure computation ensures that the semantics of
RDFS is incorporated in the reasoning, while not in-
creasing the complexity as the RDFS closure compu-
tation can be done in PTIME [64].

Extending the Completeness and Soundness Charac-
terizations to Relational Databases Our complete-
ness and soundness results are based on RDF and
SPARQL, which are the triple-based data model and
triple-pattern-based query language for the Seman-
tic Web. However, analogous algorithms, characteri-
zations and complexity results can also be formulated
and proved for relational databases if we generalize
triples to n-ary relations and conjunctive patterns to
projection-free conjunctive queries. The completeness
statements in this paper can be generalized in two
ways. One way is to view them as so-called query com-
pleteness statements, which state that a given query is
complete (see [66]), where the query in this case is
projection-free. Another way is to see them as collec-
tions of local completeness statements (see [21,22]).
The proofs for the analogous results would be simi-
lar to the ones given here. This class of completeness
statements, however, has not yet been considered in
the relational setting, while they arise naturally in the
Semantic Web context.

10. Conclusions and Future Work

The open-world assumption of RDF and the closed-
world evaluation of SPARQL have created a gap on
how we should treat the completeness and soundness
of query answers. This paper bridges the gap between
RDF and SPARQL via completeness statements, meta-
data about (partial) completeness of RDF data sources.
In particular, we have introduced the problem of query
completeness checking over RDF data annotated with
completeness statements. We also developed an al-

http://www.wikidata.org/entity/statement/q22686-f813c208-48b2-9a72-3c53-cdaed80518d2
http://www.wikidata.org/entity/statement/q22686-f813c208-48b2-9a72-3c53-cdaed80518d2

32 F. Darari et al. / Completeness and Soundness Guarantees for Conjunctive SPARQL Queries

gorithm and performed a complexity analysis for the
completeness problem. Then, we formulated the prob-
lem of soundness for SPARQL queries with negation,
and characterized it via a reduction to completeness
checking. We proposed optimizations for complete-
ness checking, and provided experimental evidence
that our techniques are feasible in realistic settings
over Wikidata for both query completeness and sound-
ness problems.

Our current approach tackles the core fragment of
SPARQL, and can be easily adapted to provide suf-
ficient characterizations of richer fragments (e.g., in-
volving union, arithmetic filter, or—for queries with
negation—the selection operator), setting a solid basis
for future investigations into the full characterization
of those fragments. Also, while the current complete-
ness statements are constructed using BGPs, one might
wonder what happens if richer constructors are added,
to enable statements like “Complete for all students
who were born after 1991 and who do not speak Ger-
man.” On the practical side, the availability of struc-
tured completeness information remains a core issue.
We hope that our work provides a further incentive
for standardization and data publication efforts in this
area. Another future direction is to study how (Seman-
tic) Web data publishers and users perceive the prob-
lem of completeness, and how they want to benefit
from data completeness. Extensive case studies may be
conducted in various application domains like health-
care, economics, or government. The purpose is to an-
alyze whether our approach is sufficient or not for their
requirements, and if not, on which side it can be im-
proved. Last but not least, we want to study how the
soundness of queries with the MINUS negation can also
be characterized. We conjecture that our results apply
also to queries with the MINUS negation where there is
a shared variable between the positive part and each of
the negative parts.

Acknowledgments

Werner Nutt has been partially supported by the
project TaDaQua, funded by the Free University of
Bozen-Bolzano. Sebastian Rudolph has received fund-
ing from the European Research Council (ERC) un-
der the European Union’s Horizon 2020 research and
innovation programme (grant agreement No 771779).
We thank Sebastian Skritek, Martín Ugarte, and the
anonymous reviewer for their valuable feedback.

References

[1] F. Darari, S. Razniewski, R.E. Prasojo and W. Nutt, En-
abling fine-grained RDF data completeness assessment, in:
Web Engineering - 16th International Conference, ICWE 2016,
Lugano, Switzerland, June 6-9, 2016. Proceedings, A. Boz-
zon, P. Cudré-Mauroux and C. Pautasso, eds, Lecture Notes
in Computer Science, Vol. 9671, Springer, 2016, pp. 170–187,
doi:10.1007/978-3-319-38791-8_10.

[2] P.J. Hayes and P.F. Patel-Schneider (eds), RDF 1.1 semantics,
W3C Recommendation, 25 February 2014, URL:https://
www.w3.org/TR/rdf11-mt/.

[3] D. Vrandečić and M. Krötzsch, Wikidata: a free collabora-
tive knowledgebase, Commun. ACM 57(10) (2014), 78–85,
doi:10.1145/2629489.

[4] F. Darari, W. Nutt, G. Pirrò and S. Razniewski, Complete-
ness statements about RDF data sources and their use for
query answering, in: The Semantic Web - ISWC 2013 - 12th
International Semantic Web Conference, Sydney, NSW, Aus-
tralia, October 21-25, 2013, Proceedings, Part I, H. Alani,
L. Kagal, A. Fokoue, P.T. Groth, C. Biemann, J.X. Parreira,
L. Aroyo, N.F. Noy, C. Welty and K. Janowicz, eds, Lecture
Notes in Computer Science, Vol. 8218, Springer, 2013, pp. 66–
83, doi:10.1007/978-3-642-41335-3_5.

[5] S. Harris and A. Seaborne (eds), SPARQL 1.1 query lan-
guage, W3C Recommendation, 21 March 2013, Previous edi-
tor: Eric Prud’hommeaux, URL:http://www.w3.org/TR
/sparql11-query/.

[6] F. Darari, W. Nutt, G. Pirrò and S. Razniewski, Completeness
management for RDF data sources, ACM Trans. Web 12(3)
(2018), 1–53, doi:10.1145/3196248.

[7] semantic-web@w3.org Mail Archives: Open world issue
(opening vs closing days) and SPARQL CONSTRUCT,
URL:https://lists.w3.org/Archives/Public/
semantic-web/2008May/0152.html.

[8] semantic-web@w3.org Mail Archives: The Open world
assumption shoe does not always fit - was: RE: [ontolog-
forum] Fwd: Ontolog invited speaker session - Dr.
Mark Greaves on the Halo Project - Thu 2008.06.19,
URL:https://lists.w3.org/Archives/Public/
public-semweb-lifesci/2008Jun/0084.html.

[9] E. Liarou, S. Idreos and M. Koubarakis, Evaluating Con-
junctive Triple Pattern Queries over Large Structured Over-
lay Networks, in: The Semantic Web - ISWC 2006, 5th Inter-
national Semantic Web Conference, ISWC 2006, Athens, GA,
USA, November 5-9, 2006, Proceedings, I.F. Cruz, S. Decker,
D. Allemang, C. Preist, D. Schwabe, P. Mika, M. Uschold and
L. Aroyo, eds, Lecture Notes in Computer Science, Vol. 4273,
Springer, 2006, pp. 399–413, doi:10.1007/11926078_29.

[10] G. Stefanoni, B. Motik and E.V. Kostylev, Estimating the
Cardinality of Conjunctive Queries over RDF Data Using
Graph Summarisation, in: Proceedings of the 2018 World
Wide Web Conference on World Wide Web, WWW 2018, Lyon,
France, April 23-27, 2018, P. Champin, F.L. Gandon, M. Lal-
mas and P.G. Ipeirotis, eds, ACM, 2018, pp. 1043–1052,
doi:10.1145/3178876.3186003.

[11] F. Darari, S. Razniewski and W. Nutt, Bridging the Semantic
Gap between RDF and SPARQL using Completeness State-
ments, in: Proceedings of the ISWC 2014 Posters & Demon-
strations Track a track within the 13th International Seman-
tic Web Conference, ISWC 2014, Riva del Garda, Italy, Oc-

https://www.w3.org/TR/rdf11-mt/
https://www.w3.org/TR/rdf11-mt/
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/sparql11-query/
https://lists.w3.org/Archives/Public/semantic-web/2008May/0152.html
https://lists.w3.org/Archives/Public/semantic-web/2008May/0152.html
https://lists.w3.org/Archives/Public/public-semweb-lifesci/2008Jun/0084.html
https://lists.w3.org/Archives/Public/public-semweb-lifesci/2008Jun/0084.html

F. Darari et al. / Completeness and Soundness Guarantees for Conjunctive SPARQL Queries 33

tober 21, 2014., M. Horridge, M. Rospocher and J. van Os-
senbruggen, eds, CEUR Workshop Proceedings, Vol. 1272,
CEUR-WS.org, 2014, pp. 269–272.

[12] J. Pérez, M. Arenas and C. Gutierrez, Semantics and complex-
ity of SPARQL, ACM Trans. Database Syst. 34(3) (2009), 1–
45, doi:10.1145/1567274.1567278.

[13] M.Y. Vardi, The Complexity of Relational Query Languages
(Extended Abstract), in: Proceedings of the 14th Annual
ACM Symposium on Theory of Computing, May 5-7, 1982,
San Francisco, California, USA, H.R. Lewis, B.B. Simons,
W.A. Burkhard and L.H. Landweber, eds, ACM, 1982,
pp. 137–146, doi:10.1145/800070.802186.

[14] A.K. Chandra and P.M. Merlin, Optimal Implementation of
Conjunctive Queries in Relational Data Bases, in: Proceed-
ings of the 9th Annual ACM Symposium on Theory of Comput-
ing, May 4-6, 1977, Boulder, Colorado, USA, J.E. Hopcroft,
E.P. Friedman and M.A. Harrison, eds, ACM, 1977, pp. 77–90.
doi:doi:10.1145/800105.803397.

[15] M. Arias, J.D. Fernández, M.A. Martínez-Prieto and P. de la
Fuente, An Empirical Study of Real-World SPARQL Queries,
in: Proceedings of the 1st International Workshop on Usage
Analysis and the Web of Data (USEWOD’11) colocated with
the 20th International World Wide Web Conference (WWW
2011), Hyderabad, India, B. Berendt, L. Hollink, V. Hollink,
M. Luczak-Rösch, K. Möller and D. Vallet, eds, 2011.

[16] L. Rietveld and R. Hoekstra, Man vs. machine: Differences
in SPARQL queries, in: Proceedings of the 4th USEWOD
Workshop on Usage Analysis and the Web of Data (USE-
WOD’14) colocated with the Extended Semantic Web Confer-
ence (ESWC’14), Crete, Greece, B. Berendt, L. Hollink and
M. Luczak-Rösch, eds, 2014.

[17] M. Saleem, M.I. Ali, A. Hogan, Q. Mehmood and
A.N. Ngomo, LSQ: The Linked SPARQL Queries Dataset,
in: The Semantic Web - ISWC 2015 - 14th International Se-
mantic Web Conference, Bethlehem, PA, USA, October 11-15,
2015, Proceedings, Part II, M. Arenas, Ó. Corcho, E. Simperl,
M. Strohmaier, M. d’Aquin, K. Srinivas, P.T. Groth, M. Du-
montier, J. Heflin, K. Thirunarayan and S. Staab, eds, Lec-
ture Notes in Computer Science, Vol. 9367, Springer, 2015,
pp. 261–269, doi:10.1007/978-3-319-25010-6_15.

[18] R.Y. Wang and D.M. Strong, Beyond Accuracy: What Data
Quality Means to Data Consumers, J. of Management Informa-
tion Systems 12(4) (1996), 5–33.

[19] C. Batini and M. Scannapieco, Data and Information Quality
- Dimensions, Principles and Techniques, Data-Centric Sys-
tems and Applications, Springer, 2016, doi:10.1007/978-3-
319-24106-7.

[20] A. Motro, Integrity = Validity + Completeness,
ACM Trans. Database Syst. 14(4) (1989), 480–502,
doi:10.1145/76902.76904.

[21] A.Y. Levy, Obtaining Complete Answers from Incomplete
Databases, in: VLDB’96, Proceedings of 22th International
Conference on Very Large Data Bases, September 3-6, 1996,
Mumbai (Bombay), India, T.M. Vijayaraman, A.P. Buchmann,
C. Mohan and N.L. Sarda, eds, Morgan Kaufmann, 1996,
pp. 402–412.

[22] S. Razniewski and W. Nutt, Completeness of Queries over In-
complete Databases, PVLDB 4(11) (2011), 749–760.

[23] S. Razniewski, F. Korn, W. Nutt and D. Srivastava, Identifying
the Extent of Completeness of Query Answers over Partially
Complete Databases, in: Proceedings of the 2015 ACM SIG-

MOD International Conference on Management of Data, Mel-
bourne, Victoria, Australia, May 31 - June 4, 2015, T.K. Sellis,
S.B. Davidson and Z.G. Ives, eds, ACM, 2015, pp. 561–576,
doi:10.1145/2723372.2750544.

[24] C. Fürber and M. Hepp, SWIQA - a semantic web information
quality assessment framework, in: 19th European Conference
on Information Systems, ECIS 2011, Helsinki, Finland, June 9-
11, 2011, V.K. Tuunainen, M. Rossi and J. Nandhakumar, eds,
2011, p. 76.

[25] A. Zaveri, A. Rula, A. Maurino, R. Pietrobon, J. Lehmann and
S. Auer, Quality assessment for Linked Data: A Survey, Se-
mantic Web 7(1) (2016), 63–93, doi:10.3233/SW-150175.

[26] P.N. Mendes, H. Mühleisen and C. Bizer, Sieve: linked data
quality assessment and fusion, in: Proceedings of the 2012
Joint EDBT/ICDT Workshops, Berlin, Germany, March 30,
2012, D. Srivastava and I. Ari, eds, ACM, 2012, pp. 116–123,
doi:10.1145/2320765.2320803.

[27] I. Ermilov, J. Lehmann, M. Martin and S. Auer, LODStats: The
Data Web Census Dataset, in: The Semantic Web - ISWC 2016
- 15th International Semantic Web Conference, Kobe, Japan,
October 17-21, 2016, Proceedings, Part II, P.T. Groth, E. Sim-
perl, A.J.G. Gray, M. Sabou, M. Krötzsch, F. Lécué, F. Flöck
and Y. Gil, eds, Lecture Notes in Computer Science, Vol. 9982,
2016, pp. 38–46, doi:10.1007/978-3-319-46547-0_5.

[28] X. Chu, J. Morcos, I.F. Ilyas, M. Ouzzani, P. Papotti, N. Tang
and Y. Ye, KATARA: A Data Cleaning System Powered by
Knowledge Bases and Crowdsourcing, in: Proceedings of the
2015 ACM SIGMOD International Conference on Manage-
ment of Data, Melbourne, Victoria, Australia, May 31 - June
4, 2015, T.K. Sellis, S.B. Davidson and Z.G. Ives, eds, ACM,
2015, pp. 1247–1261, doi:10.1145/2723372.2749431.

[29] M. Acosta, E. Simperl, F. Flöck and M. Vidal, HARE: A Hy-
brid SPARQL Engine to Enhance Query Answers via Crowd-
sourcing, in: Proceedings of the 8th International Conference
on Knowledge Capture, K-CAP 2015, Palisades, NY, USA, Oc-
tober 7-10, 2015, K. Barker and J.M. Gómez-Pérez, eds, ACM,
2015, pp. 11–1118, doi:10.1145/2815833.2815848.

[30] L.A. Galárraga, C. Teflioudi, K. Hose and F.M. Suchanek,
AMIE: association rule mining under incomplete evidence in
ontological knowledge bases, in: 22nd International World
Wide Web Conference, WWW ’13, Rio de Janeiro, Brazil,
May 13-17, 2013, D. Schwabe, V.A.F. Almeida, H. Glaser,
R.A. Baeza-Yates and S.B. Moon, eds, International World
Wide Web Conferences Steering Committee / ACM, 2013,
pp. 413–422, doi:10.1145/2488388.2488425.

[31] X. Dong, E. Gabrilovich, G. Heitz, W. Horn, N. Lao, K. Mur-
phy, T. Strohmann, S. Sun and W. Zhang, Knowledge vault:
a web-scale approach to probabilistic knowledge fusion, in:
The 20th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’14, New York, NY,
USA - August 24 - 27, 2014, S.A. Macskassy, C. Perlich,
J. Leskovec, W. Wang and R. Ghani, eds, ACM, 2014, pp. 601–
610, doi:10.1145/2623330.2623623.

[32] E.F. Codd, Relational Completeness of Data Base Sublan-
guages, In: R. Rustin (ed.): Database Systems (1972).

[33] R. Reiter, On Closed World Data Bases, in: Logic and Data
Bases, Symposium on Logic and Data Bases, Centre d’études
et de recherches de Toulouse, France, 1977., H. Gallaire and
J. Minker, eds, Advances in Data Base Theory, Plemum Press,
New York, 1977, pp. 55–76.

[34] K.L. Clark, Negation as Failure, in: Logic and Data Bases,

34 F. Darari et al. / Completeness and Soundness Guarantees for Conjunctive SPARQL Queries

Symposium on Logic and Data Bases, Centre d’études et
de recherches de Toulouse, France, 1977., H. Gallaire and
J. Minker, eds, Advances in Data Base Theory, Plemum Press,
New York, 1977, pp. 293–322.

[35] E. Prud’hommeaux and A. Seaborne (eds), SPARQL query
language for RDF, W3C Recommendation, 15 January 2008,
URL:https://www.w3.org/TR/rdf-sparql-que
ry/.

[36] R. Reiter, Towards a Logical Reconstruction of Relational
Database Theory, in: On Conceptual Modelling (Intervale),
1982, pp. 191–233.

[37] M. Gelfond and V. Lifschitz, Classical Negation in Logic Pro-
grams and Disjunctive Databases, New Generation Comput.
9(3/4) (1991), 365–386, doi:10.1007/BF03037169.

[38] A. Polleres, C. Feier and A. Harth, Rules with Contex-
tually Scoped Negation, in: The Semantic Web: Research
and Applications, 3rd European Semantic Web Conference,
ESWC 2006, Budva, Montenegro, June 11-14, 2006, Pro-
ceedings, Y. Sure and J. Domingue, eds, Lecture Notes in
Computer Science, Vol. 4011, Springer, 2006, pp. 332–347,
doi:10.1007/11762256_26.

[39] C. Lutz, I. Seylan and F. Wolter, Ontology-Based Data Access
with Closed Predicates is Inherently Intractable (Sometimes),
in: IJCAI 2013, Proceedings of the 23rd International Joint
Conference on Artificial Intelligence, Beijing, China, August
3-9, 2013, F. Rossi, ed., IJCAI/AAAI, 2013, pp. 1024–1030.

[40] A. Analyti, G. Antoniou, C.V. Damásio and G. Wagner,
Extended RDF as a Semantic Foundation of Rule Markup
Languages, J. Artif. Intell. Res. (JAIR) 32 (2008), 37–94,
doi:10.1613/jair.2425.

[41] M. Schmidt, T. Hornung, M. Meier, C. Pinkel and G. Lausen,
SP2Bench: A SPARQL Performance Benchmark, in: Semantic
Web Information Management - A Model-Based Perspective,
R.D. Virgilio, F. Giunchiglia and L. Tanca, eds, Springer, 2009,
pp. 371–393, doi:10.1007/978-3-642-04329-1_16.

[42] C. Bizer and A. Schultz, The Berlin SPARQL Bench-
mark, Int. J. Semantic Web Inf. Syst. 5(2) (2009), 1–24,
doi:10.4018/jswis.2009040101.

[43] M. Schmidt, O. Görlitz, P. Haase, G. Ladwig, A. Schwarte
and T. Tran, FedBench: A Benchmark Suite for Federated Se-
mantic Data Query Processing, in: The Semantic Web - ISWC
2011 - 10th International Semantic Web Conference, Bonn,
Germany, October 23-27, 2011, Proceedings, Part I, L. Aroyo,
C. Welty, H. Alani, J. Taylor, A. Bernstein, L. Kagal, N.F. Noy
and E. Blomqvist, eds, Lecture Notes in Computer Science,
Vol. 7031, Springer, 2011, pp. 585–600, doi:10.1007/978-3-
642-25073-6_37.

[44] C. Gutiérrez, D. Hernández, A. Hogan and A. Polleres, Cer-
tain Answers for SPARQL?, in: Proceedings of the 10th Al-
berto Mendelzon International Workshop on Foundations of
Data Management, Panama City, Panama, May 8-10, 2016,
R. Pichler and A.S. da Silva, eds, CEUR Workshop Proceed-
ings, Vol. 1644, CEUR-WS.org, 2016.

[45] M. Arenas and J. Pérez, Querying semantic web data with
SPARQL, in: Proceedings of the 30th ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Sys-
tems, PODS 2011, June 12-16, 2011, Athens, Greece, M. Lenz-
erini and T. Schwentick, eds, ACM, 2011, pp. 305–316,
doi:10.1145/1989284.1989312.

[46] M. Arenas and M. Ugarte, Designing a Query Language
for RDF: Marrying Open and Closed Worlds, ACM Trans.

Database Syst. 42(4) (2017), 1–46, doi:10.1145/3129247.
[47] S. Razniewski, F.M. Suchanek and W. Nutt, But What Do We

Actually Know?, in: Proceedings of the 5th Workshop on Au-
tomated Knowledge Base Construction, AKBC@NAACL-HLT
2016, San Diego, CA, USA, June 17, 2016, J. Pujara, T. Rock-
täschel, D. Chen and S. Singh, eds, The Association for Com-
puter Linguistics, 2016, pp. 40–44.

[48] L. Galárraga, S. Razniewski, A. Amarilli and F.M. Suchanek,
Predicting Completeness in Knowledge Bases, in: Proceedings
of the Tenth ACM International Conference on Web Search
and Data Mining, WSDM 2017, Cambridge, United Kingdom,
February 6-10, 2017, M. de Rijke, M. Shokouhi, A. Tomkins
and M. Zhang, eds, ACM, 2017, pp. 375–383.

[49] P. Mirza, S. Razniewski and W. Nutt, Expanding Wikidata’s
Parenthood Information by 178%, or How To Mine Relation
Cardinality Information, in: Proceedings of the ISWC 2016
Posters & Demonstrations Track co-located with 15th Interna-
tional Semantic Web Conference (ISWC 2016), Kobe, Japan,
October 19, 2016., T. Kawamura and H. Paulheim, eds, CEUR
Workshop Proceedings, Vol. 1690, CEUR-WS.org, 2016.

[50] P. Mirza, S. Razniewski, F. Darari and G. Weikum, Cardi-
nal Virtues: Extracting Relation Cardinalities from Text, in:
Proceedings of the 55th Annual Meeting of the Association
for Computational Linguistics, ACL 2017, Vancouver, Canada,
July 30 - August 4, Volume 2: Short Papers, R. Barzilay and
M. Kan, eds, Association for Computational Linguistics, 2017,
pp. 347–351, doi:10.18653/v1/P17-2055.

[51] R.E. Prasojo, F. Darari, S. Razniewski and W. Nutt, Managing
and Consuming Completeness Information for Wikidata Using
COOL-WD, in: Proceedings of the 7th International Workshop
on Consuming Linked Data co-located with 15th International
Semantic Web Conference, COLD@ISWC 2015, Kobe, Japan,
October 18, 2016., O. Hartig, J.F. Sequeda and A. Hogan,
eds, CEUR Workshop Proceedings, Vol. 1666, CEUR-WS.org,
2016.

[52] F. Darari, R.E. Prasojo and W. Nutt, Expressing No-Value In-
formation in RDF, in: Proceedings of the ISWC 2015 Posters
& Demonstrations Track co-located with the 14th Interna-
tional Semantic Web Conference (ISWC-2015), Bethlehem, PA,
USA, October 11, 2015., S. Villata, J.Z. Pan and M. Dragoni,
eds, CEUR Workshop Proceedings, Vol. 1486, CEUR-WS.org,
2015.

[53] A. Letelier, J. Pérez, R. Pichler and S. Skritek, Static analysis
and optimization of semantic web queries, in: Proceedings of
the 31st ACM SIGMOD-SIGACT-SIGART Symposium on Prin-
ciples of Database Systems, PODS 2012, Scottsdale, AZ, USA,
May 20-24, 2012, M. Benedikt, M. Krötzsch and M. Lenzerini,
eds, ACM, 2012, pp. 89–100, doi:10.1145/2213556.2213572.

[54] A.C. Klug, On conjunctive queries containing inequalities, J.
ACM 35(1) (1988), 146–160, doi:10.1145/42267.42273.

[55] semantic-web@w3.org Mail Archives: a blank node issue,
URL:https://lists.w3.org/Archives/Public/
semantic-web/2011Mar/0017.html.

[56] R. Cyganiak, Blank nodes considered harmful,
URL:http://richard.cyganiak.de/blog/2011/
03/blank-nodes-considered-harmful/.

[57] T. Heath and C. Bizer, Linked Data: Evolving the Web
into a Global Data Space, Synthesis Lectures on the
Semantic Web, Morgan & Claypool Publishers, 2011,
doi:10.2200/S00334ED1V01Y201102WBE001.

[58] F. Erxleben, M. Günther, M. Krötzsch, J. Mendez and D. Vran-

https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/TR/rdf-sparql-query/
https://lists.w3.org/Archives/Public/semantic-web/2011Mar/0017.html
https://lists.w3.org/Archives/Public/semantic-web/2011Mar/0017.html
http://richard.cyganiak.de/blog/2011/03/blank-nodes-considered-harmful/
http://richard.cyganiak.de/blog/2011/03/blank-nodes-considered-harmful/

F. Darari et al. / Completeness and Soundness Guarantees for Conjunctive SPARQL Queries 35

decic, Introducing Wikidata to the Linked Data Web, in: The
Semantic Web - ISWC 2014 - 13th International Semantic Web
Conference, Riva del Garda, Italy, October 19-23, 2014. Pro-
ceedings, Part I, P. Mika, T. Tudorache, A. Bernstein, C. Welty,
C.A. Knoblock, D. Vrandecic, P.T. Groth, N.F. Noy, K. Janow-
icz and C.A. Goble, eds, Lecture Notes in Computer Science,
Vol. 8796, Springer, 2014, pp. 50–65, doi:10.1007/978-3-319-
11964-9_4.

[59] A. Hogan, M. Arenas, A. Mallea and A. Polleres, Everything
you always wanted to know about blank nodes, J. Web Sem. 27
(2014), 42–69, doi:10.1016/j.websem.2014.06.004.

[60] N. Noy and A. Rector (eds), Defining N-ary Relations on
the Semantic Web, W3C Working Group Note, 12 April
2006, URL:https://www.w3.org/TR/2006/NOTE-s
wbp-n-aryRelations-20060412/.

[61] R. Cyganiak, D. Wood and M. Lanthaler (eds), RDF 1.1
Concepts and Abstract Syntax, W3C Recommendation, 25
February 2014, URL:https://www.w3.org/TR/2014/
REC-rdf11-concepts-20140225/.

[62] A. Hogan, Skolemising Blank Nodes while Preserving Isomor-
phism, in: Proceedings of the 24th International Conference
on World Wide Web, WWW 2015, Florence, Italy, May 18-22,
2015, A. Gangemi, S. Leonardi and A. Panconesi, eds, ACM,
2015, pp. 430–440, doi:10.1145/2736277.2741653.

[63] D. Brickley and R.V. Guha, RDF Schema 1.1, W3C Recom-
mendation, 25 February 2014, URL:http://www.w3.or
g/TR/2014/REC-rdf-schema-20140225/.

[64] S. Muñoz, J. Pérez and C. Gutierrez, Simple and Effi-
cient Minimal RDFS, J. Web Sem. 7(3) (2009), 220–234.
doi:doi:10.1016/j.websem.2009.07.003.

[65] A. Polleres, A. Hogan, R. Delbru and J. Umbrich, RDFS and
OWL Reasoning for Linked Data, in: Reasoning Web. Seman-
tic Technologies for Intelligent Data Access - 9th International
Summer School 2013, Mannheim, Germany, July 30 - August
2, 2013. Proceedings, S. Rudolph, G. Gottlob, I. Horrocks
and F. van Harmelen, eds, Lecture Notes in Computer Sci-
ence, Vol. 8067, Springer, 2013, pp. 91–149, doi:10.1007/978-
3-642-39784-4_2.

[66] A. Motro and I. Rakov, Not all answers are equally good:
estimating the quality of database answers, in: Flexible
Query Answering Systems, T. Andreasen, H. Christiansen and
H.L. Larsen, eds, Kluwer Academic Publishers, Norwell, MA,
USA, 1997, pp. 1–21, URL:http://dl.acm.org/citat
ion.cfm?id=285506.285508.

[67] T.K. Sellis, S.B. Davidson and Z.G. Ives (eds), Proceedings of
the 2015 ACM SIGMOD International Conference on Man-
agement of Data, Melbourne, Victoria, Australia, May 31 -
June 4, 2015, ACM, 2015.

[68] H. Gallaire and J. Minker (eds), Logic and Data Bases, Sym-
posium on Logic and Data Bases, Centre d’études et de
recherches de Toulouse, France, 1977, in Advances in Data
Base Theory, Plemum Press, New York, 1978.

Appendix

A. Proofs of Section 3

Proposition 1. Let C be a set of completeness state-
ments, G a graph, and P a BGP. Then the following are
equivalent:

1. C,G |= Compl(P);
2. for every mapping µ such that dom(µ) = var(P)

and (G,G ∪ µP) |= C, it is the case that µP ⊆ G.

Proof. (⇒) We prove the contrapositive. Suppose
there is a mapping µ where dom(µ) = var(P) and
(G,G ∪ µP) |= C, but µP 6⊆ G. We want to show that
C,G 6|= Compl(P). For this, we need a counterexam-
ple extension pair (G,G′) such that (G,G′) |= C, but
(G,G′) 6|= Compl(P).

Take the extension pair (G,G ∪ µP). By assump-
tion, we have that (G,G ∪ µP) |= C. We will show
that (G,G ∪ µP) 6|= Compl(P). Again, by assumption
we have that µP 6⊆ G. This means that µ 6∈ JPKG, as
opposed to the obvious fact that µ ∈ JPKG∪µP. This
implies that (G,G ∪ µP) 6|= Compl(P). Therefore,
C,G 6|= Compl(P) as witnessed by the counterexample
extension pair (G,G ∪ µP).
(⇐) Assume that for all mappings µ such that dom(µ) =
var(P) and (G,G ∪ µP) |= C, it is the case µP ⊆ G.
We want to show that C,G |= Compl(P). Take an ex-
tension pair (G,G′) such that (G,G′) |= C. We need to
prove that (G,G′) |= Compl(P). In other words, it has
to be shown that JPKG′ ⊆ JPKG.

Now take a mapping µ ∈ JPKG′ . By the semantics
of BGP evaluation, this implies µP ⊆ G′. We want to
show µ ∈ JPKG. Again, by the semantics of BGP eval-
uation it is sufficient to show that µP ⊆ G. By the as-
sumption that (G,G′) |= C and the semantics of the
TC operator, we have that TC(G′) ⊆ G. From this and
µP ⊆ G′ (and also G ⊆ G′ by the definition of an ex-
tension pair), it holds that TC(G∪µP) ⊆ TC(G′) ⊆ G.
Therefore, it is the case that (G,G ∪ µP) |= C. By as-
sumption, we have that µP ⊆ G. Since µ was arbitrary,
we can therefore conclude that JPKG′ ⊆ JPKG.

B. Additional Example

Example. (CRUCIAL PART) Consider the graph Gcou+,31

Gcou+ = {(UN,member, ger), (UN,member, usa),
(ger, lang, de), (vatican, lang, it)},

31Note that this graph is different with Gcou as in Fig. 2.

https://www.w3.org/TR/2006/NOTE-swbp-n-aryRelations-20060412/
https://www.w3.org/TR/2006/NOTE-swbp-n-aryRelations-20060412/
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
http://www.w3.org/TR/2014/REC-rdf-schema-20140225/
http://www.w3.org/TR/2014/REC-rdf-schema-20140225/
http://dl.acm.org/citation.cfm?id=285506.285508
http://dl.acm.org/citation.cfm?id=285506.285508

36 F. Darari et al. / Completeness and Soundness Guarantees for Conjunctive SPARQL Queries

that is augmented with the completeness statement
“Complete for all official languages of UN members”,

Cun-lang = Compl((UN,member, ?c), (?c, lang, ?l)).

Consider also the BGP “Give official languages of the
USA”,

Pusa = {(usa, lang, ?l)}.

Let us reason whether Pusa can be answered com-
pletely over Gcou+ augmented with Cun-lang. Intuitively,
since Cun-lang states that Gcou+ is complete for all lan-
guages of UN members, and we know from Gcou+ that
the USA is a member of the UN, it is the case that
the BGP Pusa can be answered completely. Note that
here our reasoning relies on Gcou+ (and Cun-lang), in the
sense that without knowing what is in Gcou+, we can-
not infer whether Pusa can be answered completely as
we do not know whether USA is a member of the UN
or not.

Let us now treat this observation in a formal manner.
First, we compute the crucial part of Pusa wrt. Gcou+

and Cun-lang. The melting of evaluating the transfer op-
erator T{Cun-lang}(P̃usa∪Gcou+) gives {(UN,member, ger),

(ger, lang, de), (UN,member, usa), (usa, lang, ?l)}.
The crucial part can be retrieved by computing the

intersection of this result with the BGP Pusa, giving
us {(usa, lang, ?l)} = Pusa. Note that if the transfer
operator were applied only over the prototypical graph
P̃usa without considering Gcou+, the crucial part would
return the empty BGP.

Now, from the crucial part (i.e., {(usa, lang, ?l)}),
we compute the equivalent partial grounding (i.e., epg)
of the BGP P̃usa wrt. Gcou+ and Cun-lang, which gives
the empty set. This corresponds to the non-existence
of the query answer in any possible extension of the
graph Gcou+ that satisfies the statement Cun-lang. Hence,
it holds that Cun-lang,Gcou+ |= Compl(Pusa), mean-
ing the query can be guaranteed to be answered com-
pletely wrt. Gcou+ and Cun-lang. Note that, if the cru-
cial part were computed without considering Gcou+, the
epg would return the BGP itself, meaning that the sat-
urated condition is reached. By Lemma 1, we would
falsely infer that Cun-lang,Gcou+ 6|= Compl(Pusa) since
Pusa 6⊆ Gcou+.

C. Proofs of Section 4

Proposition 3 (Equivalent Partial Grounding). Let C
be a set of completeness statements, G a graph, and
(P, ν) a partially mapped BGP. Then

{ (P, ν) } ≡C,G epg((P, ν), C,G).

Proof. Take any G′ such that (G,G′) |= C. We want to
show that

J(P, ν)KG′ =
⋃

(µP,ν∪µ)∈epg((P,ν),C,G)

J(µP, ν ∪ µ)KG′ .

Since dom(ν) ∩ var(P) = ∅ by the construction of a
partially mapped BGP, it is sufficient to show that

J(P, µ∅)KG′ =
⋃

(µP,µ)∈epg((P,µ∅),C,G)

J(µP, µ)KG′ .

By the construction of the epg operator, this corre-
sponds to showing that

J(P, µ∅)KG′ =
⋃

µ∈JcrucC,G(P)KG

J(µP, µ)KG′ .

Recall that the crucial part of P is complete wrt. C
and G, that is, C,G |= Compl(crucC,G(P)). This im-
plies that JcrucC,G(P)KG′ = JcrucC,G(P)KG. Therefore,
it is the case that⋃

µ∈JcrucC,G(P)KG′

J(µP, µ)KG′ =
⋃

µ∈JcrucC,G(P)KG

J(µP, µ)KG′ .

By construction, we have that crucC,G(P) ⊆ P. There-
fore, by the semantics of evaluating partially mapped
BGPs, J(P, µ∅)KG′ =

⋃
µ∈JcrucC,G(P)KG′ J(µP, µ)KG′ . Thus,

we conclude that

J(P, µ∅)KG′ =
⋃

µ∈JcrucC,G(P)KG′

J(µP, µ)KG′

=
⋃

µ∈JcrucC,G(P)KG

J(µP, µ)KG′ .

Lemma 1 (Completeness Entailment of Saturated
BGPs). Let P be a BGP, C a set of completeness state-
ments, and G a graph. Suppose P is saturated wrt. C
and G. Then:

C,G |= Compl(P) iff P ⊆ G.

F. Darari et al. / Completeness and Soundness Guarantees for Conjunctive SPARQL Queries 37

Proof. (⇒) By contrapositive. Suppose P 6⊆ G. We
want to give a counterexample for C,G |= Compl(P).
Let us take the extension pair (G,G ∪ P̃). Note that
P 6⊆ G implies P̃ 6⊆ G. Consequently, it is the case that
JPKG∪P̃ 6⊆ JPKG, implying (G,G ∪ P̃) 6|= Compl(P).

It is left to show (G,G ∪ P̃) |= C. We would like
to prove the following: If P is saturated wrt. C and G,
then (G,G ∪ P̃) |= C. By definition, wrt. C and G a
BGP P is saturated iff (P, µ∅) is saturated. From our
assumption that P is saturated, we therefore know that
(P, µ∅) is also saturated. By the definition of saturation,
this means that epg((P, µ∅), C,G) = { (P, µ∅) }. This
implies that JcrucC,G(P)KG = { µ∅ }. Consequently,
µ∅(crucC,G(P)) = crucC,G(P) ⊆ G. Here we know
that crucC,G(P) is ground.

Now we want show that TC(G ∪ P̃) ⊆ G for the
following reason: by the definition of TC and the sat-
isfaction of an extension pair wrt. C, it is the case that
TC(G ∪ P̃) ⊆ G implies (G,G ∪ P̃) |= C.

By construction, the TC operator always returns a
subset of the input. There are therefore two compo-
nents of the results of TC(G ∪ P̃) for which we have to
check if they are included in G. The first are the parts
of the output included in G, that is, G ∩ TC(G ∪ P̃).
Clearly, G ∩ TC(G ∪ P̃) ⊆ G.

The second one are those included in P̃, that is,
P̃ ∩ TC(G ∪ P̃). We want to show that P̃ ∩ TC(G ∪
P̃) ⊆ G. Recall that crucC,G(P) ⊆ G. By definition,
crucC,G(P) = P∩ ĩd

−1
(TC(G ∪ P̃)). Since crucC,G(P)

is ground, we have that crucC,G(P) = P̃∩ ĩd
−1

(TC(G∪
P̃)), so that the melting operator ĩd

−1
does not have

any effect, that is, P̃ ∩ ĩd
−1

(TC(G ∪ P̃)) = P̃ ∩
TC(G ∪ P̃). Consequently, we have P̃ ∩ TC(G ∪ P̃) =
crucC,G(P) ⊆ G.

Since both components are in G, we have that
TC(G ∪ P̃) ⊆ G, and therefore (G,G ∪ P̃) |= C.
(⇐) Assume P ⊆ G. This means that P is ground (i.e.,
has no variables). Therefore, it is the case that for all
extension pairs (G,G′), the equation JPKG′ = JPKG =
{µ∅} holds, implying (G,G′) |= Compl(P). By defini-
tion, C,G |= Compl(P) holds if for all (G,G′) |= C, we
have (G,G′) |= Compl(P). Hence, C,G |= Compl(P)
holds since (G,G′) |= Compl(P) even for all possible
extension pairs (G,G′).

Theorem 1 (Completeness Entailment Check). Let P
be a BGP, C a set of completeness statements, and G a
graph. Then the following are equivalent:

1. C,G |= Compl(P);

2. µP ⊆ G, for all µ ∈ sat(P, C,G).

Proof. (⇒) We prove the contrapositive. Assume there
exists a mapping µ ∈ sat(P, C,G) such that µP 6⊆
G. From Proposition 4, we have that µP is saturated
wrt. C and G. From Lemma 1, it is the case C,G 6|=
Compl(µP).

From Proposition 4, we have that {(P, µ∅)} ≡C,G
{ (νP, ν) | ν ∈ sat(P, C,G) }. Note that by construc-
tion, each mapping in sat(P, C,G) is incomparable to
the others, in the sense that, every mapping is differ-
ent. Since C,G 6|= Compl(µP), we have the exten-
sion pair (G,G ∪ µ̃P) as a counterexample for C,G |=
Compl(P).
(⇐) By the second claim of Proposition 4, we have that
µP is saturated wrt. C and G for each µ ∈ sat(P, C,G).
Thus, from the right-hand side of Theorem 1 and
Lemma 1, we have that C,G |= Compl(µP) for each
µ ∈ sat(P, C,G). Therefore, by the first claim of Propo-
sition 4, we have that C,G |= Compl(P).

Proposition 5. Deciding the entailment C,G |=
Compl(P), given a set C of completeness statements, a
graph G, and a BGP P, is ΠP

2-complete.

Proof. We prove membership in ΠP
2 by showing that

non-entailment is in ΣP
2 . This follows from Propo-

sition 1, which can be read as saying that C,G 6|=
Compl(P) iff there exists a mapping µ with dom(µ) =
var(P) and µP 6⊆ G such that

(G,G ∪ µP) |= C.

We observe that (G,G ∪ µP) 6|= C iff there is a state-
ment Compl(P′) ∈ C and a mapping ν such that
νP′ ⊆ G ∪ µP and νP′ 6⊆ G. Thus, non-entailment can
be checked by guessing µ in polynomial time and then
performing a CoNP-check.

Next, we prove the hardness by reduction from the
validity of a ∀∃3SAT formula. The general shape of a
formula is as follows:

ψ = ∀x1, . . . , xm∃y1, . . . , yn γ1 ∧ . . . ∧ γk,

where each γi is a disjunction of three literals over
propositions from vars∀ ∪ vars∃ where vars∀ =
{x1, . . . , xm} and vars∃ = {y1, . . . , yn}. We will con-
struct a set C of completeness statements, a graph G,
and a BGP P such that the following claim holds:

C,G |= Compl(P) iff ψ is valid.

38 F. Darari et al. / Completeness and Soundness Guarantees for Conjunctive SPARQL Queries

Our encoding is inspired by the following approach
to check the validity of ψ: Unfold the universally quan-
tified variables x1, . . . , xm in ψ, and then check if for
every formula in the set Ψunfold of the unfolding results,
there is an assignment from the existentially quantified
variables y1, . . . , yn to make all the clauses evaluate to
true.

(Encoding) First, we construct32

G = { (0, varg, c), (1, varg, c) }

and the completeness statement

C∀ = Compl({ (?x, varg, ?y) }),

to denote all the assignment possibilities (i.e., 0 and 1)
for the universally quantified variables.

Next, we define

Pground = { (?xi, varg, ?cxi), (?xi, varc, cxi) |

xi ∈ vars∀ }.

The idea is that Pground via C∀ and G will later be in-
stantiated with all possible assignments for the univer-
sally quantified variables in ψ.

Now, we define

Pneg = { (0, neg, 1), (1, neg, 0) },

which says that 0 is the negation of 1, and vice versa.
This BGP is used later on to assign values for all the
propositional variables and their negations. Then, we
define

Ptrue = { (1, 1, 1), . . . , (0, 0, 1) },

to denote the seven possible satisfying value combina-
tions for a clause. Our BGP P that we want to check
for completeness is therefore as follows:

P = Ptrue ∪ Pneg ∪ Pground.

Now, we want to encode the structure of the for-
mula ψ. For each propositional variable pi, we encode
the positive literal pi as the variable υ(pi) = ?pi and

32Recall that we omit namespaces. With namespaces, for ex-
ample, the ‘number’ 0 in the encoding can be written as the IRI
http://example.org/0.

the negative literal ¬pi as the variable υ(¬pi) = ?pi.
Given a clause γi = li1 ∨ li2 ∨ li3, the operator tp(γi)
maps γi to (υ(li1), υ(li2), υ(li3)). We then define the fol-
lowing BGP to encode the structure of ψ:

Pψ = { tp(γi) | γi occurring in ψ }.

To encode the inverse relationship between a posi-
tive literal and a negative literal, we use the following:

Pposs = { (?pi, neg, ?pi), (?pi, neg, ?pi) |

pi ∈ vars∀ ∪ vars∃}.

This pattern will later be instantiated accordingly wrt.
Pneg. Now, for capturing the assignments of the univer-
sally quantified variables in P, we use

P∀ = { (?xi, varc, cxi) | xi ∈ vars∀ }.

We are now ready to construct the following com-
pleteness statement:

Cψ = Compl(Ptrue ∪ Pposs ∪ P∀ ∪ Pψ).

In summary, our encoding consists of the following
ingredients: the set C = {C∀,Cψ } of completeness
statements, the graph G, and the BGP P. Let us now
prove the claim mentioned above.

(Proof for Encoding) Recall the approach we men-
tioned above to check the validity of the formula ψ.
To simulate the unfolding of the universally quantified
variables, we rely on the equivalent partial grounding
operator epg((P, µ∅), C,G) as in Algorithm 1 which in-
volves the cruc operator. Accordingly, crucC,G(P) =

P∩ĩd
−1

(TC(P̃∪G)) by definition. By construction, the
statement C∀ captures the (?xi, varg, ?cxi) part of the
BGP P where xi ∈ vars∀. Thus, by the construction of
G, it is the case that epg((P, µ∅), C,G) consists of 2m

partially mapped BGPs, where m is the number of the
universally quantified variables in ψ. Each of the par-
tially mapped BGPs corresponds to an assignment for
the universally quantified variables in the set Ψunfold of
the unfolding results of ψ.

Now, we prove the simulation of the next step, the
existential checking. For each partially mapped BGP
(µP, µ) in the unfolding results epg((P, µ∅), C,G), it is
either epg((µP, µ), C,G) = ∅ or epg((µP, µ), C,G) =
{ (µP, µ) }. Let us see what this means.

By construction, the former case happens whenever
TC(µ̃P∪G) = µ̃P holds, from the fact that JµPKG = ∅.

F. Darari et al. / Completeness and Soundness Guarantees for Conjunctive SPARQL Queries 39

Furthermore, it is the case that TC(µ̃P ∪ G) = µ̃P
iff there is a mapping ν from the encoding ?yi of
the existentially quantified variables in Pψ such that
ν(µPψ) ⊆ Ptrue. Note that the mapping ν simulates
a satisfying assignment for the corresponding existen-
tially quantified formula in the set Ψunfold. Whenever
this holds for all (µP, µ) ∈ epg((P, µ∅), C,G), from
Proposition 3 we can conclude that (P, µ∅) ≡C,G ∅,
and therefore C,G |= Compl(P). Also, because we
have the satisfying assignments for all the correspond-
ing existentially quantified formulas in the set Ψunfold,
the formula ψ evaluates to true.

The latter case happens whenever TC(µ̃P∪G) 6= µ̃P,
since there is no mapping ν from the encoding ?yi of
the existentially quantified variables in Pψ such that
ν(µPψ) ⊆ Ptrue. This simulates the failure in find-
ing a satisfying assignment for the corresponding ex-
istentially quantified formula in the set Ψunfold. This
implies that ψ evaluates to false. However, whenever
the latter case happens, it means that (µP, µ) is satu-
rated. By construction, it is the case µ̃P 6⊆ G. From
Lemma 1 and Proposition 3, we conclude that C,G 6|=
Compl(P).

Proposition 6. Let G be a graph. Deciding the entail-
ment C,G |= Compl(P), given a set C of completeness
statements and a BGP P, is in ΠP

2 . There is a graph for
which the problem is ΠP

2-complete.

Proof. The membership follows immediately from
Proposition 5, while the existence of a hard case fol-
lows from the reduction proof of that proposition, in
which the graph is fixed.

Proposition 7. Let P be a BGP. Deciding the entail-
ment C,G |= Compl(P), given a set C of completeness
statements and a graph G, is in NP. There is a BGP
for which the problem is NP-complete. This still holds
when the graph is fixed.

Proof. The membership relies on Algorithm 1 and
Theorem 1. Recall that the algorithm contains the epg
operator, which performs grounding based on the cru-
cial part over the graph G. However, now since the
BGP is fixed, the size of the grounding results is there-
fore bounded polynomially. Consequently, the only
source of complexity is from the finding of the crucial
part of BGPs, which can be done in NP (note that the
completeness statements are not fixed).

In the hardness proof we will see that the hard-
ness follows even when the graph is fixed. The proof
for NP-hardness is by means of reduction from the
3-colorability problem of classical graphs, which is
known to be NP-hard. We encode the problem graph
Gp = (V, E), i.e., the classical graph we want to check
whether it is 3-colorable, as a set triples(Gp) of triple
patterns. We associate to each vertex v ∈ V , a new
variable ?v. Then, we define triples(Gp) as the union
of all triple patterns (?s, edge, ?o) created from each
pair (s, o) ∈ E where ?s is the associated variable of
s, edge is an IRI and ?o is the associated variable of o.
Let the BGP Pcol be:

{ (r, edge, g), (r, edge, b), (g, edge, r), (g, edge, b),
(b, edge, r), (b, edge, g) }

Next, we create the completeness statement

Cp = Compl(triples(Gp) ∪ Pcol).

Let G be the empty graph. Then, the following claim
holds:

The problem graph Gp is 3-colorable iff

{Cp },G |= Compl(Pcol).

Proof of the claim: (⇒) Assume Gp is 3-colorable.
Thus, there must be a mapping µ from all the vertices
in Gp to an element from the set { r, g, b } such that
no adjacent nodes have the same color. From the map-
ping µ, we can thus create a corresponding mapping ν
such that the associated variables of the vertices in Gp

are mapped to the same color as in the mapping µ. By
construction of the statement Cp, it is the case that the
mapping ν is a witness mapping for QCp to derive all
the triples in Pcol, hence ensuring the completeness of
Pcol.

(⇐) We will prove the contrapositive. Assume that Gp

is not 3-colorable. Thus, there is no mapping from the
vertices in Gp to an element from the set { r, g, b } such
that any adjacent node has a different color. Consider
the an extension pair (G,G′), where G′ is the color
graph { (r, edge, g), . . . , (b, edge, g) }. From the con-
struction of Cp, it is the case that (G,G′) |= {Cp } but
JPcolKG 6= JPcolKG′ . Thus, {Cp },G 6|= Compl(Pcol).

Proposition 8. Let C be a set of completeness state-
ments. Deciding the entailment C,G |= Compl(P),
given a graph G and a BGP P, is in CoNP. There is
a set C for which the problem is CoNP-complete. This
still holds when the graph is fixed.

40 F. Darari et al. / Completeness and Soundness Guarantees for Conjunctive SPARQL Queries

Proof. The membership proof is as follows. It is the
case that C,G 6|= Compl(P) iff there exists a graph G′

containing G where:

– (G,G′) |= C, and
– (G,G′) 6|= Compl(P).

We guess a mapping µ over P such that µP 6⊆ G, which
implies that (G,G∪µP) 6|= Compl(P). Then, we check
in PTIME (since C is now fixed) the entailment (G,G∪
µP) |= C. If it holds, then C,G 6|= Compl(P) by the
counterexample G′ = G ∪ µP.

In the hardness proof we will see that the hardness
follows even when the graph is fixed. The proof for
CoNP-hardness is by means of a reduction from the
3-uncolorability problem of classical graphs. We en-
code the problem graph Gp = (V, E), i.e., the clas-
sical graph for which we want to check whether it
is 3-uncolorable, as a set triples(Gp) of triple pat-
terns. We associate to each vertex v ∈ V , a new vari-
able ?v. Then, we define triples(Gp) as the union of
all triple patterns (?s, edge, ?o) created from each pair
(s, o) ∈ E where ?s is the associated variable of s,
edge is an IRI and ?o is the associated variable of o.
Let the BGP P be:

triples(Gp) ∪ { (c1, c2, c3) }

Let the graph G be the color graph:

{ (r, edge, g), (r, edge, b), (g, edge, r), (g, edge, b),
(b, edge, r), (b, edge, g) }.

Next, we create the completeness statement

C = Compl((?x, edge, ?y)).

Then, the following claim holds:

The problem graph Gp is 3-uncolorable iff

{C },G |= Compl(P).

Proof of the claim:
(⇒) The proof relies on Algorithm 1 and Theo-

rem 1. First, observe that by construction, the part
triples(Gp) of the BGP P can be grounded completely
due to the statement C, that is, the crucial part oper-
ator cruc returns exactly that part. Assume Gp is 3-
uncolorable. As Gp is 3-uncolorable, there is no map-
ping µ from all the vertices in Gp to an element from
the set { r, g, b } such that no adjacent nodes have the
same color. Thus, the epg operator returns an empty
set as evaluating triples(Gp) over G yields the empty
answer. This means that the grounding does not out-
put any BGP that needs to be checked anymore for

its completeness. Hence, it is the case that {C },G |=
Compl(P).

(⇐) We will prove the contrapositive. First, observe
that by construction, the part triples(Gp) of the BGP
P can be grounded completely due to the statement
C. Assume that Gp is 3-colorable. Thus, there must
be a mapping µ from all the vertices in Gp to an ele-
ment from the set { r, g, b } such that no adjacent nodes
have the same color. Take such a mapping µ arbitrarily.
Since the graph Gp is 3-colorable, we can then reuse
the mapping µ for mapping triples(Gp) to G. The epg
operator results therefore include that mapping, which
is then applied to the remaining part of P, that is, the
triple pattern (c1, c2, c3). Note that the triple pattern
consists only of constants, so the mapping application
has no effect. Now we have to check the completeness
of (c1, c2, c3). As no completeness statements can be
evaluated over that remaining part, it is then the case
that we are already saturated for (c1, c2, c3). By The-
orem 1, the BGP P can be guaranteed to be complete
iff all saturated instantiations wrt. {C } are in G. How-
ever, clearly (c1, c2, c3) is not in G. Thus, we have that
{C },G 6|= Compl(P).

Proposition 9. Let C be a set of completeness state-
ments and P be a BGP. Deciding the entailment C,G |=
Compl(P), given a graph G, is in PTIME.

Proof. The proof relies on Algorithm 1 and Theo-
rem 1. Recall that the algorithm contains the epg op-
erator, which performs grounding based on the crucial
part over the graph G. However, now since the BGP
is fixed, the size of the grounding result is therefore
bounded polynomially. Moreover, now that the com-
pleteness statements are fixed, the crucial part can then
be found in PTIME. Hence, the overall procedure can
be executed in PTIME.

D. Proofs of Section 5

Theorem 2. (ANSWER SOUNDNESS) Let G be a
graph, C a set of completeness statements, P a graph
pattern, and µ ∈ JPKG a mapping. Then the following
are equivalent:

1. C,G |= Sound(µ, P);
2. C,G |= Compl(µPi), for all Pi ∈ P−.

F. Darari et al. / Completeness and Soundness Guarantees for Conjunctive SPARQL Queries 41

Proof. (⇐) Let µ ∈ JPKG be a mapping. Suppose that
for all Pi ∈ P−, we have C,G |= Compl(µPi). Take
an extension pair (G,G′) satisfying C. We will show
that µ ∈ JPKG′ . Since µ ∈ JPKG and G ⊆ G′, it holds
that µ ∈ JP+KG′ . It is left to show that for all Pi ∈
P−, we have JµPiKG′ = ∅. Take an arbitrary Pi ∈ P−.
The inclusion JµPiKG′ ⊆ JµPiKG holds because C,G |=
Compl(µPi). Moreover, the equality JµPiKG = ∅ holds
because µ ∈ JPKG. Hence, it is the case that JµPiKG′ =
∅.
(⇒) We prove the contrapositive. Suppose there is a
BGP Pw ∈ P− (‘w’ for witness) such that C,G 6|=
Compl(µPw). We will show that C,G 6|= Sound(µ, P).
Since it is the case that C,G 6|= Compl(µPw), there
must be a mapping ν such that: (i) dom(ν) = var(µPw);
(ii) (G,G ∪ νµPw) |= C; and (iii) νµPw 6⊆ G. This im-
plies that ν 6∈ JµPwKG and ν ∈ JµPwKG∪νµPw . Now, we
will show that (G,G ∪ νµPw) 6|= Sound(µ, P). Since
ν ∈ JµPwKG∪νµPw , it holds that µ 6∈ JPKG∪νµPw . On
the other hand, it is the case that µ ∈ JPKG from our
assumption. Thus, (G,G ∪ νµPw) 6|= Sound(µ, P).

Proposition 10. For a set C of completeness state-
ments and BGPs P and P′, it is the case that

C |= Compl(P | P′) iff P̃ ⊆ TC(P̃ ∪ P̃′).

Proof. (⇒) Suppose that C |= Compl(P | P′). By def-
inition of the entailment, for all (G,G′) |= C, the in-
clusion J(var(P), P ∪ P′)KG′ ⊆ JPKG holds. Consider
the extension pair (G,G′) where G = TC(P̃ ∪ P̃′) and
G′ = P̃∪P̃′. By construction, (G,G′) |= C holds. From
our assumption, it follows that J(var(P), P ∪ P′)KG′ ⊆
JPKG. We define the operator πW(µ) by projecting the
mapping µ to the variables in W. By construction, we
have that πvar(P)(ĩd) ∈ J(var(P), P ∪ P′)KG′ where ĩd
is the freeze mapping of the BGP P ∪ P′ (as defined
in Section 2.1). From the set inclusion, it follows that
πvar(P)(ĩd) ∈ JPKG. This implies that πvar(P)(ĩd)P =

P̃ ⊆ G = TC(P̃ ∪ P̃′).
(⇐) Assume P̃ ⊆ TC(P̃ ∪ P̃′). By this assumption
and the prototypicality of P̃∪ P̃′, which represents any
possible graph satisfying P ∪ P′, it is the case that
C |= Compl(P | P′).

Lemma 2. Let C be a set of completeness statements
and P a graph pattern. Then C |= Sound(P) provided
that C |= Compl(Pi | P+) for all Pi ∈ P−.

Proof. Assume that for all Pi ∈ P−, it is the case
that C |= Compl(Pi | P+). Take any extension pair
(G,G′) |= C and suppose there is a mapping µ ∈ JPKG.
We want to show that µ ∈ JPKG′ . By G ⊆ G′, it holds
that µ ∈ JP+KG′ . Thus, it is left to show that for all
Pi ∈ P−, it is the case that JµPiKG′ = ∅.

Take any negation part Pi. By C |= Compl(Pi |
P+) and (G,G′) |= C, it is the case that (G,G′) |=
Compl(Pi | P+). Consequently, by J(var(Pi), Pi ∪
P+)KG′ ⊆ JPiKG and JµPiKG = ∅, it must be the case
that JµPiKG′ = ∅. As Pi was arbitrary, it is the case that
µ ∈ JPKG′ .

Theorem 3. (PATTERN SOUNDNESS) Let C be a set
of completeness statements and P a graph pattern in
NRF. Then the following are equivalent:

1. C |= Sound(P);
2. C |= Compl(Pi | P+) for all Pi ∈ P−.

Proof. (⇐) This is a direct consequence of Lemma 2.
(⇒) We give a proof by contrapositive. Suppose there
is a BGP Pw ∈ P− (‘w’ for witness) such that C 6|=
Compl(Pw | P+). By Proposition 10, it is the case that
P̃w 6⊆ TC(P̃w∪ P̃+). Let us prove that for the extension
pair (G,G′) = (P̃+ ∪TC(P̃w ∪ P̃+), P̃w ∪ P̃+), it is the
case that (G,G′) |= C, but (G,G′) 6|= Sound(P).

By the definition of TC , it holds that (G,G′) |= C.
We now have to show that (G,G′) 6|= Sound(P). By
construction, ĩd 6∈ JPKP̃w∪P̃+ = JPKG′ where ĩd is
the freeze mapping wrt. P+. We will show that ĩd ∈
JPKP̃+∪TC(P̃w∪P̃+) = JPKG.

By construction, ĩd ∈ JP+KP̃+∪TC(P̃w∪P̃+). Thus, it
is left to show that for every BGP Pi ∈ P−, it is the
case JĩdPiKP̃+∪TC(P̃w∪P̃+) = ∅. Since, due to the non-
redundancy property of NRF graph patterns, different
negated patterns do not contain one another, there is no
negated pattern P j 6= Pw such that:

JĩdP jKP̃+∪TC(P̃w∪P̃+) 6= ∅.

Now, it is left to show that for the BGP Pw, it also holds
that

JĩdPwKP̃+∪TC(P̃w∪P̃+) = ∅.

However, this follows from the minimality of negated
patterns in an NRF graph pattern. Thus, we have
shown that ĩd 6∈ JPKG′ but ĩd ∈ JPKG, serving as a
counterexample for (G,G′) |= Sound(P).

42 F. Darari et al. / Completeness and Soundness Guarantees for Conjunctive SPARQL Queries

Proposition 11. Negation-similar graph patterns are
equivalent.

Proof. Suppose that P and P̄ are negation-similar. We
show that P v P̄. The converse statement follows by a
symmetric argument.

Let G be a graph and let µ ∈ JPKG. We want to
show that µ ∈ JP̄KG. Clearly, µ ∈ JP+KG and there-

fore also µ ∈ JP̄+KG. To show that µ ∈ JP̄KG, we
must ensure that JµP̄ jKG = ∅ for all P̄ j ∈ P̄−. By as-
sumption, for P̄ j ∈ P̄− there exists a Pi ∈ P− such
that (var(P̄+), P̄+∪ P̄ j) vs (var(P+), P+∪Pi). Since
µ ∈ JPKG, we have JµPiKG = ∅, which implies that
JµP̄ jKG ⊆ JµPiKG = ∅. This completes the proof.

