
Fakultät Informatik, Institut für Künstliche Intelligenz, Professur Computational Logic

THEORETISCHE INFORMATIK UND LOGIK

5. Vorlesung: Der Satz von Rice und das Postsche Korrespondenzproblem

Sebastian Rudolph

Folien:© Markus Krötzsch, https://iccl.inf.tu-dresden.de/web/TheoLog2017, CC BY 3.0 DE

TU Dresden, 24. April 2025

https://iccl.inf.tu-dresden.de/web/Computational_Logic
https://iccl.inf.tu-dresden.de/web/TheoLog2025
https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph
https://iccl.inf.tu-dresden.de/web/Markus_Kr%C3%B6tzsch

Wesentliche Ergebnisse bisher

Viele Dinge sind nicht berechenbar:

• Die Busy-Beaver-Funktion

• Das Halteproblem

• Das ϵ-Halteproblem

Dazu gibt es mehrere Beweismethoden:

• Kardinalitätsargumente: Anzahl Algorithmen vs. Anzahl Probleme

• Diagonalisierungen: Nimm Berechenbarkeit an und konstruiere damit (als
Subroutine) einen paradoxen Algorithmus.

• Reduktionen: Zeige, dass bereits bekannte nicht berechenbare Probleme sich
lösen ließen, wenn das betrachtete Problem berechenbar wäre.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 2 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Der Satz von Rice

Ein interessantes Resultat von Henry Gordon Rice bewahrt uns davor, noch hunderte
andere Probleme im Detail zu betrachten:

Satz von Rice (informelle Version): Jede nicht-triviale Frage über die von einer TM
ausgeführte Berechnung ist unentscheidbar.

Satz von Rice (formell): Sei E eine Eigenschaft von Sprachen, die für manche
Turing-erkennbare Sprachen gilt und für manche Turing-erkennbare Sprachen nicht
gilt (eine „nicht-triviale Eigenschaft“). Dann ist das folgende Problem unentscheidbar:

• Eingabe: Turingmaschine M

• Ausgabe: Hat L(M) die Eigenschaft E?

Eine „Eigenschaft E“ lässt sich dabei als Menge von Sprachen formalisieren:

L hat Eigenschaft E gdw. L ∈ E.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 3 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Der Satz von Rice

Ein interessantes Resultat von Henry Gordon Rice bewahrt uns davor, noch hunderte
andere Probleme im Detail zu betrachten:

Satz von Rice (informelle Version): Jede nicht-triviale Frage über die von einer TM
ausgeführte Berechnung ist unentscheidbar.

Satz von Rice (formell): Sei E eine Eigenschaft von Sprachen, die für manche
Turing-erkennbare Sprachen gilt und für manche Turing-erkennbare Sprachen nicht
gilt (eine „nicht-triviale Eigenschaft“). Dann ist das folgende Problem unentscheidbar:

• Eingabe: Turingmaschine M

• Ausgabe: Hat L(M) die Eigenschaft E?

Eine „Eigenschaft E“ lässt sich dabei als Menge von Sprachen formalisieren:

L hat Eigenschaft E gdw. L ∈ E.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 3 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Alles unentscheidbar

Beispiele für Fragen, die nach dem Satz von Rice unentscheidbar sind:

• „Ist aba ∈ L(M)?“

• „Ist L(M) leer?“

• „Ist L(M) endlich?“

• „Ist L(M) regulär?“

• . . .

Rice ist dagegen nicht anwendbar auf:

• „Hat M mindestens zwei Zustände?“
(keine Eigenschaft von L(M))

• „Ist L(M) semi-entscheidbar?“ (trivial)

• . . .

Der Satz von Rice lässt sich sinngemäß auf alle Turing-mächtigen Formalismen
übertragen.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 4 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Quiz: Satz von Rice

Satz von Rice: Sei E eine Eigenschaft von Sprachen, die für manche Turing-
erkennbare Sprachen gilt und für manche Turing-erkennbare Sprachen nicht gilt (eine
„nicht-triviale Eigenschaft“). Dann ist das folgende Problem unentscheidbar:

• Eingabe: Turingmaschine M

• Ausgabe: Hat L(M) die Eigenschaft E?

Quiz: Welche der folgenden Probleme könnten Sie mit Hilfe des Satzes von Rice als
unentscheidbar beweisen? (Eingabe ist jeweils eine TM M = ⟨Q,Σ,Γ, δ, q0, F⟩.) . . .

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 5 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Der Satz von Rice: Beweis (1)

Satz von Rice: Sei E eine nicht-triviale Eigenschaft von Turing-erkennbaren Spra-
chen. Dann ist das folgende Problem unentscheidbar:

• Eingabe: Turingmaschine M

• Ausgabe: Hat die Sprache L(M) die Eigenschaft E?

Beweis: Sei E eine Eigenschaft wie im Satz. Wir konstruieren eine
Many-One-Reduktion vom ϵ-Halteproblem auf „E-Haftigkeit“.

• Sei ∅ < E. (O.B.d.A.: Wir könnten sonst auch Unentscheidbarkeit von E beweisen.)

• SeiML eine TM, die eine Sprache L ∈ E akzeptiert.
(Solch ein L muss existieren, da E nicht-trivial ist.)

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 6 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Der Satz von Rice: Beweis (2)

Satz von Rice: Sei E eine nicht-triviale Eigenschaft von Turing-erkennbaren Spra-
chen. Dann ist das folgende unentscheidbar:

• Eingabe: Turingmaschine M

• Ausgabe: Hat die Sprache L(M) die Eigenschaft E?

Beweis (Fortsetzung):

Für eine beliebige TMM seiM∗ eine TM, die sich für eine Eingabe w wie folgt verhält:
(1) SimuliereM auf dem leeren Wort ϵ;
(2) fallsM hält, simuliereML auf w.

Damit gilt: FallsM auf ϵ hält, dann L(M∗) = L ∈ E;
fallsM auf ϵ nicht hält, dann L(M∗) = ∅ < E

Eine geeignete Many-One-Reduktion f ist demnach:

f (v) =

 enc(M∗) falls v = enc(M) für eine TMM

falls die Eingabe nicht korrekt kodiert ist □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 7 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Der Satz von Rice: Beweis (2)

Satz von Rice: Sei E eine nicht-triviale Eigenschaft von Turing-erkennbaren Spra-
chen. Dann ist das folgende unentscheidbar:

• Eingabe: Turingmaschine M

• Ausgabe: Hat die Sprache L(M) die Eigenschaft E?

Beweis (Fortsetzung):
Für eine beliebige TMM seiM∗ eine TM, die sich für eine Eingabe w wie folgt verhält:
(1) SimuliereM auf dem leeren Wort ϵ;
(2) fallsM hält, simuliereML auf w.

Damit gilt: FallsM auf ϵ hält, dann L(M∗) = L ∈ E;
fallsM auf ϵ nicht hält, dann L(M∗) = ∅ < E

Eine geeignete Many-One-Reduktion f ist demnach:

f (v) =

 enc(M∗) falls v = enc(M) für eine TMM

falls die Eingabe nicht korrekt kodiert ist □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 7 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Der Satz von Rice: Beweis (2)

Satz von Rice: Sei E eine nicht-triviale Eigenschaft von Turing-erkennbaren Spra-
chen. Dann ist das folgende unentscheidbar:

• Eingabe: Turingmaschine M

• Ausgabe: Hat die Sprache L(M) die Eigenschaft E?

Beweis (Fortsetzung):
Für eine beliebige TMM seiM∗ eine TM, die sich für eine Eingabe w wie folgt verhält:
(1) SimuliereM auf dem leeren Wort ϵ;
(2) fallsM hält, simuliereML auf w.

Damit gilt: FallsM auf ϵ hält, dann L(M∗) = L ∈ E;
fallsM auf ϵ nicht hält, dann L(M∗) = ∅ < E

Eine geeignete Many-One-Reduktion f ist demnach:

f (v) =

 enc(M∗) falls v = enc(M) für eine TMM

falls die Eingabe nicht korrekt kodiert ist □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 7 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Der Satz von Rice: Beweis (2)

Satz von Rice: Sei E eine nicht-triviale Eigenschaft von Turing-erkennbaren Spra-
chen. Dann ist das folgende unentscheidbar:

• Eingabe: Turingmaschine M

• Ausgabe: Hat die Sprache L(M) die Eigenschaft E?

Beweis (Fortsetzung):
Für eine beliebige TMM seiM∗ eine TM, die sich für eine Eingabe w wie folgt verhält:
(1) SimuliereM auf dem leeren Wort ϵ;
(2) fallsM hält, simuliereML auf w.

Damit gilt: FallsM auf ϵ hält, dann L(M∗) = L ∈ E;
fallsM auf ϵ nicht hält, dann L(M∗) = ∅ < E

Eine geeignete Many-One-Reduktion f ist demnach:

f (v) =

 enc(M∗) falls v = enc(M) für eine TMM

falls die Eingabe nicht korrekt kodiert ist □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 7 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Semi-Entscheidbarkeit

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 8 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Das Halteproblem, schon wieder

Wir haben gesehen, dass das Halteproblem unentscheidbar ist, aber es ist dennoch
Turing-erkennbar:

Satz: Das Halteproblem ist semi-entscheidbar.

Beweis: Eine Turingmaschine, die das Halteproblem erkennt, ist leicht skizziert:

• Wenn die Eingabe die Form enc(M)##enc(w) hat

• dann simuliereM auf Eingabe w.

• WennM hält, dann halte und akzeptiere. □

Im Wesentlichen ist die TM für das Halteproblem also die universelle Turingmaschine.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 9 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Das Halteproblem, schon wieder

Wir haben gesehen, dass das Halteproblem unentscheidbar ist, aber es ist dennoch
Turing-erkennbar:

Satz: Das Halteproblem ist semi-entscheidbar.

Beweis: Eine Turingmaschine, die das Halteproblem erkennt, ist leicht skizziert:

• Wenn die Eingabe die Form enc(M)##enc(w) hat

• dann simuliereM auf Eingabe w.

• WennM hält, dann halte und akzeptiere. □

Im Wesentlichen ist die TM für das Halteproblem also die universelle Turingmaschine.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 9 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Komplementierung

Rückblick (Vorlesung Formale Systeme): Für eine Sprache L bezeichnet L die
Komplementsprache:

L = {w ∈ Σ∗ | w < L}

Satz: Für jede Sprache L gibt es Turing-Reduktionen L ≤T L und L ≤T L.

Beweis: Der Algorithmus für die Reduktion L ≤T L ist sehr einfach:

• Für Eingabe w,

• entscheide zunächst ob w ∈ L

• und invertiere das Ergebnis anschließend.

Die Umkehrung L ≤T L funktioniert ebenso. □

Korollar: L ist genau dann entscheidbar, wenn L entscheidbar ist.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 10 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Komplementierung

Rückblick (Vorlesung Formale Systeme): Für eine Sprache L bezeichnet L die
Komplementsprache:

L = {w ∈ Σ∗ | w < L}

Satz: Für jede Sprache L gibt es Turing-Reduktionen L ≤T L und L ≤T L.

Beweis: Der Algorithmus für die Reduktion L ≤T L ist sehr einfach:

• Für Eingabe w,

• entscheide zunächst ob w ∈ L

• und invertiere das Ergebnis anschließend.

Die Umkehrung L ≤T L funktioniert ebenso. □

Korollar: L ist genau dann entscheidbar, wenn L entscheidbar ist.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 10 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Komplementierung

Rückblick (Vorlesung Formale Systeme): Für eine Sprache L bezeichnet L die
Komplementsprache:

L = {w ∈ Σ∗ | w < L}

Satz: Für jede Sprache L gibt es Turing-Reduktionen L ≤T L und L ≤T L.

Beweis: Der Algorithmus für die Reduktion L ≤T L ist sehr einfach:

• Für Eingabe w,

• entscheide zunächst ob w ∈ L

• und invertiere das Ergebnis anschließend.

Die Umkehrung L ≤T L funktioniert ebenso. □

Korollar: L ist genau dann entscheidbar, wenn L entscheidbar ist.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 10 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Komplementierung

Rückblick (Vorlesung Formale Systeme): Für eine Sprache L bezeichnet L die
Komplementsprache:

L = {w ∈ Σ∗ | w < L}

Satz: Für jede Sprache L gibt es Turing-Reduktionen L ≤T L und L ≤T L.

Beweis: Der Algorithmus für die Reduktion L ≤T L ist sehr einfach:

• Für Eingabe w,

• entscheide zunächst ob w ∈ L

• und invertiere das Ergebnis anschließend.

Die Umkehrung L ≤T L funktioniert ebenso. □

Korollar: L ist genau dann entscheidbar, wenn L entscheidbar ist.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 10 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Zwei halbe Entscheidbarkeiten = eine ganze

Es gibt einen interessanten Zusammenhang von Komplementierung und
Semi-Entscheidbarkeit:

Satz: L ist genau dann entscheidbar, wenn L und L semi-entscheibar sind.

Beweis: „⇒“ Angenommen L ist entscheidbar.

• Dann ist L per Definition auch semi-entscheidbar.

• Außerdem ist auch L entscheidbar (gerade gezeigt), also ebenfalls
semi-entscheidbar.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 11 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Zwei halbe Entscheidbarkeiten = eine ganze

Es gibt einen interessanten Zusammenhang von Komplementierung und
Semi-Entscheidbarkeit:

Satz: L ist genau dann entscheidbar, wenn L und L semi-entscheibar sind.

Beweis: „⇒“ Angenommen L ist entscheidbar.

• Dann ist L per Definition auch semi-entscheidbar.

• Außerdem ist auch L entscheidbar (gerade gezeigt), also ebenfalls
semi-entscheidbar.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 11 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Zwei halbe Entscheidbarkeiten = eine ganze

Es gibt einen interessanten Zusammenhang von Komplementierung und
Semi-Entscheidbarkeit:

Satz: L ist genau dann entscheidbar, wenn L und L semi-entscheibar sind.

Beweis: „⇒“ Angenommen L ist entscheidbar.

• Dann ist L per Definition auch semi-entscheidbar.

• Außerdem ist auch L entscheidbar (gerade gezeigt), also ebenfalls
semi-entscheidbar.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 11 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Zwei halbe Entscheidbarkeiten = eine ganze

Es gibt einen interessanten Zusammenhang von Komplementierung und
Semi-Entscheidbarkeit:

Satz: L ist genau dann entscheidbar, wenn L und L semi-entscheibar sind.

Beweis: „⇐“ Wenn L und L semi-entscheibar sind, dann werden sie durch TMsML und
ML erkannt.

Algorithmus: Für Eingabe w, iteriere über alle n = 1, 2, 3, . . .
• SimuliereML für n Schritte:

WennML akzeptiert, dann halte und akzeptiere.

• SimuliereML für n Schritte:
WennML akzeptiert, dann halte und verwirf.

• Ansonsten fahre mit nächstem n fort.

Dieser Algorithmus ist korrekt und terminiert für jede Eingabe, da immer entwederML

oderML terminieren muss. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 12 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Zwei halbe Entscheidbarkeiten = eine ganze

Es gibt einen interessanten Zusammenhang von Komplementierung und
Semi-Entscheidbarkeit:

Satz: L ist genau dann entscheidbar, wenn L und L semi-entscheibar sind.

Beweis: „⇐“ Wenn L und L semi-entscheibar sind, dann werden sie durch TMsML und
ML erkannt.

Algorithmus: Für Eingabe w, iteriere über alle n = 1, 2, 3, . . .
• SimuliereML für n Schritte:

WennML akzeptiert, dann halte und akzeptiere.

• SimuliereML für n Schritte:
WennML akzeptiert, dann halte und verwirf.

• Ansonsten fahre mit nächstem n fort.

Dieser Algorithmus ist korrekt und terminiert für jede Eingabe, da immer entwederML

oderML terminieren muss. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 12 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Co-Semi-Entscheidbarkeit

Wir können unsere Einsichten zusammenfassen:

Korrolar: Wenn L unentscheidbar aber semi-entscheidbar ist, dann kann L nicht semi-
entscheidbar (und auch nicht entscheidbar) sein.

Beispiel: Sei PHalt das Komplement des Halteproblems PHalt. Dann ist PHalt ≤T PHalt

und PHalt ≤T PHalt, aber PHalt ist nicht semi-entscheidbar.

Anmerkung: Wir hatten PHalt ≤T PHalt in Vorlesung 4 leicht anders definiert, da wir falsch kodierte
Eingaben abgelehnt hatten. Die Aussage gilt aber auch für die erste Definition.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 13 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Co-Semi-Entscheidbarkeit

Wir können unsere Einsichten zusammenfassen:

Korrolar: Wenn L unentscheidbar aber semi-entscheidbar ist, dann kann L nicht semi-
entscheidbar (und auch nicht entscheidbar) sein.

Beispiel: Sei PHalt das Komplement des Halteproblems PHalt. Dann ist PHalt ≤T PHalt

und PHalt ≤T PHalt, aber PHalt ist nicht semi-entscheidbar.

Anmerkung: Wir hatten PHalt ≤T PHalt in Vorlesung 4 leicht anders definiert, da wir falsch kodierte
Eingaben abgelehnt hatten. Die Aussage gilt aber auch für die erste Definition.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 13 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Many-One-Reduktionen

Beobachtung: Mit Turing-Reduktionen können wir Entscheidbarkeit oder
Unentscheidbarkeit zeigen, aber nicht Semi-Entscheidbarkeit.

Bei Many-One-Reduktionen ist das anders:

Satz: Wenn P ≤m Q und Q semi-entscheidbar ist, dann ist auch P semi-entscheidbar.

Beweis: Die Reduktion liefert mittels der totalen berechenbaren Funktion f : Σ∗ → Σ∗

einen Semi-Entscheidungsalgorithmus. Die Korrektheit folgt aus den Definitionen. □

Anmerkung 1: Wir haben diese Aussage in der letzten Vorlesung mit „entscheidbar“
anstelle von „semi-entscheidbar“ gezeigt. Die Idee ist genau die gleiche.
Anmerkung 2: Die Aussage gilt analog, wenn man „co-semi-entscheidbar“ anstelle von
„semi-entscheidbar“ verwendet. Dies folgt schon deshalb, weil eine
Many-One-Reduktion P ≤m Q gleichzeitig auch eine Many-One-Reduktion P ≤m Q ist.
Anmerkung 3: Damit schließen wir einen Beweis aus der letzten Vorlesung ab: Es gibt
keine Many-One-Reduktion PHalt ≤m PHalt.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 14 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Many-One-Reduktionen

Beobachtung: Mit Turing-Reduktionen können wir Entscheidbarkeit oder
Unentscheidbarkeit zeigen, aber nicht Semi-Entscheidbarkeit.

Bei Many-One-Reduktionen ist das anders:

Satz: Wenn P ≤m Q und Q semi-entscheidbar ist, dann ist auch P semi-entscheidbar.

Beweis: Die Reduktion liefert mittels der totalen berechenbaren Funktion f : Σ∗ → Σ∗

einen Semi-Entscheidungsalgorithmus. Die Korrektheit folgt aus den Definitionen. □

Anmerkung 1: Wir haben diese Aussage in der letzten Vorlesung mit „entscheidbar“
anstelle von „semi-entscheidbar“ gezeigt. Die Idee ist genau die gleiche.
Anmerkung 2: Die Aussage gilt analog, wenn man „co-semi-entscheidbar“ anstelle von
„semi-entscheidbar“ verwendet. Dies folgt schon deshalb, weil eine
Many-One-Reduktion P ≤m Q gleichzeitig auch eine Many-One-Reduktion P ≤m Q ist.
Anmerkung 3: Damit schließen wir einen Beweis aus der letzten Vorlesung ab: Es gibt
keine Many-One-Reduktion PHalt ≤m PHalt.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 14 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Das Postsche Korrespondenzproblem

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 15 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Ein neues Problem

Bisher hatten alle unsere unentscheidbaren Probleme direkt mit Turingmaschinen bzw.
Programmen zu tun.

{ Gibt es auch unentscheidbare Probleme ohne direkten Bezug zu Berechnung?

Ja, z.B. das Postsche Korrespondenzproblem. Das PCP gleicht einem Dominospiel, in
dem Dominos mit Wörtern beschriftet sind.

Beispiel:

ABA

AAA

 BBBAB


Ziel ist es, beliebig viele Dominos jeden Typs so in Reihe zu legen, dass oberes und
unteres Wort gleich werden, z.B. ABA


 BBBAB


ABA

AAA


Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 16 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Ein neues Problem

Bisher hatten alle unsere unentscheidbaren Probleme direkt mit Turingmaschinen bzw.
Programmen zu tun.

{ Gibt es auch unentscheidbare Probleme ohne direkten Bezug zu Berechnung?

Ja, z.B. das Postsche Korrespondenzproblem. Das PCP gleicht einem Dominospiel, in
dem Dominos mit Wörtern beschriftet sind.

Beispiel:

ABA

AAA

 BBBAB


Ziel ist es, beliebig viele Dominos jeden Typs so in Reihe zu legen, dass oberes und
unteres Wort gleich werden

, z.B. ABA

 BBBAB


ABA

AAA


Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 16 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Ein neues Problem

Bisher hatten alle unsere unentscheidbaren Probleme direkt mit Turingmaschinen bzw.
Programmen zu tun.

{ Gibt es auch unentscheidbare Probleme ohne direkten Bezug zu Berechnung?

Ja, z.B. das Postsche Korrespondenzproblem. Das PCP gleicht einem Dominospiel, in
dem Dominos mit Wörtern beschriftet sind.

Beispiel:

ABA

AAA

 BBBAB


Ziel ist es, beliebig viele Dominos jeden Typs so in Reihe zu legen, dass oberes und
unteres Wort gleich werden, z.B. ABA


 BBBAB


ABA

AAA


Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 16 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Emil Leon Post

11.02.1897 – 21.04.1954

Tragisches Genie
Wegbereiter der Logik

Stiller Vordenker von Gödel und Turing

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 17 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Das Postsche Korrespondenzproblem

Das Postsche Korrespondenzproblem (PCP) besteht in der folgenden Frage.

Gegeben: Eine endliche Folge von Wortpaarenx1

y1

 . . .
xk

yk


über einem Alphabet Σ, also xi, yi ∈ Σ

∗ für 1 ≤ i ≤ k.

Frage: Gibt es eine Folge von Zahlen i1, . . . , iℓ, so dass gilt

xi1 · · · xiℓ = yi1 · · · yiℓ ,

wobei ℓ > 0 ist und ij ∈ {1, . . . , k} für alle j = 1, . . . , ℓ?

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 18 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beispiele

ABB

 BBBB

BBBA


Diese Instanz des PCPs hat eine Lösung mit 10 Schritten. (Bonusaufgabe)

ABBA

 BBAAB

 ABB

 ABAA


Diese Instanz des PCPs hat ebenfalls eine Lösung, aber keine mit weniger als 160 Schritten!

AAB

 BABAA

ABAA


Diese Instanz des PCPs hat keine Lösung. (Bonusaufgabe: Warum?)

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 19 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beispiele

ABB

 BBBB

BBBA


Diese Instanz des PCPs hat eine Lösung mit 10 Schritten. (Bonusaufgabe)

ABBA

 BBAAB

 ABB

 ABAA


Diese Instanz des PCPs hat ebenfalls eine Lösung, aber keine mit weniger als 160 Schritten!

AAB

 BABAA

ABAA


Diese Instanz des PCPs hat keine Lösung. (Bonusaufgabe: Warum?)

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 19 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beispiele

ABB

 BBBB

BBBA


Diese Instanz des PCPs hat eine Lösung mit 10 Schritten. (Bonusaufgabe)

ABBA

 BBAAB

 ABB

 ABAA


Diese Instanz des PCPs hat ebenfalls eine Lösung, aber keine mit weniger als 160 Schritten!

AAB

 BABAA

ABAA


Diese Instanz des PCPs hat keine Lösung. (Bonusaufgabe: Warum?)

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 19 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beispiele

ABB

 BBBB

BBBA


Diese Instanz des PCPs hat eine Lösung mit 10 Schritten. (Bonusaufgabe)

ABBA

 BBAAB

 ABB

 ABAA


Diese Instanz des PCPs hat ebenfalls eine Lösung, aber keine mit weniger als 160 Schritten!

AAB

 BABAA

ABAA


Diese Instanz des PCPs hat keine Lösung. (Bonusaufgabe: Warum?)

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 19 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beispiele

ABB

 BBBB

BBBA


Diese Instanz des PCPs hat eine Lösung mit 10 Schritten. (Bonusaufgabe)

ABBA

 BBAAB

 ABB

 ABAA


Diese Instanz des PCPs hat ebenfalls eine Lösung, aber keine mit weniger als 160 Schritten!

AAB

 BABAA

ABAA


Diese Instanz des PCPs hat keine Lösung. (Bonusaufgabe: Warum?)

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 19 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beispiele

ABB

 BBBB

BBBA


Diese Instanz des PCPs hat eine Lösung mit 10 Schritten. (Bonusaufgabe)

ABBA

 BBAAB

 ABB

 ABAA


Diese Instanz des PCPs hat ebenfalls eine Lösung, aber keine mit weniger als 160 Schritten!

AAB

 BABAA

ABAA


Diese Instanz des PCPs hat keine Lösung. (Bonusaufgabe: Warum?)

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 19 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Quiz: Postsches Korrespondenzproblem

Quiz: Betrachten Sie folgende Instanzen des Postschen Korrespondenzproblems.
Welche davon sind lösbar?

. . .

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 20 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Unentscheidbarkeit

Satz: Das PCP ist unentscheidbar.

Das zu zeigen ist nicht ganz so einfach, da das PCP auf den ersten Blick nichts mit den
uns bisher bekannten unentscheidbaren Problemen zu tun hat.

Wir gehen in zwei Schritten vor:

(1) Wir reduzieren das Halteproblem auf ein modifiziertes PCP.

(2) Wir reduzieren das modifizierte PCP auf das PCP.

Eine Instanz des Modifizierten PCP (MPCP) ist eine Instanz des PCP (d.h. eine Fol-
ge von Wortpaaren), für die ein bestimmtes Startpaar angegeben ist. Die Lösung des
MPCP ist eine Lösung des PCP, welche mit dem Startpaar beginnt.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 21 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Unentscheidbarkeit

Satz: Das PCP ist unentscheidbar.

Das zu zeigen ist nicht ganz so einfach, da das PCP auf den ersten Blick nichts mit den
uns bisher bekannten unentscheidbaren Problemen zu tun hat.

Wir gehen in zwei Schritten vor:

(1) Wir reduzieren das Halteproblem auf ein modifiziertes PCP.

(2) Wir reduzieren das modifizierte PCP auf das PCP.

Eine Instanz des Modifizierten PCP (MPCP) ist eine Instanz des PCP (d.h. eine Fol-
ge von Wortpaaren), für die ein bestimmtes Startpaar angegeben ist. Die Lösung des
MPCP ist eine Lösung des PCP, welche mit dem Startpaar beginnt.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 21 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Unentscheidbarkeit

Satz: Das PCP ist unentscheidbar.

Das zu zeigen ist nicht ganz so einfach, da das PCP auf den ersten Blick nichts mit den
uns bisher bekannten unentscheidbaren Problemen zu tun hat.

Wir gehen in zwei Schritten vor:

(1) Wir reduzieren das Halteproblem auf ein modifiziertes PCP.

(2) Wir reduzieren das modifizierte PCP auf das PCP.

Eine Instanz des Modifizierten PCP (MPCP) ist eine Instanz des PCP (d.h. eine Fol-
ge von Wortpaaren), für die ein bestimmtes Startpaar angegeben ist. Die Lösung des
MPCP ist eine Lösung des PCP, welche mit dem Startpaar beginnt.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 21 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Turingmaschinen simulieren in MPCP (1)

Wir wollen das Halteproblem von DTMs auf das MPCP reduzieren.

Wir entwickeln dazu eine Many-One-Reduktion, die eine Instanz des Halteproblems in
eine Instanz des MPCP verwandelt.

Idee: Kodiere TM-Berechnungen als Sequenz von Wortpaaren.

Ansatz für die Reduktion:
• Das Wort, welches zur Lösung des MPCP entsteht, kodiert den Lauf einer TM.

– Hält die TM, dann ist der Lauf endlich und es gibt eine Lösung;
– hält die TM nicht, dann wird es keine Lösung geben.

• Eine TM-Konfiguration können wir wie immer als Wort der Form v q w darstellen.

• Wir kodieren einen Lauf als Folge von Konfigurationen, getrennt mit # (kein
Alphabetszeichen oder Zustand der TM).

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 22 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Turingmaschinen simulieren in MPCP (1)

Wir wollen das Halteproblem von DTMs auf das MPCP reduzieren.

Wir entwickeln dazu eine Many-One-Reduktion, die eine Instanz des Halteproblems in
eine Instanz des MPCP verwandelt.

Idee: Kodiere TM-Berechnungen als Sequenz von Wortpaaren.

Ansatz für die Reduktion:
• Das Wort, welches zur Lösung des MPCP entsteht, kodiert den Lauf einer TM.

– Hält die TM, dann ist der Lauf endlich und es gibt eine Lösung;
– hält die TM nicht, dann wird es keine Lösung geben.

• Eine TM-Konfiguration können wir wie immer als Wort der Form v q w darstellen.

• Wir kodieren einen Lauf als Folge von Konfigurationen, getrennt mit # (kein
Alphabetszeichen oder Zustand der TM).

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 22 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Turingmaschinen simulieren in MPCP (2)

Wie kann man sicherstellen, dass die MPCP-Lösung eine korrekte Folge von
TM-Konfigurationen kodiert?

Kernideen:

• Das Lösungswort soll wie folgt beginnen: #c0#c1#c2# . . ., wobei ci Konfigurationen
kodieren.

• Beim PCP entsteht das Lösungswort doppelt, oben und unten.

• Wir beginnen mit

 #

#c0#

, d.h. das obere Wort liegt eine Konfiguration zurück.

• Wir definieren die Wortpaare so, dass man oben eine Kopie der unteren
Konfiguration nur dann erzeugen kann, wenn man gleichzeitig unten die
Nachfolgerkonfiguration anfügt.

• Wir sorgen dafür, dass das obere Wort die fehlende Konfiguration „aufholen kann“
wann immer die TM hält.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 23 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Turingmaschinen simulieren in MPCP (2)

Wie kann man sicherstellen, dass die MPCP-Lösung eine korrekte Folge von
TM-Konfigurationen kodiert?

Kernideen:

• Das Lösungswort soll wie folgt beginnen: #c0#c1#c2# . . ., wobei ci Konfigurationen
kodieren.

• Beim PCP entsteht das Lösungswort doppelt, oben und unten.

• Wir beginnen mit

 #

#c0#

, d.h. das obere Wort liegt eine Konfiguration zurück.

• Wir definieren die Wortpaare so, dass man oben eine Kopie der unteren
Konfiguration nur dann erzeugen kann, wenn man gleichzeitig unten die
Nachfolgerkonfiguration anfügt.

• Wir sorgen dafür, dass das obere Wort die fehlende Konfiguration „aufholen kann“
wann immer die TM hält.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 23 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Turingmaschinen simulieren in MPCP (3)

Überführungsregeln kodieren die Übergänge der DTM:

qabp
 falls δ(q, a) = ⟨p, b, R⟩

cqapcb

 falls δ(q, a) = ⟨p, b, L⟩ und c ∈ Γ beliebig

qapb
 falls δ(q, a) = ⟨p, b, N⟩

In diesen Regeln steckt die Kernidee des Beweises. Es sind die wesentlichen Regeln,
mit denen man Zustandssymbol q ∈ Q im oberen Wort replizieren kann.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 24 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Turingmaschinen simulieren in MPCP (4)

Es gibt zwei Randfälle:

Am linken Rand soll unsere TM einfach „anstoßen“ (einseitig unendliches Band):#qa

#pb

 falls δ(q, a) = ⟨p, b, L⟩

Am rechten Rand kann die TM das Band beliebig erweitern:

 q#

q␣#

 für jeden Zustand q ∈ Q

Anmerkung: Diese Umformung ist kein echter Rechenschritt, aber erspart uns die
Auflistung von Sonderfällen für jede denkbare Transition am rechten Rand.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 25 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Turingmaschinen simulieren in MPCP (5)

Kopierregeln erlauben uns, den Rest der TM-Konfiguration (die Teile, die nicht nah am
Lese-/Schreibkopf liegen) vom unteren zum oberen Wort zu kopieren:

xx
 für jedes Symbol x ∈ Γ ∪ {#}

Anmerkung: Damit kann man keine Zustände kopieren.

Die Startregel schließlich setzt die Berechnung in Gang:

 #

#q0w#

 wobei q0 der Startzustand und w ∈ Σ∗ das Eingabewort ist.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 26 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Turingmaschinen simulieren in MPCP (5)

Kopierregeln erlauben uns, den Rest der TM-Konfiguration (die Teile, die nicht nah am
Lese-/Schreibkopf liegen) vom unteren zum oberen Wort zu kopieren:

xx
 für jedes Symbol x ∈ Γ ∪ {#}

Anmerkung: Damit kann man keine Zustände kopieren.

Die Startregel schließlich setzt die Berechnung in Gang:

 #

#q0w#

 wobei q0 der Startzustand und w ∈ Σ∗ das Eingabewort ist.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 26 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Turingmaschinen in MPCP simulieren: Beispiel (1)

q0 q1

1 7→ 1, R

0 7→ 0, R

Wir betrachten den Lauf obiger TM auf der Eingabe w = 10.
Die Berechnung wird folgendermaßen abgebildet:

 #

#q010#


q01

1q1


00

##

11

q10

0q0


##

11

00

 q0#

q0␣#


11

00

q0␣

?



Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 27 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Turingmaschinen in MPCP simulieren: Beispiel (1)

q0 q1

1 7→ 1, R

0 7→ 0, R

Wir betrachten den Lauf obiger TM auf der Eingabe w = 10.
Die Berechnung wird folgendermaßen abgebildet: #

#q010#



q01

1q1


00

##

11

q10

0q0


##

11

00

 q0#

q0␣#


11

00

q0␣

?



Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 27 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Turingmaschinen in MPCP simulieren: Beispiel (1)

q0 q1

1 7→ 1, R

0 7→ 0, R

Wir betrachten den Lauf obiger TM auf der Eingabe w = 10.
Die Berechnung wird folgendermaßen abgebildet: #

#q010#


q01

1q1



00

##

11

q10

0q0


##

11

00

 q0#

q0␣#


11

00

q0␣

?



Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 27 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Turingmaschinen in MPCP simulieren: Beispiel (1)

q0 q1

1 7→ 1, R

0 7→ 0, R

Wir betrachten den Lauf obiger TM auf der Eingabe w = 10.
Die Berechnung wird folgendermaßen abgebildet: #

#q010#


q01

1q1


00

##


11

q10

0q0


##

11

00

 q0#

q0␣#


11

00

q0␣

?



Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 27 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Turingmaschinen in MPCP simulieren: Beispiel (1)

q0 q1

1 7→ 1, R

0 7→ 0, R

Wir betrachten den Lauf obiger TM auf der Eingabe w = 10.
Die Berechnung wird folgendermaßen abgebildet: #

#q010#


q01

1q1


00

##

11


q10

0q0


##

11

00

 q0#

q0␣#


11

00

q0␣

?



Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 27 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Turingmaschinen in MPCP simulieren: Beispiel (1)

q0 q1

1 7→ 1, R

0 7→ 0, R

Wir betrachten den Lauf obiger TM auf der Eingabe w = 10.
Die Berechnung wird folgendermaßen abgebildet: #

#q010#


q01

1q1


00

##

11

q10

0q0



##

11

00

 q0#

q0␣#


11

00

q0␣

?



Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 27 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Turingmaschinen in MPCP simulieren: Beispiel (1)

q0 q1

1 7→ 1, R

0 7→ 0, R

Wir betrachten den Lauf obiger TM auf der Eingabe w = 10.
Die Berechnung wird folgendermaßen abgebildet: #

#q010#


q01

1q1


00

##

11

q10

0q0


##

11

00


 q0#

q0␣#


11

00

q0␣

?



Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 27 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Turingmaschinen in MPCP simulieren: Beispiel (1)

q0 q1

1 7→ 1, R

0 7→ 0, R

Wir betrachten den Lauf obiger TM auf der Eingabe w = 10.
Die Berechnung wird folgendermaßen abgebildet: #

#q010#


q01

1q1


00

##

11

q10

0q0


##

11

00

 q0#

q0␣#



11

00

q0␣

?



Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 27 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Turingmaschinen in MPCP simulieren: Beispiel (1)

q0 q1

1 7→ 1, R

0 7→ 0, R

Wir betrachten den Lauf obiger TM auf der Eingabe w = 10.
Die Berechnung wird folgendermaßen abgebildet: #

#q010#


q01

1q1


00

##

11

q10

0q0


##

11

00

 q0#

q0␣#


11

00


q0␣

?



Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 27 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Turingmaschinen in MPCP simulieren: Beispiel (1)

q0 q1

1 7→ 1, R

0 7→ 0, R

Wir betrachten den Lauf obiger TM auf der Eingabe w = 10.
Die Berechnung wird folgendermaßen abgebildet: #

#q010#


q01

1q1


00

##

11

q10

0q0


##

11

00

 q0#

q0␣#


11

00

q0␣

?



Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 27 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Turingmaschinen simulieren in MPCP (6)

Zwischenstand: Angefangen von der Startregel zwingen uns die Regeln,
Konfigurationen zu kopieren und dabei entweder einen Berechnungsschritt
auszuführen, oder mehr Speicher am rechten Rand zu allozieren.

Es fehlt noch ein Abschluss:
(Wir verwenden ein weiteres zusätzliches Symbol �.)

qa�
 falls δ(q, a) undefiniert und a ∈ Γ (d.h. a , #)

a��
 und

�a�
 für alle a ∈ Γ

�##

#

 der endgültige Abschluss

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 28 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Turingmaschinen simulieren in MPCP (6)

Zwischenstand: Angefangen von der Startregel zwingen uns die Regeln,
Konfigurationen zu kopieren und dabei entweder einen Berechnungsschritt
auszuführen, oder mehr Speicher am rechten Rand zu allozieren.

Es fehlt noch ein Abschluss:
(Wir verwenden ein weiteres zusätzliches Symbol �.)

qa�
 falls δ(q, a) undefiniert und a ∈ Γ (d.h. a , #)

a��
 und

�a�
 für alle a ∈ Γ

�##

#

 der endgültige Abschluss

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 28 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Turingmaschinen in MPCP simulieren: Beispiel (2)

q0 q1

1 7→ 1, R

0 7→ 0, R

Wir betrachten den Lauf obiger TM auf der Eingabe w = 10.
Die Berechnung wird folgendermaßen beendet:

#q010#1q10#10q0#10

#q010#1q10#10q0#10q0␣#10

q0␣

�


##

11

0��

##

1��

##

�##

#



Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 29 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Turingmaschinen in MPCP simulieren: Beispiel (2)

q0 q1

1 7→ 1, R

0 7→ 0, R

Wir betrachten den Lauf obiger TM auf der Eingabe w = 10.
Die Berechnung wird folgendermaßen beendet:

#q010#1q10#10q0#10

#q010#1q10#10q0#10q0␣#10

q0␣

�



##

11

0��

##

1��

##

�##

#



Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 29 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Turingmaschinen in MPCP simulieren: Beispiel (2)

q0 q1

1 7→ 1, R

0 7→ 0, R

Wir betrachten den Lauf obiger TM auf der Eingabe w = 10.
Die Berechnung wird folgendermaßen beendet:

#q010#1q10#10q0#10

#q010#1q10#10q0#10q0␣#10

q0␣

�


##

11


0��

##

1��

##

�##

#



Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 29 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Turingmaschinen in MPCP simulieren: Beispiel (2)

q0 q1

1 7→ 1, R

0 7→ 0, R

Wir betrachten den Lauf obiger TM auf der Eingabe w = 10.
Die Berechnung wird folgendermaßen beendet:

#q010#1q10#10q0#10

#q010#1q10#10q0#10q0␣#10

q0␣

�


##

11

0��


##

1��

##

�##

#



Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 29 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Turingmaschinen in MPCP simulieren: Beispiel (2)

q0 q1

1 7→ 1, R

0 7→ 0, R

Wir betrachten den Lauf obiger TM auf der Eingabe w = 10.
Die Berechnung wird folgendermaßen beendet:

#q010#1q10#10q0#10

#q010#1q10#10q0#10q0␣#10

q0␣

�


##

11

0��

##


1��

##

�##

#



Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 29 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Turingmaschinen in MPCP simulieren: Beispiel (2)

q0 q1

1 7→ 1, R

0 7→ 0, R

Wir betrachten den Lauf obiger TM auf der Eingabe w = 10.
Die Berechnung wird folgendermaßen beendet:

#q010#1q10#10q0#10

#q010#1q10#10q0#10q0␣#10

q0␣

�


##

11

0��

##

1��


##

�##

#



Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 29 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Turingmaschinen in MPCP simulieren: Beispiel (2)

q0 q1

1 7→ 1, R

0 7→ 0, R

Wir betrachten den Lauf obiger TM auf der Eingabe w = 10.
Die Berechnung wird folgendermaßen beendet:

#q010#1q10#10q0#10

#q010#1q10#10q0#10q0␣#10

q0␣

�


##

11

0��

##

1��

##


�##

#



Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 29 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Turingmaschinen in MPCP simulieren: Beispiel (2)

q0 q1

1 7→ 1, R

0 7→ 0, R

Wir betrachten den Lauf obiger TM auf der Eingabe w = 10.
Die Berechnung wird folgendermaßen beendet:

#q010#1q10#10q0#10

#q010#1q10#10q0#10q0␣#10

q0␣

�


##

11

0��

##

1��

##

�##

#



Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 29 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Turingmaschinen simulieren in MPCP (7)

Satz: Es gibt eine Many-One-Reduktion vom Halteproblem auf das modifizierte PCP.

Beweis: Wir haben die Reduktion gerade angegeben, wobei das Wortpaar mit der
Startkonfiguration das Startpaar des MPCP ist.

Korrektheit (Skizze):

• Wenn es einen haltenden Lauf gibt, dann kann man eine Lösung des MPCP
finden: Dies gilt gemäß Konstruktion.

• Wenn es eine Lösung für das MPCP gibt, dann hält die TM:
– Wir können die Übergänge als Berechnungsschritte interpretieren, d.h. es

entsteht ein Lauf.
– Das obere Wort ist anfangs kürzer und wird in keiner Regel länger als das

untere, solange nicht eine haltende Konfiguration erreicht wurde.
– Also kann das MPCP nur dann eine Lösung haben, wenn die TM hält. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 30 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Von PCP zu MPCP (1)

Es fehlt noch eine Reduktion von MPCP auf PCP.

Satz: Es gibt eine Many-One-Reduktion vom modifizierten PCP auf PCP.

Beweis: Wir verwenden zwei zusätzliche Symbole # und ■. Für ein Wort w = a1 · · · aℓ
definieren wir:

#w# = #a1# · · · #aℓ# w# = a1# · · · #aℓ# #w = #a1# · · · #aℓ

Die gesuchte Reduktion bildet jetzt eine MPCP-Instanzx1

y1

 . . .
xk

yk


ab auf eine PCP-Instanz #x1#

#y1


x1#

#y1

 . . .
xk#

#yk


 ■#■


Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 31 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Von PCP zu MPCP (2)

Beweis (Fortsetzung): Wir erhalten also die folgende PCP-Instanz:#x1#

#y1


x1#

#y1

 . . .
xk#

#yk


 ■#■


Es ist nicht schwer zu zeigen, dass dies genau dann eine Lösung hat, wenn das
ursprüngliche MPCP eine hat:

• „⇐“ Wenn das MPCP eine Lösung hat, dann erhalten wir leicht eine
entsprechende Lösung für das PCP, wobei jedes Symbol zusätzlich von #
umgeben ist und das Wort auf ■ endet.

• „⇒“ Wenn das PCP eine Lösung hat, dann muss es mit dem ersten Wortpaar
beginnen, da nur dieses Wortpaar gleiche Anfangssymbole hat. Durch Weglassen
aller # und ■ entsteht wieder eine Lösung des MPCP. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 32 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Von PCP zu MPCP (2)

Beweis (Fortsetzung): Wir erhalten also die folgende PCP-Instanz:#x1#

#y1


x1#

#y1

 . . .
xk#

#yk


 ■#■


Es ist nicht schwer zu zeigen, dass dies genau dann eine Lösung hat, wenn das
ursprüngliche MPCP eine hat:

• „⇐“ Wenn das MPCP eine Lösung hat, dann erhalten wir leicht eine
entsprechende Lösung für das PCP, wobei jedes Symbol zusätzlich von #
umgeben ist und das Wort auf ■ endet.

• „⇒“ Wenn das PCP eine Lösung hat, dann muss es mit dem ersten Wortpaar
beginnen, da nur dieses Wortpaar gleiche Anfangssymbole hat. Durch Weglassen
aller # und ■ entsteht wieder eine Lösung des MPCP. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 32 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Von PCP zu MPCP (2)

Beweis (Fortsetzung): Wir erhalten also die folgende PCP-Instanz:#x1#

#y1


x1#

#y1

 . . .
xk#

#yk


 ■#■


Es ist nicht schwer zu zeigen, dass dies genau dann eine Lösung hat, wenn das
ursprüngliche MPCP eine hat:

• „⇐“ Wenn das MPCP eine Lösung hat, dann erhalten wir leicht eine
entsprechende Lösung für das PCP, wobei jedes Symbol zusätzlich von #
umgeben ist und das Wort auf ■ endet.

• „⇒“ Wenn das PCP eine Lösung hat, dann muss es mit dem ersten Wortpaar
beginnen, da nur dieses Wortpaar gleiche Anfangssymbole hat. Durch Weglassen
aller # und ■ entsteht wieder eine Lösung des MPCP. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 32 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Zusammenfassung und Ausblick

Alle interessanten Fragen über Turingmaschinen sind unentscheidbar.

Semi-Entscheidbarkeit wird durch Many-One-Reduktionen erhalten, nicht aber durch
Turing-Reduktionen.

Das Postsche Korrespondenzproblem ist ein unentscheidbares Problem, das nicht
(direkt) mit TMs zu tun hat – es ist bei vielen Reduktionen hilfreich.

Was erwartet uns als nächstes?

• Unberechenbare Probleme formaler Sprachen

• Abschließende Bemerkungen zu Berechenbarkeit

• Methoden zur Unterteilung entscheidbarer Probleme: Komplexität

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 33 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Literatur und Bildrechte

Literatur

• Richard J. Lorentz: Creating Difficult Instances of the Post Correspondence
Problem. Computers and Games 2000: 214–228

• John J. O’Connor, Edmund F. Robertson: Emil Leon Post. MacTutor History of
Mathematics archive, University of St Andrews.
http://www-history.mcs.st-andrews.ac.uk/Biographies/Post.html

Bildrechte

Folie 17: gemeinfrei

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 34 von 34

http://www-history.mcs.st-andrews.ac.uk/Biographies/Post.html
https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

