TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik, Institut fir Ktnstliche Intelligenz, Professur Computational Logic

THEORETISCHE INFORMATIK UND LOGIK

5. Vorlesung: Der Satz von Rice und das Postsche Korrespondenzproblem

Sebastian Rudolph

Folien: © Markus Krotzsch, https://iccl.inf.tu-dresden.de/web/TheolLog2017, CC BY 3.0 DE

TU Dresden, 24. April 2025

https://iccl.inf.tu-dresden.de/web/Computational_Logic
https://iccl.inf.tu-dresden.de/web/TheoLog2025
https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph
https://iccl.inf.tu-dresden.de/web/Markus_Kr%C3%B6tzsch

Wesentliche Ergebnisse bisher

Viele Dinge sind nicht berechenbar:
® Die Busy-Beaver-Funktion
® Das Halteproblem
® Das e-Halteproblem

Dazu gibt es mehrere Beweismethoden:
e Kardinalitatsargumente: Anzahl Algorithmen vs. Anzahl Probleme

® Diagonalisierungen: Nimm Berechenbarkeit an und konstruiere damit (als
Subroutine) einen paradoxen Algorithmus.

® Reduktionen: Zeige, dass bereits bekannte nicht berechenbare Probleme sich
I6sen lieBen, wenn das betrachtete Problem berechenbar ware.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 2 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Der Satz von Rice

Ein interessantes Resultat von Henry Gordon Rice bewahrt uns davor, noch hunderte
andere Probleme im Detail zu betrachten:

Satz von Rice (informelle Version): Jede nicht-triviale Frage Uber die von einer TM
ausgefihrte Berechnung ist unentscheidbar.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 3 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Der Satz von Rice

Ein interessantes Resultat von Henry Gordon Rice bewahrt uns davor, noch hunderte
andere Probleme im Detail zu betrachten:

Satz von Rice (informelle Version): Jede nicht-triviale Frage Uber die von einer TM
ausgefihrte Berechnung ist unentscheidbar.

Satz von Rice (formell): Sei E eine Eigenschaft von Sprachen, die fiir manche
Turing-erkennbare Sprachen gilt und fiir manche Turing-erkennbare Sprachen nicht
gilt (eine ,nicht-triviale Eigenschaft®). Dann ist das folgende Problem unentscheidbar:

® Eingabe: Turingmaschine M
® Ausgabe: Hat L(M) die Eigenschaft E?

Eine ,Eigenschaft E“ 1asst sich dabei als Menge von Sprachen formalisieren:

L hat Eigenschaft E gdw. L € E.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 3 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Alles unentscheidbar

Beispiele flr Fragen, die nach dem Satz von Rice unentscheidbar sind:
e st aba € L(M)?"
e Ist LIM) leer?”
o Ist L(M) endlich?”
e Ist L(M) regular?”
o ..
Rice ist dagegen nicht anwendbar auf:

e Hat M mindestens zwei Zustande?“
(keine Eigenschaft von L(M))

o Ist L(M) semi-entscheidbar?” (trivial)

Der Satz von Rice lasst sich sinngemaf auf alle Turing-machtigen Formalismen
Ubertragen.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 4 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Quiz: Satz von Rice

Satz von Rice: Sei E eine Eigenschaft von Sprachen, die fiir manche Turing-
erkennbare Sprachen gilt und fir manche Turing-erkennbare Sprachen nicht gilt (eine
Lhicht-triviale Eigenschaft®). Dann ist das folgende Problem unentscheidbar:

® Eingabe: Turingmaschine M
® Ausgabe: Hat L(M) die Eigenschaft E?

Quiz: Welche der folgenden Probleme kdnnten Sie mit Hilfe des Satzes von Rice als
unentscheidbar beweisen? (Eingabe ist jeweils eine TM M =(Q,%,T, 6, qo, F).) - ..

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 5 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Der Satz von Rice: Beweis (1)

Satz von Rice: Sei E eine nicht-triviale Eigenschaft von Turing-erkennbaren Spra-
chen. Dann ist das folgende Problem unentscheidbar:

® Eingabe: Turingmaschine M
® Ausgabe: Hat die Sprache L(M) die Eigenschaft E?

Beweis: Sei E eine Eigenschaft wie im Satz. Wir konstruieren eine
Many-One-Reduktion vom e-Halteproblem auf , E-Haftigkeit".

* Sei0 ¢ E. (0.B.d.A.: Wir kénnten sonst auch Unentscheidbarkeit von E beweisen.)

® Sei M, eine TM, die eine Sprache L € E akzeptiert.
(Solch ein L muss existieren, da E nicht-trivial ist.)

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 6 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Der Satz von Rice: Beweis (2)

Satz von Rice: Sei E eine nicht-triviale Eigenschaft von Turing-erkennbaren Spra-
chen. Dann ist das folgende unentscheidbar:

® Eingabe: Turingmaschine M
® Ausgabe: Hat die Sprache L(M) die Eigenschaft E?

Beweis (Fortsetzung):

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 7 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Der Satz von Rice: Beweis (2)

Satz von Rice: Sei E eine nicht-triviale Eigenschaft von Turing-erkennbaren Spra-
chen. Dann ist das folgende unentscheidbar:

® Eingabe: Turingmaschine M
® Ausgabe: Hat die Sprache L(M) die Eigenschaft E?

Beweis (Fortsetzung):

Fir eine beliebige TM M sei M* eine TM, die sich fur eine Eingabe w wie folgt verhalt:
(1) Simuliere M auf dem leeren Wort ¢;
(2) falls M halt, simuliere My auf w.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 7 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Der Satz von Rice: Beweis (2)

Satz von Rice: Sei E eine nicht-triviale Eigenschaft von Turing-erkennbaren Spra-
chen. Dann ist das folgende unentscheidbar:

® Eingabe: Turingmaschine M
® Ausgabe: Hat die Sprache L(M) die Eigenschaft E?

Beweis (Fortsetzung):
Fir eine beliebige TM M sei M* eine TM, die sich fur eine Eingabe w wie folgt verhalt:

(1) Simuliere M auf dem leeren Wort ¢;
(2) falls M halt, simuliere My auf w.

Damit gilt: Falls M auf € halt, dann L(M*) = L € E;
falls M auf € nicht halt, dannL(M*) =0 ¢ E

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 7 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Der Satz von Rice: Beweis (2)

Satz von Rice: Sei E eine nicht-triviale Eigenschaft von Turing-erkennbaren Spra-
chen. Dann ist das folgende unentscheidbar:

® Eingabe: Turingmaschine M
® Ausgabe: Hat die Sprache L(M) die Eigenschaft E?

Beweis (Fortsetzung):

Fir eine beliebige TM M sei M* eine TM, die sich fur eine Eingabe w wie folgt verhalt:
(1) Simuliere M auf dem leeren Wort ¢;
(2) falls M halt, simuliere My auf w.

Damit gilt: Falls M auf € halt, dann L(M*) = L € E;
falls M auf € nicht halt, dannL(M*) =0 ¢ E

Eine geeignete Many-One-Reduktion f ist demnach:

) enc(M*) falls v = enc(M) fir eine TM M
V) =
falls die Eingabe nicht korrekt kodiert ist O

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 7 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Semi-Entscheidbarkeit

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 8 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Das Halteproblem, schon wieder

Wir haben gesehen, dass das Halteproblem unentscheidbar ist, aber es ist dennoch
Turing-erkennbar:

Satz: Das Halteproblem ist semi-entscheidbar.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 9 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Das Halteproblem, schon wieder

Wir haben gesehen, dass das Halteproblem unentscheidbar ist, aber es ist dennoch
Turing-erkennbar:

Satz: Das Halteproblem ist semi-entscheidbar.

Beweis: Eine Turingmaschine, die das Halteproblem erkennt, ist leicht skizziert:

® Wenn die Eingabe die Form enc(M)##enc(w) hat

e dann simuliere M auf Eingabe w.

° Wenn M halt, dann halte und akzeptiere. O
Im Wesentlichen ist die TM fur das Halteproblem also die universelle Turingmaschine.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 9 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Komplementierung

Riickblick (Vorlesung Formale Systeme): Fiir eine Sprache L bezeichnet L die
Komplementsprache:

L={weX'|wegl}

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 10 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Komplementierung

Riickblick (Vorlesung Formale Systeme): Fiir eine Sprache L bezeichnet L die
Komplementsprache:

L={weX'|wegl}

Satz: Fir jede Sprache L gibt es Turing-Reduktionen L < L und L <7 L.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 10 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Komplementierung

Riickblick (Vorlesung Formale Systeme): Fiir eine Sprache L bezeichnet L die
Komplementsprache:

L={weX'|wegl}

Satz: Fir jede Sprache L gibt es Turing-Reduktionen L < L und L <7 L.

Beweis: Der Algorithmus fiir die Reduktion L <7 L ist sehr einfach:
® Fir Eingabe w,
® entscheide zundchst ob w € L
® und invertiere das Ergebnis anschlieBend.
Die Umkehrung L <7 L funktioniert ebenso. O

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 10 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Komplementierung

Riickblick (Vorlesung Formale Systeme): Fiir eine Sprache L bezeichnet L die
Komplementsprache:

L={weX'|wegl}

Satz: Fir jede Sprache L gibt es Turing-Reduktionen L < L und L <7 L.

Beweis: Der Algorithmus fiir die Reduktion L <7 L ist sehr einfach:
® Fir Eingabe w,
® entscheide zundchst ob w € L
® und invertiere das Ergebnis anschlieBend.
Die Umkehrung L <7 L funktioniert ebenso. O

Korollar: L ist genau dann entscheidbar, wenn L entscheidbar ist.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 10 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Zwei halbe Entscheidbarkeiten = eine ganze

Es gibt einen interessanten Zusammenhang von Komplementierung und
Semi-Entscheidbarkeit:

Satz: L ist genau dann entscheidbar, wenn L und L semi-entscheibar sind.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 11 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Zwei halbe Entscheidbarkeiten = eine ganze

Es gibt einen interessanten Zusammenhang von Komplementierung und
Semi-Entscheidbarkeit:

Satz: L ist genau dann entscheidbar, wenn L und L semi-entscheibar sind.

Beweis: ,=“ Angenommen L ist entscheidbar.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 11 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Zwei halbe Entscheidbarkeiten = eine ganze

Es gibt einen interessanten Zusammenhang von Komplementierung und
Semi-Entscheidbarkeit:

Satz: L ist genau dann entscheidbar, wenn L und L semi-entscheibar sind.

Beweis: ,=“ Angenommen L ist entscheidbar.
® Dannist L per Definition auch semi-entscheidbar.

¢ AuBerdem ist auch L entscheidbar (gerade gezeigt), also ebenfalls
semi-entscheidbar.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 11 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Zwei halbe Entscheidbarkeiten = eine ganze

Es gibt einen interessanten Zusammenhang von Komplementierung und
Semi-Entscheidbarkeit:

Satz: L ist genau dann entscheidbar, wenn L und L semi-entscheibar sind.

Beweis: ,<* Wenn L und L semi-entscheibar sind, dann werden sie durch TMs M, und
Mg erkannt.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 12 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Zwei halbe Entscheidbarkeiten = eine ganze

Es gibt einen interessanten Zusammenhang von Komplementierung und
Semi-Entscheidbarkeit:

Satz: L ist genau dann entscheidbar, wenn L und L semi-entscheibar sind.

Beweis: ,<* Wenn L und L semi-entscheibar sind, dann werden sie durch TMs M und
Mg erkannt.
Algorithmus: Fiir Eingabe w, iteriere Gber allen =1,2,3, ...

e Simuliere My fir n Schritte:
Wenn M, akzeptiert, dann halte und akzeptiere.

® Simuliere Mg flr n Schritte:
Wenn Mg akzeptiert, dann halte und verwirf.

® Ansonsten fahre mit nachstem n fort.

Dieser Algorithmus ist korrekt und terminiert fiir jede Eingabe, da immer entweder M
oder Mg terminieren muss. o

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 12 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Co-Semi-Entscheidbarkeit

Wir kdnnen unsere Einsichten zusammenfassen:

Korrolar: Wenn L unentscheidbar aber semi-entscheidbar ist, dann kann L nicht semi-
entscheidbar (und auch nicht entscheidbar) sein.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 13 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Co-Semi-Entscheidbarkeit

Wir kdnnen unsere Einsichten zusammenfassen:

Korrolar: Wenn L unentscheidbar aber semi-entscheidbar ist, dann kann L nicht semi-
entscheidbar (und auch nicht entscheidbar) sein.

Beispiel: Sei Py, das Komplement des Halteproblems Py Dann ist Phai <7 Phar
und Puai <7 Ppait, aber Py ist nicht semi-entscheidbar.

Anmerkung: Wir hatten Puar <7 Prar in Vorlesung 4 leicht anders definiert, da wir falsch kodierte
Eingaben abgelehnt hatten. Die Aussage gilt aber auch fir die erste Definition.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 13 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Many-One-Reduktionen

Beobachtung: Mit Turing-Reduktionen kdnnen wir Entscheidbarkeit oder
Unentscheidbarkeit zeigen, aber nicht Semi-Entscheidbarkeit.

Bei Many-One-Reduktionen ist das anders:

Satz: Wenn P <,, Q und Q semi-entscheidbar ist, dann ist auch P semi-entscheidbar.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 14 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Many-One-Reduktionen

Beobachtung: Mit Turing-Reduktionen kdnnen wir Entscheidbarkeit oder
Unentscheidbarkeit zeigen, aber nicht Semi-Entscheidbarkeit.

Bei Many-One-Reduktionen ist das anders:

Satz: Wenn P <,, Q und Q semi-entscheidbar ist, dann ist auch P semi-entscheidbar.

Beweis: Die Reduktion liefert mittels der totalen berechenbaren Funktion f : £* — X*
einen Semi-Entscheidungsalgorithmus. Die Korrektheit folgt aus den Definitionen. O

Anmerkung 1: Wir haben diese Aussage in der letzten Vorlesung mit ,entscheidbar”
anstelle von ,semi-entscheidbar” gezeigt. Die Idee ist genau die gleiche.

Anmerkung 2: Die Aussage gilt analog, wenn man ,co-semi-entscheidbar” anstelle von
.semi-entscheidbar” verwendet. Dies folgt schon deshalb, weil eine
Many-One-Reduktion P <,, Q gleichzeitig auch eine Many-One-Reduktion P <, Qist.
Anmerkung 3: Damit schlieBen wir einen Beweis aus der letzten Vorlesung ab: Es gibt
keine Many-One-Reduktion Py <, Phar.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 14 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Das Postsche Korrespondenzproblem

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 15 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Ein neues Problem

Bisher hatten alle unsere unentscheidbaren Probleme direkt mit Turingmaschinen bzw.
Programmen zu tun.

~> Gibt es auch unentscheidbare Probleme ohne direkten Bezug zu Berechnung?

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 16 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Ein neues Problem

Bisher hatten alle unsere unentscheidbaren Probleme direkt mit Turingmaschinen bzw.
Programmen zu tun.

~> Gibt es auch unentscheidbare Probleme ohne direkten Bezug zu Berechnung?

Ja, z.B. das Postsche Korrespondenzproblem. Das PCP gleicht einem Dominospiel, in
dem Dominos mit Wértern beschriftet sind.

AA

A

Ziel ist es, beliebig viele Dominos jeden Typs so in Reihe zu legen, dass oberes und
unteres Wort gleich werden

o AB B
Beispiel:
A BBAB

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 16 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Ein neues Problem

Bisher hatten alle unsere unentscheidbaren Probleme direkt mit Turingmaschinen bzw.
Programmen zu tun.

~> Gibt es auch unentscheidbare Probleme ohne direkten Bezug zu Berechnung?

Ja, z.B. das Postsche Korrespondenzproblem. Das PCP gleicht einem Dominospiel, in
dem Dominos mit Wértern beschriftet sind.

AA

A

Ziel ist es, beliebig viele Dominos jeden Typs so in Reihe zu legen, dass oberes und
unteres Wort gleich werden, z.B.

AB

A

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 16 von 34

o AB B
Beispiel:
A BBAB

B
BBAB

AB
A

AA
A

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Emil Leon Post

I

11.02.1897 — 21.04.1954

Tragisches Genie
Wegbereiter der Logik
Stiller Vordenker von Gédel und Turing

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5

Folie 17 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Das Postsche Korrespondenzproblem

Das Postsche Korrespondenzproblem (PCP) besteht in der folgenden Frage.
Gegeben: Eine endliche Folge von Wortpaaren

) [

Uber einem Alphabet %, also x;,y; € * fir 1 <i < k.

Frage: Gibt es eine Folge von Zahlen iy, ..., i, so dass gilt
Xiy = Xig = Viy = Yigs

wobei £ >0 istund j; € {1,...,k} faralle j=1,...,(?

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 18 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beispiele

AB B BB
B BBB BA

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 19 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beispiele

B
BBB

AB BB
B BA

Diese Instanz des PCPs hat eine Lésung mit 10 Schritten. (Bonusaufgabe)

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 19 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beispiele

B
BBB

BB
BA

A

Diese Instanz des PCPs hat eine Lésung mit 10 Schritten. (Bonusaufgabe)

ol L

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 19 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beispiele

A

Diese Instanz des PCPs hat eine Lésung mit 10 Schritten. (Bonusaufgabe)

o]) L

Diese Instanz des PCPs hat ebenfalls eine Lésung, aber keine mit weniger als 160 Schritten!

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 19 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beispiele

A

Diese Instanz des PCPs hat eine Lésung mit 10 Schritten. (Bonusaufgabe)

o]) L

Diese Instanz des PCPs hat ebenfalls eine Lésung, aber keine mit weniger als 160 Schritten!

e

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 19 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beispiele

AB B BB
B BBB BA

Diese Instanz des PCPs hat eine Lésung mit 10 Schritten. (Bonusaufgabe)
ABB BB A A

A AAB BB BAA

Diese Instanz des PCPs hat ebenfalls eine Lésung, aber keine mit weniger als 160 Schritten!
AA BA

B BAA

Diese Instanz des PCPs hat keine Lésung. (Bonusaufgabe: Warum?)

ABA
A

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 19 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Quiz: Postsches Korrespondenzproblem

Quiz: Betrachten Sie folgende Instanzen des Postschen Korrespondenzproblems.
Welche davon sind I6sbar?

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 20 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Unentscheidbarkeit

Satz: Das PCP ist unentscheidbar.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 21 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Unentscheidbarkeit

Satz: Das PCP ist unentscheidbar.

Das zu zeigen ist nicht ganz so einfach, da das PCP auf den ersten Blick nichts mit den
uns bisher bekannten unentscheidbaren Problemen zu tun hat.

Wir gehen in zwei Schritten vor:
(1) Wir reduzieren das Halteproblem auf ein modifiziertes PCP.
(2) Wir reduzieren das modifizierte PCP auf das PCP.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 21 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Unentscheidbarkeit

Satz: Das PCP ist unentscheidbar.

Das zu zeigen ist nicht ganz so einfach, da das PCP auf den ersten Blick nichts mit den
uns bisher bekannten unentscheidbaren Problemen zu tun hat.

Wir gehen in zwei Schritten vor:
(1) Wir reduzieren das Halteproblem auf ein modifiziertes PCP.
(2) Wir reduzieren das modifizierte PCP auf das PCP.

Eine Instanz des Modifizierten PCP (MPCP) ist eine Instanz des PCP (d.h. eine Fol-
ge von Wortpaaren), fir die ein bestimmtes Startpaar angegeben ist. Die Lésung des
MPCP ist eine Lésung des PCP, welche mit dem Startpaar beginnt.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 21 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Turingmaschinen simulieren in MPCP (1)

Wir wollen das Halteproblem von DTMs auf das MPCP reduzieren.

Wir entwickeln dazu eine Many-One-Reduktion, die eine Instanz des Halteproblems in
eine Instanz des MPCP verwandelt.

Idee: Kodiere TM-Berechnungen als Sequenz von Wortpaaren.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 22 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Turingmaschinen simulieren in MPCP (1)

Wir wollen das Halteproblem von DTMs auf das MPCP reduzieren.

Wir entwickeln dazu eine Many-One-Reduktion, die eine Instanz des Halteproblems in
eine Instanz des MPCP verwandelt.

Idee: Kodiere TM-Berechnungen als Sequenz von Wortpaaren.

Ansatz fir die Reduktion:
® Das Wort, welches zur Lésung des MPCP entsteht, kodiert den Lauf einer TM.

— Halt die TM, dann ist der Lauf endlich und es gibt eine Lésung;
— hélt die TM nicht, dann wird es keine Lésung geben.

® Eine TM-Konfiguration kénnen wir wie immer als Wort der Form v ¢ w darstellen.

® Wir kodieren einen Lauf als Folge von Konfigurationen, getrennt mit # (kein
Alphabetszeichen oder Zustand der TM).

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 22 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Turingmaschinen simulieren in MPCP (2)

Wie kann man sicherstellen, dass die MPCP-L&sung eine korrekte Folge von
TM-Konfigurationen kodiert?

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 23 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Turingmaschinen simulieren in MPCP (2)

Wie kann man sicherstellen, dass die MPCP-L&sung eine korrekte Folge von
TM-Konfigurationen kodiert?

Kernideen:

Das Lésungswort soll wie folgt beginnen: #co#c #c,# . . ., wobei ¢; Konfigurationen
kodieren.

Beim PCP entsteht das Losungswort doppelt, oben und unten.

Wir beginnen mit
#Co#

}, d.h. das obere Wort liegt eine Konfiguration zurlck.

Wir definieren die Wortpaare so, dass man oben eine Kopie der unteren
Konfiguration nur dann erzeugen kann, wenn man gleichzeitig unten die
Nachfolgerkonfiguration anflgt.

Wir sorgen dafir, dass das obere Wort die fehlende Konfiguration ,aufholen kann*®
wann immer die TM halt.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 23 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Turingmaschinen simulieren in MPCP (3)
Uberfilhrungsregeln kodieren die Ubergénge der DTM:

‘Ia—

falls 6(¢q,a) = (p,b, R)
bpi
cqa— .
falls 6(g,a) = (p, b, L) und c € I" beliebig
pch)
qa—
falls 6(q,a) = (p,b,N)
pb|

In diesen Regeln steckt die Kernidee des Beweises. Es sind die wesentlichen Regeln,
mit denen man Zustandssymbol g € Q im oberen Wort replizieren kann.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 24 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Turingmaschinen simulieren in MPCP (4)

Es gibt zwei Randfélle:

Am linken Rand soll unsere TM einfach ,anstoBen” (einseitig unendliches Band):

#qa
#pb

falls 6(¢,a) = (p,b,L)

Am rechten Rand kann die TM das Band beliebig erweitern:

gt
fir jeden Zustand ¢ € Q

q#

Anmerkung: Diese Umformung ist kein echter Rechenschritt, aber erspart uns die
Auflistung von Sonderféllen flr jede denkbare Transition am rechten Rand.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 25 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Turingmaschinen simulieren in MPCP (5)

Kopierregeln erlauben uns, den Rest der TM-Konfiguration (die Teile, die nicht nah am
Lese-/Schreibkopf liegen) vom unteren zum oberen Wort zu kopieren:

H fir jedes Symbol x € ' U {#}
X

Anmerkung: Damit kann man keine Zustande kopieren.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 26 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Turingmaschinen simulieren in MPCP (5)

Kopierregeln erlauben uns, den Rest der TM-Konfiguration (die Teile, die nicht nah am
Lese-/Schreibkopf liegen) vom unteren zum oberen Wort zu kopieren:

H fir jedes Symbol x € ' U {#}
X

Anmerkung: Damit kann man keine Zustande kopieren.

Die Startregel schlieBlich setzt die Berechnung in Gang:

wobei go der Startzustand und w € X* das Eingabewort ist.

[#qo wH

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 26 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Turingmaschinen in MPCP simulieren: Beispiel (1)

1+ 1,R

0 0,R

Wir betrachten den Lauf obiger TM auf der Eingabe w = 10.
Die Berechnung wird folgendermafBen abgebildet:

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 27 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Turingmaschinen in MPCP simulieren: Beispiel (1)

1+ 1,R

0 0,R

Wir betrachten den Lauf obiger TM auf der Eingabe w = 10.
Die Berechnung wird folgendermafBen abgebildet:

#

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 27 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Turingmaschinen in MPCP simulieren: Beispiel (1)

1+ 1,R

0 0,R

Wir betrachten den Lauf obiger TM auf der Eingabe w = 10.
Die Berechnung wird folgendermafBen abgebildet:

qol
1q,

#

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5

Folie 27 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Turingmaschinen in MPCP simulieren: Beispiel (1)

1+ 1,R

0 0,R

Wir betrachten den Lauf obiger TM auf der Eingabe w = 10.
Die Berechnung wird folgendermafBen abgebildet:

"

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5

#

Folie 27 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Turingmaschinen in MPCP simulieren: Beispiel (1)

1+ 1,R

0 0,R

Wir betrachten den Lauf obiger TM auf der Eingabe w = 10.
Die Berechnung wird folgendermafBen abgebildet:

o AN

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5

#

Folie 27 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Turingmaschinen in MPCP simulieren: Beispiel (1)

1+ 1,R

0 0,R

Wir betrachten den Lauf obiger TM auf der Eingabe w = 10.
Die Berechnung wird folgendermafBen abgebildet:

o

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5

#

Folie 27 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Turingmaschinen in MPCP simulieren: Beispiel (1)

1+ 1,R

0 0,R

Wir betrachten den Lauf obiger TM auf der Eingabe w = 10.
Die Berechnung wird folgendermafBen abgebildet:

g A A o 1

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5

#

Folie 27 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Turingmaschinen in MPCP simulieren: Beispiel (1)

1+ 1,R

0 0,R

Wir betrachten den Lauf obiger TM auf der Eingabe w = 10.
Die Berechnung wird folgendermafBen abgebildet:

o

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 27 von 34

#

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Turingmaschinen in MPCP simulieren: Beispiel (1)

1+ 1,R

0 0,R

Wir betrachten den Lauf obiger TM auf der Eingabe w = 10.
Die Berechnung wird folgendermafBen abgebildet:

[A o o[At 1A

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 27 von 34

#

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Turingmaschinen in MPCP simulieren: Beispiel (1)

1+ 1,R

0 0,R

Wir betrachten den Lauf obiger TM auf der Eingabe w = 10.
Die Berechnung wird folgendermafBen abgebildet:

R

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 27 von 34

#

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Turingmaschinen simulieren in MPCP (6)

Zwischenstand: Angefangen von der Startregel zwingen uns die Regeln,
Konfigurationen zu kopieren und dabei entweder einen Berechnungsschritt
auszufihren, oder mehr Speicher am rechten Rand zu allozieren.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 28 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Turingmaschinen simulieren in MPCP (6)

Zwischenstand: Angefangen von der Startregel zwingen uns die Regeln,
Konfigurationen zu kopieren und dabei entweder einen Berechnungsschritt
auszufihren, oder mehr Speicher am rechten Rand zu allozieren.

Es fehlt noch ein Abschluss:
(Wir verwenden ein weiteres zusatzliches Symbol @.)

f]a—

falls 6(¢, a) undefiniert und a e I" (d.h. a # #)
. A
a0 [Fl .
und firalleael
° o |
oH# .
der endgultige Abschluss
#
Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 28 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Turingmaschinen in MPCP simulieren: Beispiel (2)

1+ 1,R

0 0,R

Wir betrachten den Lauf obiger TM auf der Eingabe w = 10.
Die Berechnung wird folgendermaf3en beendet:

#q010#1q, 0#10¢#10

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 29 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Turingmaschinen in MPCP simulieren: Beispiel (2)

1+ 1,R

0 0,R
Wir betrachten den Lauf obiger TM auf der Eingabe w = 10.
Die Berechnung wird folgendermaf3en beendet:

#q010#1q, 0#10¢#10

qow
[J

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5

Folie 29 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Turingmaschinen in MPCP simulieren: Beispiel (2)

1+ 1,R

0 0,R

Wir betrachten den Lauf obiger TM auf der Eingabe w = 10.
Die Berechnung wird folgendermaf3en beendet:

1

1

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5

#q010#1q, 0#10¢#10

#
#

qow
[J

Folie 29 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Turingmaschinen in MPCP simulieren: Beispiel (2)

1+ 1,R

0 0,R

Wir betrachten den Lauf obiger TM auf der Eingabe w = 10.

Die Berechnung wird folgendermaf3en beendet:

#q010#1q, 0#10¢#10

#
#

1
1

qow ()

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5

Folie 29 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Turingmaschinen in MPCP simulieren: Beispiel (2)

1+ 1,R

0 0,R
Wir betrachten den Lauf obiger TM auf der Eingabe w = 10.
Die Berechnung wird folgendermaf3en beendet:

#q010#1q, 0#10¢#10

#
#

1
1

#
#

qow ()

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 29 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Turingmaschinen in MPCP simulieren: Beispiel (2)

1+ 1,R

0 0,R
Wir betrachten den Lauf obiger TM auf der Eingabe w = 10.
Die Berechnung wird folgendermaf3en beendet:

#q010#1q, 0#10¢#10
#qo 10#1(]1 ®#1QQQ#1®(]0._.#1®

#
#

1
1

#
#

qow I J l®

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 29 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Turingmaschinen in MPCP simulieren: Beispiel (2)

1+ 1,R

0 0,R
Wir betrachten den Lauf obiger TM auf der Eingabe w = 10.
Die Berechnung wird folgendermaf3en beendet:

#q010#1q, 0#10¢#10
#qo 10#1(]1 ®#1QQQ#1®(]0._.#1®

#
#

1
1

#
#

#
#

qow I J l®

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 29 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Turingmaschinen in MPCP simulieren: Beispiel (2)

1+ 1,R

0 0,R
Wir betrachten den Lauf obiger TM auf der Eingabe w = 10.
Die Berechnung wird folgendermaf3en beendet:

#q010#1q, 0#10¢#10
#qo 10#1(]1 ®#1QQQ#1®(]0._.#1®

#
#

1
1

#
#

#
#

ot
#

qow I J l®

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 29 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Turingmaschinen simulieren in MPCP (7)

Satz: Es gibt eine Many-One-Reduktion vom Halteproblem auf das modifizierte PCP.

Beweis: Wir haben die Reduktion gerade angegeben, wobei das Wortpaar mit der
Startkonfiguration das Startpaar des MPCP ist.

Korrektheit (Skizze):

® Wenn es einen haltenden Lauf gibt, dann kann man eine Lésung des MPCP
finden: Dies gilt gemén Konstruktion.
® Wenn es eine Lésung fir das MPCP gibt, dann halt die TM:
— Wir kdnnen die Ubergénge als Berechnungsschritte interpretieren, d.h. es
entsteht ein Lauf.
— Das obere Wort ist anfangs kirzer und wird in keiner Regel langer als das
untere, solange nicht eine haltende Konfiguration erreicht wurde.
— Also kann das MPCP nur dann eine L&sung haben, wenn die TM halt. O

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 30 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Von PCP zu MPCP (1)

Es fehlt noch eine Reduktion von MPCP auf PCP.

Satz: Es gibt eine Many-One-Reduktion vom modifizierten PCP auf PCP.

Beweis: Wir verwenden zwei zusatzliche Symbole # und m. Fir ein Wortw = a; ---a,
definieren wir:

wwy = Ha1# - - - H#ao# wy = a1#- - - #a,#t ww = #a#---#ay

Die gesuchte Reduktion bildet jetzt eine MPCP-Instanz
X1
V1

#X1# X1# Xt

#Y1 #Y1 #Vk

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 31 von 34

ab auf eine PCP-Instanz
]
#m

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Von PCP zu MPCP (2)

Beweis (Fortsetzung): Wir erhalten also die folgende PCP-Instanz:

#X14 X1# Xic#
#Y1 #Y1 #Vk

Es ist nicht schwer zu zeigen, dass dies genau dann eine Lésung hat, wenn das
urspriingliche MPCP eine hat:

#m

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 32 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Von PCP zu MPCP (2)

Beweis (Fortsetzung): Wir erhalten also die folgende PCP-Instanz:

#X14 X1# Xic#
#Y1 #Y1 #Vk

Es ist nicht schwer zu zeigen, dass dies genau dann eine Lésung hat, wenn das
urspriingliche MPCP eine hat:

#m

e <&"“Wenn das MPCP eine Lésung hat, dann erhalten wir leicht eine
entsprechende Ldsung fur das PCP, wobei jedes Symbol zusatzlich von #
umgeben ist und das Wort auf m endet.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 32 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Von PCP zu MPCP (2)

Beweis (Fortsetzung): Wir erhalten also die folgende PCP-Instanz:

#X14 X1# Xic#
#Y1 #Y1 #Vk

Es ist nicht schwer zu zeigen, dass dies genau dann eine Lésung hat, wenn das
urspriingliche MPCP eine hat:

#m

e <&"“Wenn das MPCP eine Lésung hat, dann erhalten wir leicht eine
entsprechende Ldsung fur das PCP, wobei jedes Symbol zusatzlich von #
umgeben ist und das Wort auf m endet.

e ="“Wenn das PCP eine Lésung hat, dann muss es mit dem ersten Wortpaar
beginnen, da nur dieses Wortpaar gleiche Anfangssymbole hat. Durch Weglassen
aller # und m entsteht wieder eine L6sung des MPCP. O

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 32 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Zusammenfassung und Ausblick

Alle interessanten Fragen Uber Turingmaschinen sind unentscheidbar.

Semi-Entscheidbarkeit wird durch Many-One-Reduktionen erhalten, nicht aber durch
Turing-Reduktionen.

Das Postsche Korrespondenzproblem ist ein unentscheidbares Problem, das nicht
(direkt) mit TMs zu tun hat — es ist bei vielen Reduktionen hilfreich.

Was erwartet uns als nichstes?
® Unberechenbare Probleme formaler Sprachen
® AbschlieBende Bemerkungen zu Berechenbarkeit
® Methoden zur Unterteilung entscheidbarer Probleme: Komplexitat

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 33 von 34

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Literatur und Bildrechte
Literatur

® Richard J. Lorentz: Creating Difficult Instances of the Post Correspondence
Problem. Computers and Games 2000: 214—228
e John J. O’'Connor, Edmund F. Robertson: Emil Leon Post. MacTutor History of

Mathematics archive, University of St Andrews.
http://www-history.mcs.st-andrews.ac.uk/Biographies/Post.html

Bildrechte

Folie 17: gemeinfrei

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 5 Folie 34 von 34

http://www-history.mcs.st-andrews.ac.uk/Biographies/Post.html
https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

