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Prädikatenlogik als Universalsprache

Die Entwicklung der Logik hat ein zentrales Motiv:
Logik als eine universelle, präzise Sprache.

• Aristoteles (384–322 v.u.Z.): Logik als Grundlage der (philosophischen)
Argumentation zwischen vernünftig denkenden Menschen

• Leibniz (1646–1716): Vordenker des automatischen Schließens:

„. . . falls es zu Unstimmigkeiten käme, dann gäbe es zwischen zwei Philosophen nicht
mehr Anlass für Streitigkeiten als zwischen zwei Buchhaltern. Denn es würde genügen,
dass beide die Stifte zur Hand nehmen, sich zum Rechenschieber setzen und sagen [· · ·]:
Lasst uns rechnen!“

• Hilbert (1862–1942): Programm zur Formalisierung der Mathematik

• Russell (1872–1970): Entwicklung eines logischen Kalküls als Grundlage aller
Mathematik
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Kernproblem logisches Schließen

Drückt man die Mathematik in logischen Formeln aus, dann wird logisches Schließen
zur Kernaufgabe mathematischer Forschung.

Das Problem des prädikatenlogischen Schließens besteht in der folgenden Frage:

Gegeben: Eine endliche Menge prädikatenlogischer Sätze (Theorie) T und ein Satz F.
Frage: Gilt T |= F, d.h. folgt F aus T?

Dieses Problem ist zu verschiedenen anderen äquivalent:

Satz: Für endliche Theorie T und einen Satz F sind die folgenden Fragen äquivalent:

• Gilt T |= F?

• Ist T ∪ {¬F} unerfüllbar?

• Ist
(∧

G∈T G
)
→ F eine Tautologie?
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Die Bedeutung von Erfüllbarkeit

Satz: Für endliche Theorie T und einen Satz F sind die folgenden Fragen äquivalent:

• Gilt T |= F?

• Ist T ∪ {¬F} unerfüllbar?

• Ist
(∧

G∈T G
)
→ F eine Tautologie?

Daraus folgt: Logisches Schließen kann auf das Überprüfen der (Un-)Erfüllbarkeit einer
Formel ∧

G ∈T

G ∧ ¬F

zurückgeführt werden.

{ Erfüllbarkeit als zentrale Frage des Schließens.
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Gleichheit
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Gleichheit in Prädikatenlogik

Gleichheit spielt in vielen Anwendungen eine große Rolle:

Manchmal wird Prädikatenlogik so definiert, dass es ein spezielles Gleichheitsprädikat
≈ gibt, welches in der Regel infix geschrieben wird.

Semantik: In allen Interpretationen I = ⟨∆I, ·I⟩ ist ≈I= {⟨δ, δ⟩ | δ ∈ ∆I}.

Wir haben bereits ein Beispiel dafür gesehen:

Beispiel: Partielle Ordnungen ⪯ sind antisymmetrisch:

∀x, y.
(
(x ⪯ y ∧ y ⪯ x)→ x ≈ y

)
Auch erlaubt uns Gleichheit, in Logik(en) zu zählen:

Beispiel: „Es gibt nur einen Rudi Völler.“

∀x, y.
(
rudiVöller(x) ∧ rudiVöller(y)→ x ≈ y

)
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Gleichheit der Interpretation von Konstanten
Die übliche Semantik von Prädikatenlogik erlaubt, dass verschiedene Konstanten gleich
interpretiert werden.

Mit Gleichheit kann man das erzwingen oder verbieten:

Beispiel: Seien rudiVöller, tanteKäthe, rudi ∈ C Konstanten. Wir können ausdrücken:

rudiVöller ≈ tanteKäthe

¬rudiVöller ≈ rudi

Manchmal wird auch 0 als spezielles Prädikat eingeführt.
Wir können das aber auch leicht definieren:

∀x, y.(x 0 y↔ ¬x ≈ y)

Beispiel: Mit Ungleichheit können wir noch weiter (als bis eins) zählen:
„Es gibt mindestens drei P.“

∃x1, x2, x3.
(
x1 0 x2 ∧ x1 0 x3 ∧ x2 0 x3 ∧ P(x1) ∧ P(x2) ∧ P(x3)

)
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Ist Ungleichheit wirklich nötig?

Ungleichheit von Konstanten kann man auch leicht ohne ≈ ausdrücken:

Beispiel: Wir betrachten zwei neue, einstellige Prädikate OrudiVöller und Orudi.
Aus der unten angegebenen Theorie T folgt ¬rudiVöller ≈ rudi:

T = { OrudiVöller(rudiVöller), Orudi(rudi), ∀x.¬(OrudiVöller(x) ∧ Orudi(x)) }

Idee:

• Die Prädikate OrudiVöller und Orudi beschreiben zwei Mengen.

• Die Mengen enthalten jeweils mindestens die Elemente, welche durch rudiVöller
bzw. rudi bezeichnet werden.

• Die Mengen sind disjunkt (d.h. enthalten keine gemeinsamen Elemente).

{ Erzwingung von Ungleichheit durch Zuweisung unvereinbarer Eigenschaften.
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Quiz: Ungleichheit und Folgerungen

• Schlussfolgerung: T |= F gdw. jede Interpretation I mit I |= T auch I |= F erfüllt.

• Gleichheit: Infix-Prädikat ≈; für jede Interpretation I gilt ≈I=
{
⟨δ, δ⟩

∣∣∣ δ ∈ ∆I }.
Quiz: Welche Schlussfolgerungen gelten? . . .
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Ist Gleichheit wirklich nötig?

Es stellt sich heraus, dass man die wesentlichen Eigenschaften von ≈ logisch
beschreiben kann:

Für eine gegebene endliche Menge R von relevanten Prädikatensymbolen und ein
neues zweistelliges Prädikatensymbol eq definieren wir die folgende Gleichheitstheorie
EQR:

∀x.eq(x, x) Reflexivität

∀x, y.eq(x, y)→ eq(y, x) Symmetrie

∀x, y, z.(eq(x, y) ∧ eq(y, z))→ eq(x, z) Transitivität

∀x1, . . . , xn, y.
(
( p(x1, . . . , xi−1, xi, xi+1, . . . , xn) ∧ eq(xi, y))

→ p(x1, . . . , xi−1, y, xi+1, . . . , xn)
)

Kongruenz

wobei der letzte Satz für alle n-stelligen p ∈ R und alle i ∈ {1, . . . , n} hinzugefügt wird.
({ Insgesamt sind das also nur endlich viele Sätze.)
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Gleichheit ist nicht nötig

Für eine beliebige Theorie T der Prädikatenlogik mit Gleichheit definieren wir Teq als
die Theorie, die man erhält, indem man ≈ in allen Sätzen von T durch eq ersetzt.

Satz: Sei T eine Theorie der Prädikatenlogik mit ≈ und weiteren Prädikatensymbolen
aus der endlichen Menge R.

Dann ist T genau dann in der Prädikatenlogik mit Gleichheit erfüllbar, wenn Teq ∪ EQR

in der Prädikatenlogik ohne Gleichheit erfüllbar ist.

Warum ist das nützlich?

• Logisches Schließen kann auf den Test von Erfüllbarkeit zurückgeführt werden.

• Erfüllbarkeit bleibt erhalten, wenn man „eingebaute“ Gleichheit durch eine logische
Beschreibung von Gleichheit ersetzt.

{ Schließen wird durch Gleichheit nicht wesentlich komplizierter.
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Beweis (1)

Satz: Sei T eine Theorie der Prädikatenlogik mit ≈ und weiteren Prädikatensymbolen
aus der endlichen Menge R.

Dann ist T genau dann in der Prädikatenlogik mit Gleichheit erfüllbar, wenn Teq ∪ EQR

in der Prädikatenlogik ohne Gleichheit erfüllbar ist.

Beweis: „⇒“ Nehmen wir an, T ist in der Prädikatenlogik mit Gleichheit erfüllbar.

• Dann hat T ein Modell I |= T , wobei ≈I= {⟨δ, δ⟩ | δ ∈ ∆I}.
• Wir definieren eine Interpretation J mit ∆J := ∆I:

– cJ := cI für alle Konstanten c ∈ C;
– pJ := pI für alle Prädikate p ∈ P mit p , ≈;
– eqJ := ≈I.

• Dann gilt J |= Teq per Definition.

• Zudem gilt J |= EQR, da eqJ = {⟨δ, δ⟩ | δ ∈ ∆J }.

{ J |= Teq ∪ EQR, das heißt Teq ∪ EQR ist erfüllbar.
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in der Prädikatenlogik ohne Gleichheit erfüllbar ist.

Beweis: „⇒“ Nehmen wir an, T ist in der Prädikatenlogik mit Gleichheit erfüllbar.

• Dann hat T ein Modell I |= T , wobei ≈I= {⟨δ, δ⟩ | δ ∈ ∆I}.
• Wir definieren eine Interpretation J mit ∆J := ∆I:

– cJ := cI für alle Konstanten c ∈ C;
– pJ := pI für alle Prädikate p ∈ P mit p , ≈;
– eqJ := ≈I.

• Dann gilt J |= Teq per Definition.

• Zudem gilt J |= EQR, da eqJ = {⟨δ, δ⟩ | δ ∈ ∆J }.

{ J |= Teq ∪ EQR, das heißt Teq ∪ EQR ist erfüllbar.
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Beweis (2)

Satz: Sei T eine Theorie der Prädikatenlogik mit ≈ und weiteren Prädikatensymbolen
aus der endlichen Menge R.

Dann ist T genau dann in der Prädikatenlogik mit Gleichheit erfüllbar wenn Teq ∪ EQR

in der Prädikatenlogik ohne Gleichheit erfüllbar ist.

Beweis: „⇐“ Nehmen wir an, Teq ∪ EQR ist erfüllbar.

• Dann gibt es ein Modell J |= Teq ∪ EQR.

• Aus J |= EQR folgt, dass eqJ eine Äquivalenzrelation auf der Menge ∆J ist:
Äquivalenzklassen schreiben wir als [δ] =

{
ϵ
∣∣∣ ⟨δ, ϵ⟩ ∈ eqJ

}
.

• Faktorisierung von J mit eqJ erzeugt eine Interpretation I:

∆I :=
{
[δ]
∣∣∣ δ ∈ ∆J }

cI :=
[
cJ
]

für alle Konstanten c ∈ C.

pI :=
{
⟨[δ1], . . . , [δn]⟩

∣∣∣ ⟨δ1, . . . , δn⟩ ∈ pJ
}

für alle p ∈ P mit p , ≈.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 15 Folie 13 von 19

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Beweis (2)

Satz: Sei T eine Theorie der Prädikatenlogik mit ≈ und weiteren Prädikatensymbolen
aus der endlichen Menge R.

Dann ist T genau dann in der Prädikatenlogik mit Gleichheit erfüllbar wenn Teq ∪ EQR

in der Prädikatenlogik ohne Gleichheit erfüllbar ist.

Beweis: „⇐“ Nehmen wir an, Teq ∪ EQR ist erfüllbar.

• Dann gibt es ein Modell J |= Teq ∪ EQR.

• Aus J |= EQR folgt, dass eqJ eine Äquivalenzrelation auf der Menge ∆J ist:
Äquivalenzklassen schreiben wir als [δ] =

{
ϵ
∣∣∣ ⟨δ, ϵ⟩ ∈ eqJ

}
.

• Faktorisierung von J mit eqJ erzeugt eine Interpretation I:

∆I :=
{
[δ]
∣∣∣ δ ∈ ∆J }

cI :=
[
cJ
]

für alle Konstanten c ∈ C.

pI :=
{
⟨[δ1], . . . , [δn]⟩

∣∣∣ ⟨δ1, . . . , δn⟩ ∈ pJ
}

für alle p ∈ P mit p , ≈.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 15 Folie 13 von 19

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Beweis (2)

Satz: Sei T eine Theorie der Prädikatenlogik mit ≈ und weiteren Prädikatensymbolen
aus der endlichen Menge R.

Dann ist T genau dann in der Prädikatenlogik mit Gleichheit erfüllbar wenn Teq ∪ EQR

in der Prädikatenlogik ohne Gleichheit erfüllbar ist.

Beweis: „⇐“ Nehmen wir an, Teq ∪ EQR ist erfüllbar.

• Dann gibt es ein Modell J |= Teq ∪ EQR.

• Aus J |= EQR folgt, dass eqJ eine Äquivalenzrelation auf der Menge ∆J ist:
Äquivalenzklassen schreiben wir als [δ] =

{
ϵ
∣∣∣ ⟨δ, ϵ⟩ ∈ eqJ

}
.

• Faktorisierung von J mit eqJ erzeugt eine Interpretation I:

∆I :=
{
[δ]
∣∣∣ δ ∈ ∆J }

cI :=
[
cJ
]

für alle Konstanten c ∈ C.

pI :=
{
⟨[δ1], . . . , [δn]⟩

∣∣∣ ⟨δ1, . . . , δn⟩ ∈ pJ
}

für alle p ∈ P mit p , ≈.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 15 Folie 13 von 19

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Beweis (2)

Satz: Sei T eine Theorie der Prädikatenlogik mit ≈ und weiteren Prädikatensymbolen
aus der endlichen Menge R.

Dann ist T genau dann in der Prädikatenlogik mit Gleichheit erfüllbar wenn Teq ∪ EQR

in der Prädikatenlogik ohne Gleichheit erfüllbar ist.

Beweis: „⇐“ Nehmen wir an, Teq ∪ EQR ist erfüllbar.

• Dann gibt es ein Modell J |= Teq ∪ EQR.

• Aus J |= EQR folgt, dass eqJ eine Äquivalenzrelation auf der Menge ∆J ist:
Äquivalenzklassen schreiben wir als [δ] =

{
ϵ
∣∣∣ ⟨δ, ϵ⟩ ∈ eqJ

}
.

• Faktorisierung von J mit eqJ erzeugt eine Interpretation I:

∆I :=
{
[δ]
∣∣∣ δ ∈ ∆J }

cI :=
[
cJ
]

für alle Konstanten c ∈ C.

pI :=
{
⟨[δ1], . . . , [δn]⟩

∣∣∣ ⟨δ1, . . . , δn⟩ ∈ pJ
}

für alle p ∈ P mit p , ≈.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 15 Folie 13 von 19

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Beweis (2)

Satz: Sei T eine Theorie der Prädikatenlogik mit ≈ und weiteren Prädikatensymbolen
aus der endlichen Menge R.

Dann ist T genau dann in der Prädikatenlogik mit Gleichheit erfüllbar wenn Teq ∪ EQR

in der Prädikatenlogik ohne Gleichheit erfüllbar ist.

Beweis: „⇐“ Nehmen wir an, Teq ∪ EQR ist erfüllbar.

• Dann gibt es ein Modell J |= Teq ∪ EQR.

• Aus J |= EQR folgt, dass eqJ eine Äquivalenzrelation auf der Menge ∆J ist:
Äquivalenzklassen schreiben wir als [δ] =

{
ϵ
∣∣∣ ⟨δ, ϵ⟩ ∈ eqJ

}
.

• Faktorisierung von J mit eqJ erzeugt eine Interpretation I:

∆I :=
{
[δ]
∣∣∣ δ ∈ ∆J }

cI :=
[
cJ
]

für alle Konstanten c ∈ C.

pI :=
{
⟨[δ1], . . . , [δn]⟩

∣∣∣ ⟨δ1, . . . , δn⟩ ∈ pJ
}

für alle p ∈ P mit p , ≈.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 15 Folie 13 von 19

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Beweis (3)

Beweis: (Forts.) Wir haben I konstruiert, indem wir alle Domänenelemente von J
gleichsetzen, welche in der Relation eqJ stehen.

Wir wollen zeigen, dass I |= T in der Prädikatenlogik mit Gleichheit gilt.1

Wir zeigen eine allgemeinere Behauptung:

• Für eine Zuweisung Z für J definieren wir eine Zuweisung Z′ für I wie folgt:
Z′(x) := [Z(x)] für alle x ∈ V.

• Wir behaupten: Für jede Formel F der Prädikatenlogik mit Gleichheit und jede
Zuweisung Z für J gilt:

J ,Z |= Feq genau dann wenn I,Z′ |= F

• Daraus folgt wie gewünscht I |= T , weil T eine Theorie ist und daher nur Sätze
enthält (die Zuweisung Z ist damit irrelevant) und per Annahme J |= Teq gilt.

1Verständnischeck: Klingt das plausibel? Sogar offensichtlich? Gut. Warum genau?
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Beweis (4)

Beweis: (Forts.) Wir behaupten: Für jede Formel F der Prädikatenlogik mit Gleichheit
und jede Zuweisung Z für J gilt:

J ,Z |= Feq genau dann wenn I,Z′ |= F

Wie lässt sich so eine Behauptung beweisen?

{ Per Induktion über den Aufbau von Formeln.

Induktionsanfang: Für atomare Formeln F = p(t1, . . . , tn) mit p , ≈ gilt die Behauptung,
weil für alle δ1, . . . , δn ∈ ∆J gilt:

⟨δ1, . . . , δn⟩ ∈ pJ genau dann wenn ⟨[δ1], . . . , [δn]⟩ ∈ pI

⇒ folgt direkt aus der Definition von pI.
⇐ folgt, weil J |= EQR gilt und daher eqJ eine Kongruenzrelation ist.

Für atomare Formeln F = (t1 ≈ t2) gilt die Behauptung ebenfalls, da für alle δ, ϵ ∈ ∆J gilt:

[δ] = [ϵ] genau dann wenn ⟨δ, ϵ⟩ ∈ eqJ

Genauer: I,Z′ |= t1 ≈ t2 gdw. tI,Z
′

1 = tI,Z
′

2 gdw.
[
tJ,Z
1

]
=
[
tJ,Z
2

]
gdw.

〈
tJ,Z
1 , tJ,Z

2

〉
∈ eqJ gdw. J,Z |= eq(t1, t2).
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Beweis (5)

Beweis: (Forts.) Wir behaupten: Für jede Formel F der Prädikatenlogik mit Gleichheit
und jede Zuweisung Z für J gilt:

J ,Z |= Feq genau dann wenn I,Z′ |= F

Induktionsvoraussetzung: Die Behauptung gilt für Formeln G und H (IV).

Induktionsschritte:

• Falls F = (G ∧ H), dann berechnen wir:
J ,Z |= (G ∧H)eq gdw. J ,Z |= Geq ∧Heq gdw. J ,Z |= Geq und J ,Z |= Heq gdw.IA

I,Z′ |= G und I,Z′ |= H gdw. I,Z′ |= (G ∧ H).
• Die Fälle F = ¬G, F = (G ∨ H), F = (G→ H) und F = (G↔ H) sind analog.

• Falls F = ∃x.G, dann: J ,Z |= (∃x.G)eq gdw. J ,Z[x 7→ δ] |= Geq für ein δ ∈ ∆J

gdw.IA I,Z′[x 7→ [δ]] |= G für ein δ ∈ ∆J

gdw. I,Z′[x 7→ [δ]] |= G für ein [δ] ∈ ∆I gdw. I,Z′ |= ∃x.G.

• Der Fall F = ∀x.G funktioniert analog. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 15 Folie 16 von 19

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Beweis (5)

Beweis: (Forts.) Wir behaupten: Für jede Formel F der Prädikatenlogik mit Gleichheit
und jede Zuweisung Z für J gilt:

J ,Z |= Feq genau dann wenn I,Z′ |= F

Induktionsvoraussetzung: Die Behauptung gilt für Formeln G und H (IV).

Induktionsschritte:

• Falls F = (G ∧ H), dann berechnen wir:

J ,Z |= (G ∧H)eq gdw. J ,Z |= Geq ∧Heq gdw. J ,Z |= Geq und J ,Z |= Heq gdw.IA

I,Z′ |= G und I,Z′ |= H gdw. I,Z′ |= (G ∧ H).
• Die Fälle F = ¬G, F = (G ∨ H), F = (G→ H) und F = (G↔ H) sind analog.

• Falls F = ∃x.G, dann: J ,Z |= (∃x.G)eq gdw. J ,Z[x 7→ δ] |= Geq für ein δ ∈ ∆J

gdw.IA I,Z′[x 7→ [δ]] |= G für ein δ ∈ ∆J

gdw. I,Z′[x 7→ [δ]] |= G für ein [δ] ∈ ∆I gdw. I,Z′ |= ∃x.G.

• Der Fall F = ∀x.G funktioniert analog. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 15 Folie 16 von 19

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Beweis (5)

Beweis: (Forts.) Wir behaupten: Für jede Formel F der Prädikatenlogik mit Gleichheit
und jede Zuweisung Z für J gilt:

J ,Z |= Feq genau dann wenn I,Z′ |= F

Induktionsvoraussetzung: Die Behauptung gilt für Formeln G und H (IV).

Induktionsschritte:

• Falls F = (G ∧ H), dann berechnen wir:
J ,Z |= (G ∧H)eq gdw. J ,Z |= Geq ∧Heq

gdw. J ,Z |= Geq und J ,Z |= Heq gdw.IA

I,Z′ |= G und I,Z′ |= H gdw. I,Z′ |= (G ∧ H).
• Die Fälle F = ¬G, F = (G ∨ H), F = (G→ H) und F = (G↔ H) sind analog.

• Falls F = ∃x.G, dann: J ,Z |= (∃x.G)eq gdw. J ,Z[x 7→ δ] |= Geq für ein δ ∈ ∆J

gdw.IA I,Z′[x 7→ [δ]] |= G für ein δ ∈ ∆J

gdw. I,Z′[x 7→ [δ]] |= G für ein [δ] ∈ ∆I gdw. I,Z′ |= ∃x.G.

• Der Fall F = ∀x.G funktioniert analog. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 15 Folie 16 von 19

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Beweis (5)

Beweis: (Forts.) Wir behaupten: Für jede Formel F der Prädikatenlogik mit Gleichheit
und jede Zuweisung Z für J gilt:

J ,Z |= Feq genau dann wenn I,Z′ |= F

Induktionsvoraussetzung: Die Behauptung gilt für Formeln G und H (IV).

Induktionsschritte:

• Falls F = (G ∧ H), dann berechnen wir:
J ,Z |= (G ∧H)eq gdw. J ,Z |= Geq ∧Heq gdw. J ,Z |= Geq und J ,Z |= Heq

gdw.IA

I,Z′ |= G und I,Z′ |= H gdw. I,Z′ |= (G ∧ H).
• Die Fälle F = ¬G, F = (G ∨ H), F = (G→ H) und F = (G↔ H) sind analog.

• Falls F = ∃x.G, dann: J ,Z |= (∃x.G)eq gdw. J ,Z[x 7→ δ] |= Geq für ein δ ∈ ∆J

gdw.IA I,Z′[x 7→ [δ]] |= G für ein δ ∈ ∆J

gdw. I,Z′[x 7→ [δ]] |= G für ein [δ] ∈ ∆I gdw. I,Z′ |= ∃x.G.

• Der Fall F = ∀x.G funktioniert analog. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 15 Folie 16 von 19

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Beweis (5)

Beweis: (Forts.) Wir behaupten: Für jede Formel F der Prädikatenlogik mit Gleichheit
und jede Zuweisung Z für J gilt:

J ,Z |= Feq genau dann wenn I,Z′ |= F

Induktionsvoraussetzung: Die Behauptung gilt für Formeln G und H (IV).

Induktionsschritte:

• Falls F = (G ∧ H), dann berechnen wir:
J ,Z |= (G ∧H)eq gdw. J ,Z |= Geq ∧Heq gdw. J ,Z |= Geq und J ,Z |= Heq gdw.IA

I,Z′ |= G und I,Z′ |= H

gdw. I,Z′ |= (G ∧ H).
• Die Fälle F = ¬G, F = (G ∨ H), F = (G→ H) und F = (G↔ H) sind analog.

• Falls F = ∃x.G, dann: J ,Z |= (∃x.G)eq gdw. J ,Z[x 7→ δ] |= Geq für ein δ ∈ ∆J

gdw.IA I,Z′[x 7→ [δ]] |= G für ein δ ∈ ∆J

gdw. I,Z′[x 7→ [δ]] |= G für ein [δ] ∈ ∆I gdw. I,Z′ |= ∃x.G.

• Der Fall F = ∀x.G funktioniert analog. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 15 Folie 16 von 19

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Beweis (5)

Beweis: (Forts.) Wir behaupten: Für jede Formel F der Prädikatenlogik mit Gleichheit
und jede Zuweisung Z für J gilt:

J ,Z |= Feq genau dann wenn I,Z′ |= F

Induktionsvoraussetzung: Die Behauptung gilt für Formeln G und H (IV).

Induktionsschritte:

• Falls F = (G ∧ H), dann berechnen wir:
J ,Z |= (G ∧H)eq gdw. J ,Z |= Geq ∧Heq gdw. J ,Z |= Geq und J ,Z |= Heq gdw.IA

I,Z′ |= G und I,Z′ |= H gdw. I,Z′ |= (G ∧ H).

• Die Fälle F = ¬G, F = (G ∨ H), F = (G→ H) und F = (G↔ H) sind analog.

• Falls F = ∃x.G, dann: J ,Z |= (∃x.G)eq gdw. J ,Z[x 7→ δ] |= Geq für ein δ ∈ ∆J

gdw.IA I,Z′[x 7→ [δ]] |= G für ein δ ∈ ∆J

gdw. I,Z′[x 7→ [δ]] |= G für ein [δ] ∈ ∆I gdw. I,Z′ |= ∃x.G.

• Der Fall F = ∀x.G funktioniert analog. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 15 Folie 16 von 19

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Beweis (5)

Beweis: (Forts.) Wir behaupten: Für jede Formel F der Prädikatenlogik mit Gleichheit
und jede Zuweisung Z für J gilt:

J ,Z |= Feq genau dann wenn I,Z′ |= F

Induktionsvoraussetzung: Die Behauptung gilt für Formeln G und H (IV).

Induktionsschritte:

• Falls F = (G ∧ H), dann berechnen wir:
J ,Z |= (G ∧H)eq gdw. J ,Z |= Geq ∧Heq gdw. J ,Z |= Geq und J ,Z |= Heq gdw.IA

I,Z′ |= G und I,Z′ |= H gdw. I,Z′ |= (G ∧ H).
• Die Fälle F = ¬G, F = (G ∨ H), F = (G→ H) und F = (G↔ H) sind analog.

• Falls F = ∃x.G, dann: J ,Z |= (∃x.G)eq gdw. J ,Z[x 7→ δ] |= Geq für ein δ ∈ ∆J

gdw.IA I,Z′[x 7→ [δ]] |= G für ein δ ∈ ∆J

gdw. I,Z′[x 7→ [δ]] |= G für ein [δ] ∈ ∆I gdw. I,Z′ |= ∃x.G.

• Der Fall F = ∀x.G funktioniert analog. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 15 Folie 16 von 19

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Beweis (5)

Beweis: (Forts.) Wir behaupten: Für jede Formel F der Prädikatenlogik mit Gleichheit
und jede Zuweisung Z für J gilt:

J ,Z |= Feq genau dann wenn I,Z′ |= F

Induktionsvoraussetzung: Die Behauptung gilt für Formeln G und H (IV).

Induktionsschritte:

• Falls F = (G ∧ H), dann berechnen wir:
J ,Z |= (G ∧H)eq gdw. J ,Z |= Geq ∧Heq gdw. J ,Z |= Geq und J ,Z |= Heq gdw.IA

I,Z′ |= G und I,Z′ |= H gdw. I,Z′ |= (G ∧ H).
• Die Fälle F = ¬G, F = (G ∨ H), F = (G→ H) und F = (G↔ H) sind analog.

• Falls F = ∃x.G, dann: J ,Z |= (∃x.G)eq gdw. J ,Z[x 7→ δ] |= Geq für ein δ ∈ ∆J

gdw.IA I,Z′[x 7→ [δ]] |= G für ein δ ∈ ∆J

gdw. I,Z′[x 7→ [δ]] |= G für ein [δ] ∈ ∆I gdw. I,Z′ |= ∃x.G.

• Der Fall F = ∀x.G funktioniert analog. □
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Strukturelle Induktion

Die gezeigte Variante von Induktion heißt strukturelle Induktion.

• Vollständige Induktion auf natürlichen Zahlen: Ist E eine Eigenschaft, so dass gilt:
(1) die Zahl 0 hat E und (2) eine natürliche Zahl n > 0 hat E falls ihr Vorgänger n− 1
E hat; dann haben alle natürlichen Zahlen die Eigenschaft E.

• Strukturelle Induktion auf Formeln: Ist E eine Eigenschaft, so dass gilt: (1) atomare
Formeln haben E und (2) eine nicht-atomare Formel F hat E falls ihre maximalen
echten Teilformeln E haben; dann haben alle Formeln die Eigenschaft E.

Allgemein kann man Induktion über jede induktiv definierte syntaktische Struktur
durchführen (Formeln, Terme, Programme, . . . ).

Beispiel: Induktion auf der Insel der Wahrheitssager und Lügner. Ein Einwohner ver-
kündet: „Was ich jetzt sage, das habe ich schon einmal gesagt.“ Welchen Typ hat er?
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Zusammenfassung und Ausblick

Logisches Schließen ist ein Kernproblem der Prädikatenlogik; es entspricht
verschiedenen konkreten Fragen (Folgerung, Unerfüllbarkeit, Allgemeingültigkeit).

Logisches Schließen über logischen Aussagen mit Gleichheit kann auf logisches
Schließen ohne Gleichheit reduziert werden.

Strukturelle Induktion ist eine wichtige Beweismethode, um mit wenigen (endlich vielen)
Schritten zu zeigen, dass eine Eigenschaft für alle (unendlich vielen) Formeln gilt.

Was erwartet uns als nächstes?

• Unentscheidbarkeit des logischen Schließens

• Ein konkretes Verfahren zum logischen Schließen

• Gödels Unvollständigkeitssätze
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Bildrechte

Folie 2: (von oben)

• Aristoteles-Büste, römische Kopie, nach einer Skulptur des Bildhauers Lysippos,
gemeinfrei

• Gemälde von Johann Friedrich Wentzel d. Ä. (Ausschnitt), um 1700, gemeinfrei

• Fotografie von 1912, gemeinfrei

• Fotografie, um 1924, gemeinfrei
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