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Abstract—The Semantic Web comprises enormous volumes of semi-structured data elements. For interoperability, these elements
are represented by long strings. Such representations are not efficient for the purposes of applications that perform computations over
large volumes of such information. A common approach to alleviate this problem is through the use of compression methods that
produce more compact representations of the data. The use of dictionary encoding is particularly prevalent in Semantic Web database
systems for this purpose. However, centralized implementations present performance bottlenecks, giving rise to the need for scalable,
efficient distributed encoding schemes. In this paper, we propose an efficient algorithm for fast encoding large Semantic Web data.
Specially, we present the detailed implementation of our approach based on the state-of-art asynchronous partitioned global address
space (APGAS) parallel programming model. We evaluate performance on a cluster of up to 384 cores and datasets of up to 11 billion
triples (1.9 TB). Compared to the state-of-art approach, we demonstrate a speed-up of 2.6− 7.4× and excellent scalability. In the
meantime, these results also illustrate the significant potential of the APGAS model for efficient implementation of dictionary encoding
and contributes to the engineering of more efficient, larger scale Semantic Web applications.
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1 INTRODUCTION

THE Semantic Web possesses a number of significant
advantages over the traditional web, such as amenabil-

ity to machine processing, information lookup and knowl-
edge inference. This model of the web is founded on the
concept of Linked Data [1], a term used to describe the
practices of exposing, sharing and connecting information
on the web using recent W3C specifications such as RDF
and URIs. As Linked Data increasingly exposes data from
multiple domains, such as general knowledge (DBpedia [2]),
bioinformatics (Uniprot [3]), and GIS (linkedgeodata [4]),
the potential for new knowledge synthesis and discovery
increases immensely. Capitalizing on this potential requires
Semantic Web applications which are capable of integrating
the information available from this rapidly expanding web.

This web is build on the W3C’s Resource Description
Framework (RDF) [5] - a schema-less, graph-based data
format which describes the Linked Data model in the
form of subject-predicate-object (SPO) expressions based
on statements of resources and their relationships. These
expressions are known as RDF triples. As an exam-
ple, the simple statement from DBpedia (<dbpedia:IBM>,
<dbpedia-owl:foundation-Place>, <dbpedia:New-York>)
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conveys the information that the corporation IBM was
founded in New York. The Semantic Web already contains
billions of such statements and this number is growing
rapidly. As the terms in an RDF statement consist of long
string characters in the form of either URIs or literals,
storing and retrieving such information directly on an un-
derlying database, namely a triple store, will result in (1)
unnecessarily high disk-space consumption and (2) poor
query performance (querying on strings is computationally
intensive).

Dictionary encoding has been shown to be an efficient
way to ameliorate these problems. Using dictionary encod-
ing all the terms are replaced by numerical ids through a
mapping dictionary, and all the original triples are finally
converted to id triples before storing. The conventional
encoding approach is that all the terms retrieve their ids
through sequential access of a single dictionary an approach
which is easy to implement but not suitable for compressing
large data sets due to time of execution and memory require-
ments. Consequently, encoding triples in parallel based on a
distributed architecture with multiple dictionaries, becomes
an attractive choice for this problem.

While many approaches focus on data compression ra-
tios or corresponding query performance, in this work, we
instead establish the following two performance goals: (1)
Large data - our target is to encode (i.e. compress) huge
RDF datasets, so as to meet the big data challenges from
large data warehouses and the Semantic Web. (2) Fast speed
- we focus on achieving high throughput performance, so
that the encoded data can undergo further downstream
processing as quickly as possible.

To achieve these targets we developed a custom en-
coding algorithm for massive RDF datasets. The approach
is implemented using the Asynchronous Partitioned Global
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Address Space (APGAS) model programming language -
X10 [6], and we conduct a performance evaluation on an
experimental configuration consisting up to 384 cores (32
nodes) and datasets comprising of up to 11 billion triples
(1.9 TB). We summarize our contributions as follows:

• We analyse the challenges of dictionary encoding of
large-scale RDF data over a distributed system, and
discuss the possible performance issues of current
methods.

• We present a very efficient approach to encoding
large RDF datasets. The algorithm is easy on imple-
mentation and has obvious performance advantages
compared to the state-of-art-method [7].

• We describe a detailed implementation of our al-
gorithm using the latest parallel programming lan-
guage X10, and propose several optimization steps.
We also give a brief theoretical analysis of the pro-
posed implementation.

• We conduct an extensive evaluation of our approach
and compare its performance with the state-of-the-
art. The results demonstrate that our implementation
is faster (by a factor of 2.6 to 7.4), can deal with incre-
mental updates in an efficient manner and supports
both disk and in-memory processing.

This paper builds upon our earlier work [8]. Here, we
introduce four new innovations: (a) We provide a detailed
analysis of challenges inherent in massive RDF data encod-
ing and use this to explain the shortcomings in the current
state-of-the-art. (b) We conduct a more detailed comparison
between our approach and state-of-the-art including a the-
oretical analysis. (c) We present a detailed version of our
algorithm using X10 and present its scalability performance
versus input dataset size and number of computation cores
based a theoretical analysis. (d) We conduct a more detailed
analysis of our experimental results.

The rest of this paper is organized as follows: Section 2
provides a review of related work including the details of
the state-of-art method. Section 3 presents the challenges
of distributed implementation of RDF dictionary encoding.
Section 4 introduces the proposed RDF compression algo-
rithm and Section 5 gives the detailed implementation using
X10. Section 6 discusses optimizations and improvements
to the implementation. Section 7 describes the experimental
framework while Section 8 provides a quantitative evalua-
tion of the algorithm. Section 9 concludes the paper.

2 RELATED WORK

Compression Approaches. Compression has been exten-
sively studied in various database systems, and has been
considered as an effective way to reduce the data footprint
and improve overall query processing performance [9] [10].

In terms of efficient storage and retrieval of RDF data, the
techniques of data compression have been widely applied to
the Semantic Web. Fernández et al. [11] show that universal
compression methods (like gzip) can achieve a high com-
pression, due to the structured graph nature of RDF data.
Lee et al. [12] present an even more efficient compression
scheme for URI references and achieve an improvement of
between 19.5 and 39.5% over traditional methods. Weaver

et al. [13] propose a syntax for RDF called Sterno and shows
that Sterno documents can achieve a compression ratio
of under 50%. These methods are geared toward efficient
storage and transfer, as opposed to having direct access to
the data for efficient processing.

To enable RDF triples to be efficiently accessed without
prior decompression, various compression approaches have
been proposed as well. Yuan et al. [14] try to reduce the
storage overhead of common prefixes in IRIs by splitting
them based on the last occurrence of ‘/‘ character. In this
case, the same prefix appears in all IRIs will be stored only
once. Bazoobandi et al. [15] further exploits the high degree
of similarity between RDF terms and compress the common
prefixes with a variation of a Trie. Moreover, Fernández
et al. [16] propose a solution called HDT, which is a bi-
nary serialization format optimized for RDF storage and
transmission. All these methods are shown to be able to
efficiently reduce memory consumption without compro-
mising significantly the encoding and decoding speed for
large datasets. However, all these designs focus on single-
machine implementation and lack in scalability.

A MapReduce-based implementation of HDT [17] has
been proposed recently. This work focuses on building an
HDT serialization in a MapReduce environment, as opposed
to the encoding scalability issue we address in this work.

Dictionary Encoding. Compared to above compression
techniques, we focus on dictionary encoding in this work.
The reason is that this approach is widely used in current
systems. Not only for RDF stores, like Jena [18], Sesame [19],
RDF-3X [20] and Virtuso [21] etc., but also in existing DBMS,
such as Oracle [22], MonetDB [23] etc. However, to the best
of our knowledge, all existing solutions are still based on
single node implementation and do not avail of the poten-
tial speed-up possible through parallel implementations. In
the meantime, though various distributed solutions used
to manage RDF data have been proposed in the litera-
ture [24] [25] and [26], their main focus is on data distribu-
tion after all the statements have been encoded. Currently,
there exist only two methods focusing on parallel dictionary
encoding of RDF data. One is based on parallel hashing [27]
and the other uses the MapReduce framework [7].

Goodman et al. [27] adapt the linear probing method
on their Cray XMT machine and realize parallel encoding
on a single dictionary through parallel hashing, exploiting
specialized primitives of the Cray XMT. Their evaluation
has shown that their method is highly efficient and the run-
time is linear with the number of used cores. This method
requires that all data is kept in memory and is deeply
reliant on the shared memory architecture of the Cray
XMT, making it unsuitable for distributed memory systems
using commodity hardware. They report an improvement
of 2.4 to 3.3 compared to the MapReduce system on an in-
memory configuration. By comparison, on similar datasets,
our approach, as we will see, outperforms the MapReduce
system by a factor of 2.6 to 7.4, both on-disk and in-memory.

Compared with [27], the method proposed by Urbani
et al. [7] is more general that it can be run on ordinary
clusters and on-disk. As such, we consider this the state-
of-the-art method. The main workflow of the approach is:
(a) all the statements are parsed into terms, the popular
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terms are extracted by sampling the whole data set and
their responsible term-id mappings are broadcast to all the
computation nodes, (b) the rest non-popular terms is hash-
redistributed and identifiers are assigned remotely, and (c)
the ids of the non-popular terms are redistributed based on
their locality information to re-construe the final encoded
statements.

This approach [7] presents an efficient way to processes
high-popularity terms as the ids of these terms can be
assigned locally at each node after the broadcasting. This
dramatically improves load balancing and speeds up com-
putation. The method has been implemented over MapRe-
duce [28] and the evaluation has shown that the approach
scales very well. Regardless, as we will show in Section 3,
there still exists possible issues for this method. More-
over, our new proposed approach is approved to be faster
than [7], from both theoretical and experimental aspect.

Programming Systems. To support parallel and distributed
applications, various parallel programming languages and
paradigms have been developed by the high performance
community. MPI [30] and OpenMP [31] are the most com-
mon distributed memory and shared memory parallel exe-
cution techniques. More recently, Partitioned Global Address
Space (PGAS) based parallel programming languages such
as Chapel [32], Unified Parallel C [33], and X10 [6], etc, have
witnessed an increasing in adoption, due to the higher level
of programming approach compared to MPI and OpenMP.
Moreover, X10 in particular enables extraction of shared
memory and distributed memory parallelism, while also
providing type safety.

Similarly, the large scale data-analytics community has
developed its own set of parallel processing paradigms. For
example, the most popular ones include MapReduce [28]
and the lately Spark [34]. Moreover, to support ad-hoc
data access, various key-value stores such as HBase [35]
Cassandra [36] and Redis [37] have been designed.

It is obvious that implementing an application using
different languages and systems mentioned above would
lead to different application execution times. Regardless, we
argue that the technique for parallel execution rather than
the language or library used for implementation is more
important and the key contribution of this paper.

For example, for the RDF compression application, as
we will shown in Section 3.2, a simple hash-based dictio-
nary encoding approach would always bring in poor load-
balancing and heavy network communication, irrespective
of the underlying implementation system. In such a sce-
nario, a pure performance comparison between the un-
derlying implementation technology used is meaningless.
Our focus is on the new methodology letting the designer
choose the underlying implementation engine that fulfills
their requirements.

In this work, based on our own requirements, we have
chosen the X10 programming language for implementation
purposes1. X10 has been developed for more than 10 years
and has been widely studied in high performance com-

1. Actually, during the development of a real RDF engine [38], we
have found that X10 is a good candidate for programming complex
systems. In comparsion, programming a HPC-based query engine
using MPI is extremely hard.

puting and programming language communities (e.g. X10
workshop at PLDI). In the later sections, we will present the
detailed implementation of our approach based on X10 and
provide the detailed experimental evaluations and analysis
to this state of art APGAS-based language. We will also
summarize the advantages of this language based on our
own development experience in the hope that the big data-
analytics community would consider X10 as a viable choice
in their next big project.

3 CHALLENGES

In this section, we first list the challenges of distributed
dictionary encoding of RDF data. Then, we discuss the
possible performance issues of the state-of-art and outline
the key research challenges addressed in this work.

3.1 Challenges on Distributed Systems
In the environment we are considering, RDF data is par-
titioned and then compressed using a dictionary on each
computation node. However, under this model there exist
three main challenges:

Challenge 1. Consistency - a term appearing on different
compute nodes should have the same id. Both in space
and time, the mapping of a term must always maintain
its uniqueness. For example, once the term “dbpedia:IBM”
is first encoded as id “101” on node A, when encoding this
string on another node B, we should also use the same value
“101”. Hash functions are potentially useful, but the length
of the hash required to avoid collisions when processing
billions to terms makes the space cost prohibitive.

Challenge 2. Performance - ensuring consistency based on
naive methods can lead to serious performance degradation.
We can ensure the consistency of the compression in the
above example by copying the mapping [dbpedia:IBM, 101]
from node A to node B, but network communication cost
and dealing with concurrency (e.g. locking on data struc-
tures) would lead to poor performance.

Challenge 3. Load balancing - the heavy skew of terms
may lead to hotspots for the nodes responsible for encoding
these popular terms. Compared with the two issues above,
load balancing presents a bigger challenge as the distribu-
tion of terms in the Semantic Web is highly skewed [39]. To
illustrate this skew, we have computed the distribution of
the number of a term appears for two real RDF datasets:
BTC2011 [29] and Uniprot [3], which contain 2.2 billion and
6.1 billion statements respectively2. The statistic information
of a term appears is demonstrated in Figure 1. It can be
seen that there exist both popular (e.g. predefined RDF and
RDFS vocabulary) and unpopular terms (e.g. identifiers for
entities that only appear for a limited number of times)
in both datasets. For a distributed system, like ours, any
compression algorithm needs to be carefully engineered so
that good network communication and computational load-
balance are achieved. If terms are assigned using a simple
hash distribution algorithm, the continuous re-distribution
of all the terms would undoubtedly lead to an overloaded
network. Furthermore, popular terms would lead to load-
balancing issues.

2. The details information of the two datasets see Section 7.2
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Fig. 1. The distribution of the number a term appears of two large RDF datasets (BTC2011 [29] and Uniprot [3]). The horizon-axis means the
number a term appears and the vertical-axis means the number of different terms for a given appear time. For example, there are 763 different
terms that appear 1000 times for the BTC2011 dataset (left).

TABLE 1
Table of notations

Notation Meaning

T a RDF dataset
|T | the number of terms in T
n the number of computing nodes in the system
x h the portion of high-popular terms in T
x m the portion of mid-popular terms in T
Wi number of to be encoded terms on each node for the i-th algorithm
Ni the number of transferred terms for the i-th algorithm
Li the load imbalancing factor for the i-th algorithm
π the duplicate-removing projection operator

3.2 Analysis of Current Approaches
For the sake of explanation, let us categorize terms into
three groups: high-popularity terms that appear highly fre-
quently, medium-popularity terms that appear a moderate
times and low-popularity terms that appear less than a
handful of times. For example, for the datasets demon-
strated in Figure 3, based on a threshold, we can assume that
a term appears more than 10000 times is as considered high-
popularity, appears less than 100 as low-popularity and the
rest as medium-popularity.

As a typical dictionary encoding process includes three
main phases: transfer terms to remote nodes, create term-
id mappings and transfer the mappings back. For simplifi-
cation, here we just focus on the first phase and track the
number of transferred/received terms, as this metric gives
the insight into the workloads and network communication.
For example, the larger the number of to be encoded terms
a node receives, the greater the associated workload will be.
In addition, we assume that the skew of the high- and mid-
popular terms are evenly distributed and the low-popularity
terms is uniform distributed. For convenience, we use the
notations in Table 1.

For a simple hash redistribution method, all the terms of
T are redistributed to all the nodes, therefore the number of
transferred terms N1 and the number of received terms on
each node of W1 will roughly be:

N1 = |T | (1)

W1 =

{
xh|T |+ xm|T |+ (1−xh−xm)|T |

n (hot nodes)
(1−xh−xm)|T |

n (non-hot nodes)

Thus, the ratio of skewed terms on the hot nodes over the
number of terms on a non-hot node, namely the value of the
load-imbalancing factor L1, is

L1 = 1 + n · xh + xm
1− (xh + xm)

(2)

If the high- and med-popular terms dominate about 1%
of T and n is 100, then L1 will be about 2, which means
that there will exist obvious load-imbalancing during the
encoding implementation.

The state-of-the-art MapReduce-based approach [7] uses
an efficient way to process the high popular terms. In that
case, large number of these terms will not be redistributed
at all, instead, just a small number of pre-defined term-
id mappings3 π(xh|T |) are broadcast. In the meantime,
other terms are hash redistributed as usual4. Therefore, the
number of transferred terms N2 of the approach [7] is:

N2 = n · π(xh|T |) + xm|T |+ (1− xh − xm)|T | (3)

Moreover, the broadcast mappings do not need to be en-
coded, and the mid- and low-popular terms are hash redis-
tributed as usual, therefore, after the term transferring that
we have the number of terms to be encoded on each node
W2 is:

W2 =

{
xm|T |+ (1−xh−xm)|T |

n (hot nodes)
(1−xh−xm)|T |

n (non-hot nodes)

Compared to the hash-based method, we can see that
the network communication is highly reduced because
the number each high-popular term appears (e.g. 20000
times) is much greater than n and consequently there is
n · π(xh|T |) � xh|T |. In the meantime, we have the load-
imblancing factor L2 for the MapReduce-based method:

L2 = 1 + n · xm
1− (xh + xm)

(4)

Here we have that L2 < L1, which means that the
method [7] can also improve the load-imbalancing prob-
lem, compared with a simple hash method. However,

3. For simplification, we treat a mapping as a term here.
4. In fact, a term with its detailed locality information in the form of

<key,value> are hash redistributed. Here we also choose the term for
simplification.
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the load balancing problem still exists. The reason is
that the medium-popular terms are still based on hash-
redistribution.

Moreover, we argue that for a very large-scale system
(n is large), the load imbalancing of the MapReduce-based
approach could be obvious. The reason is that the number
of low-popular terms is much greater than the high-popular
terms (i.e. xm � xh), which we can observe from the cases
shown in Figure 3. In fact, we can decrease the threshold for
high-popular terms so as to decrease xm and consequently
to reduce the load imbalancing. However, in this case, the
network communication cost could increase sharply and
consequently impact the encoding performance. The reason
is that the broadcast operation in a distributed system is
always time cost and the broadcast data π(xh|T |) in [7]
will highly increase with decreasing xm. For instance, for
the BTC2011 dataset, 789835 additional mappings will be
broadcast when decreasing the threshold from 10000 to
1000. This means that there is a trade-off between the net-
work communication and load-balancing for the approach
presented in [7].

As this trade-off is highly related to the definition of
high/mid popularity of terms, then the question is be-
coming to: to achieve the best performance in large-scale
scenarios, How can we reconcile efficient encoding of popular
and non-popular terms?

4 FAST DICTIONARY ENCODING OF RDF DATA

Based on the above research question, in this section, we
propose and describe the details of our RDF dictionary
encoding approach. Then, we discuss its advantages and
compare it with the state-of-the-art.

4.1 Our Approach
Consider the following eight RDF statements, using a sim-
plified notation for terms in the interest of conciseness:

<A1 p1 B1>, <A1 p1 B2>, <B1 p2 C2>, <C2 p3 D2>,
<A1 p1 B3>, <B1 p2 C1>, <B2 p2 C3>, <C1 p3 D1>

We utilise a distributed dictionary encoding method for the
input data, transforming RDF terms into 64-bit integers and
representing statements using this encoding. The data is
first divided into a number of equal-size chunks and then
assigned as input for processing on separate computation
nodes. For an example two-node system, the first four
statements are assigned to the first node and others are for
the second node. Then, the overall implementation strategy
for each node and the corresponding data flow are shown
in Figure 2, which can be divided into three separate phases
as following.

Step 1. Every statement in the input set is parsed and
split into individual terms, namely, subject, predicate, and
object5. Then the duplicates are locally eliminated by a filter,
and the extracted set of unique terms is divided into indi-
vidual groups according to their hash values. The number
of groups is set to the same as the number of nodes, and
terms with the same hash are placed in the same group.

5. Although our system can parse and process N-Quads, in the
interest of simplicity, we will only use triples for all of our explanations.

Input Statements

Remote

Dictionaries

Parsing into Terms

Filter

Grouped 

Unique

Terms

Grouped 

IDs

Local Dictionary

Local Compression

Fig. 2. RDF encoding workflow in our approach.

We assume that terms with an odd number hash to the first
node and constants with an even number hash to the second
node (e.g. B1 hashes to node 1, B2 hashes to node 2). Then,
the process on the first node will be as below. The terms in
the first group (namely {A1,p1,B1,p3}) will be sent the first
node itself and others are send to the second node, for the
following dictionary encoding.

parsing [A1,p1,B1,A1,p1,B2,B1,p2,C2,C2,p3,D2] ⇒
filter (A1,p1,B1,B2,p2,C2,p3,D2) ⇒
hash-groups {A1,p1,B1,p3} + {B2,p2,C2,D2}

Step 2. Once the grouped unique terms have been
transferred to the appropriate remote node, the term encod-
ing can commence. The term encoding implementation at
each place is similar to sequential encoding. Each received
term access the local dictionary sequentially to get their
numerical ids. In this process, if the mapping of a term
already exists, its id is retrieved, else, a new id is created,
and the new mapping is added into the local dictionary.
In both cases, the id of the encoded term is added into
a temporary array for so that it can be sent back to the
requester(s). The value of a new id is determined by the
summation of the largest id in the dictionary and the value
n, the number of nodes. This guarantees there is no clash
between term ids assigned at different nodes. Furthermore,
each id is formatted as an unsigned 64-bit integer in order
to remove limitations regarding maximum dictionary size6.
In this case, the first node could receive the ids as following.

send {A1,p1,B1,p3} + {B2,p2,C2,D2}
receive {1,3,5,7} + {2,4,6,8}

Step 3. The statements at each node can be encoded after
all the ids of the pushed terms have been pushed back.
The reason is that the terms and their respective retrieved
ids are kept in order (e.g. using arrays), and thus we can
easily build a local dictionary by insert these mappings (e.g.
<A1,1>). Once all the mappings have been inserted, we
then can encode the parsed triples kept in the first step.

Each of the above steps is implemented in parallel at
each node, and the whole encoding process terminates when
all individual nodes terminate. Namely, we will get the
encoded triples shown as below at the first node.

parsed [A1,p1,B1,A1,p1,B2,B1,p2,C2,C2,p3,D2] ⇒
encoded <1 3 5>, <1 3 2>, <5 4 6>, <6 7 8>

6. It is possible to use arbitrary- or variable-length ids in order to
further optimize space utilization, but this is beyond the scope of this
paper.
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A1,p1,B1,A1,p1,B2,B1,p2,C2,C2,p3,D2

A1,p1,B1,p3 B2,p2,C2,D21,3,5,7 2,4,6,8

Remote Dictionary 1 Remote Dictionary 2

Local Dictionary 1 Local Dictionary 2

sendreceive

Fig. 3. An example of triple encoding process on a single node.

4.2 Discussion of Our Method
To better understand our approach, Figure 3 provides a
more intuitive view of how the term-id mappings are cre-
ated so as to build the local dictionary for encoding, for
the example as we described above. Based on this, here we
highlight two techniques we have used and show how they
guarantee the efficiency of our approach.

Technique 1. A filter structure (for example the simple
hashset we used): we only extract the unique terms that
need to be transferred to remote nodes. This is done for all
terms irrespective of their popularity. Namely, for all low,
medium and high-popularity terms, the filter guarantees
that they will be moved to a remote node just once per
current node. For instance, the term A1 appears two times
on node 1 in the above example, regardless, we only need
to send it once. This processing will be very efficient for
handling the data skew characterising Semantic Web data.
Moreover, the network communication will be highly re-
duced, as the redundant data transferring are removed.

Technique 2. Advanced two-sided communication pattern:
we only send terms and retrieve the required ids. For
example, we send a term B2 and receive the id 2, then we
know there is a mapping relationship between them. This is
different from current methods (e.g. retrieving <term, id>
for a simple hash method or transfer additional term or id
location information for the MapReduce-based method) and
will further reduce network cost on data transferring. The
reason is that we can always keep the transferred strings and
retrieved ids in the same sequence (e.g. by array indexes), so
that the<term, id> pairs can be easily used to built the local
dictionary and encode the parsed triples as we described in
the Step 3.

4.3 Comparison to the State-of-the-art
We compare the proposed method and the work [7] in two
aspects, in terms of theoretical and practical analysis. In the
former case, we are concentrate on inherent performance
comparison between the two methodologies, while in the
latter case we focus on the their general implementations.

Theoretical-analysis. Following the analysis in Sec-
tion 3.2, as we only transfer the unique terms, thus the
network communication N3 of our approach is:

N3 = π(|T |) (5)

Furthermore, following the assumption that the skew of
high and mid-popular terms are evenly distributed7 (i.e.

7. Note that this is the worst case for our method. In best case, each
popular term will be sent only once.

each popular term will be sent once per node), we have
that the number of received terms on each node W3 is:

W3 = π(xh|T |) + π(xm|T |) +
(1− xh − xm)|T |

n

On the basis of W3, the load imbalance factor of our ap-
proach L3 is:

L3 = 1 (6)

Comparing Equations (5) and (6) with the Equations (1)
and (3) presented in Section 3.2, we have N3 < N2 and
L3 < L2. This means that our approach can further reduce
the network communication and load-imbalance, compared
to the method presented in [7]. More important,L3 is always
equal to 1, meaning that our approach can always achieve
an optimal load-balance, which is very important for a
distributed implementation. Additionally, as all received
terms on each node will be computed (i.e. encoded) after
data transferring, we receive less terms, indicating that our
approach will have less computation cost.

Looking back to the whole dictionary encoding process,
we use very straightforward but efficient way to implement
the encoding, in that we only need to send unique terms to
remote dictionaries and retrieve their ids, but not transfer
any triples at all. In comparison, the method in [7] has to
decompose all the triples in the form of <key,value> pairs
and redistribute all of them among all the nodes. Further-
more, all the terms have to be redistributed again after the
encoding process so as to reconstruct all the triples. This
could incur even more heavy network communication and
computation costs than our theoretical analysis above. All
these analysis will guarantee that our real implementation
is much faster then the implementation in [7]. We will give
their detailed performance comparison (including network
communication) in our evaluations in Section 8.

Practical-analysis. In a real-world application, there are
two further advantages using our approach: (a) Simpler
implementation. In order to handle data skew, we just need
a simple local filter operation, while the approach in [7] has
a more complex global sampling and quantification oper-
ation. (b) More robust performance. Our implementation
does not need any input parameters while the performance
of the proposal [7] will be impacted by the chosen threshold,
which is very not easy to get for different inputs.

In terms of program implementation choice, our method
can be implemented by many HPC parallel programming
languages or frameworks (e.g. [6], [33], [40]) that support
building efficient distributed memory programs. One such
HPC programming language is X10, which we use in this
paper. In comparison, the approach presented in [7] has to
use additional numbers to record the detailed locality of
information of each term or id so as to realize the transfer
and retrieval processes, which means <key,value> pairs will
be the ideal form for the processed data. Moreover, their
broadcast behavior also replies on synchronization. This
makes the MapReduce platform [28] to be the first choice
to implement their approach.

Discussion. We will compare the detailed performance
of our approach and the implementation in [7]. We acknowl-
edge that implementations over different programming sys-
tems could bring in different runtime, which could warp
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our judgments on which approach is faster. This could be
obvious especially when comparing with the MapReduce
platform, because of its overhead on starting new jobs and
system I/O between each job, which could decrease the
application performance. However, we argue that the reason
why our implementation will be faster than [7] is indepen-
dent on underlying systems, and inherent to our method.
This conclusion can be got not only from the theoretical
analysis we presented above, but also be supported by our
experimental results. For example, in Section 8.1, we have
shown that on an implementation over distributed memory
(to remove the effect of I/O), our implementation is 4139
secs faster than [7] for the Uniprot dataset (the largest real
RDF dataset we used). Given that the number of jobs started
in the MapReduce implementation is not large (i.e. three
jobs), the overheads alone will not be able to explain this
difference.

5 IMPLEMENTATION IN X10
In this section, we describe the detailed implementation of
our RDF compression algorithm using X10.

5.1 An Overview of X10
X10 [6] is a multi-paradigm programming language de-
veloped by IBM. It supports the APGAS model and is
specifically designed to increase programmer productivity,
while being amenable to programming shared memory and
distributed memory supercomputers. It uses the concepts
of place and activity as the kernel notions to exploit
parallelism in the available hardware. A place is a logi-
cal abstraction of the underlying heterogeneous processing
element in the hardware such as cores in a multi-core
architecture, GPUs, or a whole physical machine. Activities
are light-weight threads that run on places. X10 schedules
activities on places to best utilize the available parallelism.
The number of places is constant through the life-time of an
X10 program and is initialized at program startup. Activities
on the other hand can be forked at program execution time.
Forking an activity can be blocking, wherein the parent
returns after the forked activity completes execution, or
non-blocking, where in the parent returns instantaneously,
after forking an activity. Furthermore, these activities can be
forked locally or on a remote place.

X10 provides an important data structure called dis-
tributed arrays (DistArray) for programming parallel al-
gorithms. It is very similar to a conventional Array, except
that elements are distributed among multiple places and one
or more elements in the DistArray can be mapped to a
single place using the concept of points [6]. Additionally,
we used the following three crucial parallel programming
constructs for our compression implementation.

• at(p) S: this construct executes statement S at a
specific place p. The current activity is blocked until
S finishes executing on p.

• async S: a child activity is forked by this con-
struct. The current activity returns immediately (non-
blocking) after forking S.

• finish S: this construct is used to block the current
activity and then waits for all activities forked by S
to terminate.

Algorithm 1 Initialization
1: the number of places: P
2: Global initialize DistArray objects: dict term c local key c lo-

cal value c remote key c
3: finish async at p ∈ P {
4: // here the current place in X10
5: dict(here):hashmap[string,long]
6: term c(here):array[string]
7: local key c(here):array[array[string]]
8: local value c(here):array[remote array[long]]
9: remote key c(here):array[remote array[char]] }

5.2 Parallel Implementation
Following the approach described above, we divived our
implementation in the following four phases:

Initialization. We use the DistArray objects provided
to implement our distributed data structures. The initializa-
tion for these objects, at each place, is shown in Algorithm 1.

• dict is the dictionary that maintains the term-id map-
pings during the whole compression process.

• term c collects the terms and keeps them in sequence
for subsequent encoding.

• local key c is the array that collects the groups of
unique terms that need to be sent to remote places
for encoding.

• local value c is the array that collects all the encoded
unique ids from remote places. The sequence of ids
in local value c is the same as terms in local key c,
thereby making it easy to insert the terms and their
respective encodings into the local dictionary.

• remote key c is a temporary data structure used to
receive the serialized the grouped unique terms that
are sent from remote places.

Term Grouping and Pushing. We employ a hashset
structure to process the terms and to extract the unique
terms that need to be transferred to remote places. This is
done for all terms irrespective of their popularity. Using the
hashset guarantees that any given term can possibly move
to a remote place just once, per current place.

The detailed implementation is given in Algorithm 2. A
hashset is initialized at each place. Each hashset collects
terms according to their hash values. Before adding the
parsed term into the term c queue, a term is added to the
hashset: key f, if not already present. After processing all
the triples, the filtered terms will be copied into local key c,
and then serialized and pushed to the assigned place for
further processing.

The structure local key c is kept in memory for the
later local dictionary construction as shown in Figure 2.
The serialization/deserialization process is used only when
the push array objects are neither long, int nor char,
otherwise we directly transfer the data. Since the terms
collected by each hashset are the unique ones to be sent
to remote places, the network communication and later
computational costs are significantly reduced. We use the
finish operation in this part to guarantee the completion
of the data transfer at each place before the term encoding.

Term Encoding. The term encoding commences when
the grouped unique terms have been transferred to the ap-
propriate remote places. The details of the implementation
are given in Algorithm 3.
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Algorithm 2 Filter and Push Terms
1: finish async at p ∈ P {
2: Initialize key f:array[hashset[string]](P )
3: Read in file fi
4: for triple ∈ fi do
5: terms(3)=parsing(triple)
6: for j← 0..2 do
7: des=hash(terms(j));
8: if terms(j) 6∈ key f(des) then
9: key f(des).add(term(j))

10: end if
11: term c(here).add(term(j))
12: end for
13: end for
14: Copy the terms in key c(i) to local key c(here)(i)
15: for n← 0..(P − 1) do
16: Serialize local key c(here)(n) to ser key(n)
17: Push ser key(n) to remote key c(n)(here) at the place n
18: end for }

Algorithm 3 Encode Terms and Pull Back IDs
1: finish async at p ∈ P {
2: Initialize key c:array[string], value c:array[long]
3: for i← 0..(P − 1) do
4: Deserialize remote key c(here)(i) to key c
5: for key ∈ key c(i) do
6: if key ∈ dict(here) then
7: value c.add(id)
8: else
9: id = (dict(here).size + 1) ∗ P

10: dict(here.id).put(key,id)
11: value c.add(id)
12: Out-writing <key,id>
13: end if
14: end for
15: at place(i)
16: Pull value c(i) to local value c(here)(i)
17: end for }

The received serialized char arrays, representing the
grouped unique terms, are deserialized to string arrays.
Then the terms in such arrays access the local dictionary
sequentially to get their numerical ids. In this process, if the
mapping of a term already exists, its id is retrieved, else, a
new id is created, and the new mapping is added into the
local dictionary. In both cases, the id of the encoded term is
added into a temporary array for so that it can be sent back
to the requester(s). The value of a new id is determined by
the summation of the largest id in the dictionary and the
value P, as demonstrated as Line 9.

We also write out the new mappings in this phase, as
they build up the final dictionary. Once the encoding of the
grouped unique terms is complete, we shift the activity
to the corresponding place where the terms originated, and
retrieve the ids. We then proceed in processing the following
group. All encoding happens in parallel at each place, and
we use the finish operation synchronization.

Statement Compression. The statements at each place
can be compressed after all the ids of the pushed terms
have been pulled back. Since the terms and their respective
ids are held in order inside arrays, we can easily insert
these mappings into the local dictionary. Once inserted, we
encode the parsed triples in array term c. Finally, we write
out the ids to disk sequentially as shown in Algorithm 4. The
whole compression process terminates when all individual
activities terminate. Note that, in the actual implementation,
we build a temporary hashmap to hold all the mappings and

Algorithm 4 Statement Compression
1: finish async at p ∈ P {
2: for i← 0..(P − 1) do
3: Add <key,id> from local key c(here)(i) and

local value c(here)(i) to dict(here)
4: end for
5: for term ∈ term c(here) do
6: id = dict(here).get(term).hashcode()
7: Out-writing id
8: end for }

Algorithm 5 Processing Data Chunks in Loops
1: for i← 0..(loop− 1) do
2: Assign each place c data chunks
3: Parallel processing at each place
4: end for

discard it after the encoding to optimize memory use.

6 IMPROVEMENTS

In this section, we present a set of extensions to our basic
algorithm which improve efficiency and extend the appli-
cability of the approach to a larger set of problems and
computation platforms. The section concludes with a brief
account of the theoretical complexity of our algorithm.

6.1 Flexible Memory Footprint
In our algorithm, the DistArray objects (Figure 2) are kept
in memory throughout the compression process. This limits
the applicability of the method to clusters with sufficient
memory to hold all data structures in memory.

To alleviate this problem, we divide the input data set
into multiple chunks, usually a multiple of the number of
places. The corresponding code change is shown in Algo-
rithm 5. The encoding process is divided into multiple loop
iterations corresponding to each chunk. In each of these
compression iterations, a place is assigned a specified num-
ber of chunks (line 2), while the local DistArray objects
are reused. This method makes our algorithm suitable for
nodes with various memory sizes, provided the chunks are
small enough. Note that the chunks can be made smaller
by simply dividing the input data set into more chunks.
It is expected that too many such chunks would lead to
a decrease in performance, as there would be redundant
filter and push operations for the same terms at the same
place in different loops. We assess this trade-off through the
evaluation in Section 8.2.

It is also possible that we could have insufficient memory
to store the dictionaries. Regardless, as we will show in
our experimental results, the size of dictionary is always
relative very small, compared to the whole memory of a
distributed system. On the other hand, we can store the
dictionary on disk if required. In this case, our approach
will be still keep scalable. The reason that disk-based data
searching will only increase local computing cost, but does
not impact the network communication and workload on
each computing node.

6.2 Transactional Data Processing
A commonly scenario is real-time processing of RDF data
sets. In such cases, data is inserted as part of a transaction,
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Algorithm 6 Processing Update
1: finish async at p ∈ P {
2: for <key,id> ∈ local dict do
3: table(here.id).add(key,id)
4: end for
5: Processing new data }

and normally the chunks of data inserted are very small con-
taining only a few hundred statements. In such a scenario,
there is no need to distribute data sets. Instead, one could
just compress the data set using a single cluster node. In our
prototype, the number of cluster nodes is controlled by the
X10_NPLACES option. Furthermore, parallel transactions
with multiple data sets on multiple nodes are also supported
using the same option. Finally, an optimized data-node
assignment strategy can be integrated with our implemen-
tation if needed, but such a strategy is out of the scope of
this paper. Similarly, in this paper, we do not address rolling
back transactions or deletes. In general, although our system
can be extended to support transactional loads, its main
utility is in encoding large datasets.

6.3 Incremental Update
Another typical application is the incremental update of
RDF data sets. It is often required that such systems must
encode a new dataset as an increment to already encoded
datasets. Typically, the new input data set is large. In this
scenario, local dictionaries could be read in memory before
the encoding process. The extension of our algorithms for
incremental update is shown in Algorithm 6.

6.4 Algorithmic Complexity
Our compression algorithm with the aforementioned im-
provements has a worst case computational complexity lin-
ear in the number of statements of the input datasetsO(|N |)
and the number of places O(|P |). Herein, we describe the
formulation of our worst case complexity.

For a given place, the worst case complexity of the
algorithm is |P |, where |P | is the number of places. This
complexity is determined by the largest loop at line 13
in Algorithm 2. The total complexity of the algorithm is
O(|P | × |P | × |loop|/|P |), because there are a total of |P |
places and all their implementations are nested inside the
loop variable in Figure 5. The divisor (|P |) arises because
each of these loops run in parallel. Therefore, the overall
worst case complexity is (O(|loop| × |P |)). Based on this,
(a) for a constant number of places, the complexity of
the algorithm is: O(|loop|), hence, the complexity of the
algorithm is linear in the value of loop. Next, if the size
of each chunk is fixed, assuming k triples per chunk and
the total number of triples are N, then the loop would be
(|N|/|k|/|P|). Thus, the complexity of the algorithm will be
O(N), namely linear with the number of input triples N,
and (b) similarly, for a constant input size, the complexity of
the algorithm will be O(P ) linear in the number of places
or cores in the underlying execution architecture, provided
each logical place is mapped to a single core (as in our case).

7 EXPERIMENTAL SETUP

We have conducted a rigorous quantitative evaluation of the
proposed encoding based on the setup as follows.

TABLE 2
Details information of test datasets

Dataset # Stats.
Input Size (GB) # Unique Avg. length
Plain Gzip terms /term (byte)

DBpedia 153M 25.1 3.5 20.3M 55
LUBM 1.1B 190 5.5 262.9M 58

BTC2011 2.2B 450 20.9 540.4M 51
Uniprot 6.1B 797 58.7 1024.6M 44

7.1 Platform
Each computation unit of our cluster is an iDataPlex node
with 2 Intel Xeon X5679 processors each with 6 hardware
cores running at 2.93 GHz, resulting in a total of 12 cores per
physical node. Each node has 128GB of RAM and a single
1TB SATA hard-drive. Nodes are connected by Gigabit Eth-
ernet switch. The operating system is Linux kernel version
2.6.32-220 and the software stack consists of Java version
1.6.0 25 and gcc version 4.4.6.

7.2 Setup
We have used X10 version 2.3 compiled to C++ code. We
set the X10_NPLACES to the number of cores and the
X10_NTHREADS to 1, namely, one activity per place, which
avoids the overhead of context switching at runtime.

We compare our results with the MapReduce compres-
sion programme first described in [41]. We use the latest
version, integrated into the WebPIE engine [42], running
on Hadoop v0.20.2. We set the following system parame-
ters: map.tasks.maximum and reduce.tasks.maximum to 12, the
mapred.child.java.opts to 2 GB and the rest of the param-
eters are left to the default values. The implementation
parameters are configured with the recommended values:
samplingPercentage is set to 10, samplingThreshold to 50000
and reducetasks to the number of cores. We have verified the
suitability of these settings with the authors.

We empty the file system cache between tests to mini-
mize the effects of caching by the operating system are run
the test three times, recording average values.

7.3 Datasets
For our evaluation, we have used a set of real-world and
benchmark datasets: DBpedia [2] is an extract of the struc-
tured information from Wikipedia pages represented in RDF
triples. LUBM [43] is a widely used benchmark that can
generate RDF data sets of arbitrary size. BTC [29] is a Web
crawl encoding statements as N-Quads, while Uniprot [3] is
a large collection of biological function of proteins derived
from the research literature. The detailed information of
these datasets are shown in as Table 2. There, column # Stats
gives the number of statements (triples) in each benchmark.
The size of the input data sets is given both in the terms of
plain and gzip format in columns 3 and 4. Moreover, we also
provide the detailed information of terms. For example, the
number of unique terms and the average length per term8

as columns 5 and 6. We chose these data sets because they
vary widely in terms of size and kind of data they represent.
The popularity and diversity of these datasets contributes to
an unbiased evaluation.

8. The average term length is calculated by datasetsize
#stats.×i

, where i = 3

for triples and i = 4 for N-Quads.
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TABLE 3
The compression ratio achieved

Dataset
Out. String (GB) Compr. Out. Gzip (GB) Compr.
Data Dict. ratio Data Dict. ratio

DBpedia 3.5 2.7 4.1 1.7 1.1 9.0
LUBM 24.8 17.7 4.5 13.3 3.1 11.6

BTC2011 65.6 40 4.3 32.3 9.3 10.8
Uniprot 136 46.4 4.4 66.9 17.5 9.5

8 EVALUATION

We divide the presentation of our evaluation into different
sections. Section 8.1, compares the runtime and compres-
sion performance of our algorithm against the implementa-
tion [7]. Section 8.2 examines the scalability of our algorithm
and compares it against the scalability achieved by [7].
Finally, we present the load-balancing characteristics of our
approach in Section 8.3. For conciseness, we generally refer
to our approach as X10 and the one in [7] as MapReduce in
the following.

8.1 Runtime
8.1.1 Compression
We perform the encoding using 16 nodes (192 cores) and
report the compression results achieved by our algorithm in
Table 3. The output column is composed of the compressed
statements and the corresponding dictionary tables at all
places, which includes two cases: (a) output the data in
the the form of string (column Out. String), and (b) use
gzip to further compress the strings (column Out. Gzip).
The responsible resulting compression ratio is calculated by
dividing the size of the input files (in plain format) by the
size of the total output. The compression ratios for the four
data sets in the from of string are similar: in the range of
4.1−4.5. Note that although these ratios are smaller than the
compression ratio achieved by gzip, our output data can
be processed directly. If we compress these outputs further
using gzip, then the compression ratio increase to the range
of 9.0− 11.6, which is similar as the results presented in [7].
The reason for the slightly difference could be the updates
of the RDF datasets and/or we use 64-bit integers to encode
all terms, while [7] uses smaller integers for encoding parts
of terms.

8.1.2 Runtime and Throughput
We compare the runtime and throughput between our ap-
proach and that of the MapReduce framework in two cases:
disk-based and in-memory compression. In the first case, the
reading and writing data is on disk (or HDFS based on disk).
For the latter, we process all data in memory. For memory
based I/O, we pre-read the statements in an ArrayList
at each place and also assign the output to ArrayList.
As MapReduce does not provide such mechanisms, we
instead set the path of the Hadoop parameter hadoop.tmp.dir
to a tmpfs file system resident in memory. The results
of these two cases are shown in Table 4 and Table 5. We
define runtime as the time taken for the whole encoding
process: reading files, performing encoding and writing out
the compressed triples and dictionaries. The throughput
is described in terms of two aspects: (a) rate, which is

TABLE 4
Disk-based Runtime and Rates of Compression (192 cores)

Dataset
Runtime (sec.) Rates (MB/s)

Imprv.MapR. X10 MapR. X10

DBpedia 430 59 59.7 435 7.3
LUBM 1739 453 111.9 429.5 3.8

BTC2011 2817 956 163.6 482 2.9
Uniprot 6160 1515 132.5 538.7 4.0

TABLE 5
In-memory Runtime and Rates of Compression (192 cores)

Dataset
Runtime (sec.) Rates (MB/s)

Imprv.MapR. X10 MapR. X10

DBpedia 368 50 69.8 514 7.4
LUBM 1382 254 140.8 766 5.4

BTC2011 1809 708 254.7 650.8 2.6
Uniprot 5076 937 160.8 871 5.4
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Fig. 4. Throughput of the two implementations using 192 cores, based
on disk-based and memory-based cases with the four datasets.

calculated by dividing the input size (in plain format) by the
algorithm runtime, and (b) statements processed per second
that is calculated by dividing the number of processed
statements by the runtime.

From Table 4, our approach is 2.9− 7.3× faster than the
MapReduce-based approach for disk-based computation,
and 2.6 − 7.4× for in-memory as illustrated in Table 5.
The smallest speedup occurs for the BTC2011 benchmark,
however it should be noted that in this instance, whereas
we compress N-Quads, MapReduce discards the fourth
term in the input data and just compresses the first three
terms. Moreover, the compression throughput of Uniprot
in both cases is much higher than the other three datasets.
We attribute this to the large number of recurring popular
terms and also the short length of terms, and thus the
whole dataset can be processed quickly. For example, we
can see that the average length of a term in Uniprot is
smaller than other datasets from Table 2. In the meantime,
we can calculate that each term in Uniprot appears about
17.8 times9, which is higher than that of LUBM (12.6 times)
and BTC2011 (16.3 times). Though this value in DBPedia
is the greatest one (22.6 times), the processed time of this

9. The average time a term appears is calculated by #stats.×i
#unique terms

,
where i = 3 for triples and i = 4 for N-Quads.
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TABLE 6
Processing 1M Statements in the Transactional Scenario

# Stats Avg. runtime per 10 chunks (sec.)
per chunk MapR. X10 X10 Para.

100 439 0.211 0.164
1K 441 0.359 0.391
10K 454 1.761 0.648
100K 454 17.177 2.192

dataset is very small (less than 1 minutes), the overhead of
the underlying implementation (message passing etc.) could
start to impact the throughput.

Comparing the two cases, the in-memory compression
is faster than the disk-based one for both algorithms, al-
though not dramatically so. Moreover, the improvements
we achieved in Table 5 are greater than those in Table 4
for the LUBM and Uniprot data sets, marginally greater for
DBpedia and slightly smaller for the BTC2011 data set. This
illustrates that the two algorithms gain disproportionally
from the faster I/O over different data sets (with our system
showing better gains overall). Additionally, Figure 4 shows
that the maximum number of statements processed per
second we have achieved is about 6.51M, higher than any
method in the literature.

8.1.3 Transactional
We simulated two transactional processing scenarios with
in-memory compression: (1) sequential transactions on a
single node and (2) multiple parallel transactions on mul-
tiple nodes using the LUBM data set. To simulate transac-
tions, we first encode the 1.1 billion triples in the LUBM8000
benchmark. Next, we prepare a RDF data set that contains
1M triples, split into 10K, 1K, 100, and 10 chunks, respec-
tively. After encoding is complete, we encode these new
input chunks (every 10 chunks) sequentially and record
the corresponding encoding time. For the multiple parallel
transaction scenario, we could only record the encoding
time for our implementation since Hadoop uses a central-
ized model for data storage.

Results are presented in Table 6. One can clearly observe
that our approach is orders of magnitude faster than the
MapReduce approach for the sequential case. The latter is
neither optimized nor suitable for this use-case, since the
startup overhead dominates the runtime, as evident from
the observation that the average time to process chunks with
different sizes is approximately the same. For our system,
we observe that the average runtime of our approach in-
creases with increasing chunk sizes, and the trend moves
toward linear for the sequential case. This means that, for
a single place, overhead takes a larger proportion of the
runtime.

Since we are using 192 cores and the number of chunks
used in this scenario is 10, for each transaction with the
parallel processing by our prototype, the chunks can be
compressed at once by 10 places in parallel. The results in
Table 6 show that the runtime is around 0.2 seconds when
the number of statements is less than 100 in each chunk,
which is slightly worse than our expectations for real-time
applications, although still well within an acceptable range.
Upon further analysis, we have found that this increase in

TABLE 7
Incremental Update Scenario with different chunk size

# Chunks Chunk Size
Runtime (sec.)

Imprv.MapR. X10

1 190 GB 1739 453 3.8
2 95 GB 2468 551 4.5
4 47 GB 3900 755 5.2
8 23 GB 6704 1164 5.8

program runtime is due to underlying bottlenecks in the
X10 runtime implementation, which we have not addressed
in this paper: (a) Every async call forks an underlying
pthread (Posix thread) atomically, which leads to execution
time overhead. (b) Type initializations in X10 are expensive,
because all type initializations are internally guarded by
locks. Our implementation still performs reasonably well
even with these implementation overheads.

8.1.4 Updates
We evaluate the incremental updates scenario for RDF
compression again using the LUBM8000 dataset and by
splitting it into 2, 4, and 8 chunks, respectively. The resulting
datasets are compressed in 2, 4 and 8 different executions
respectively. Before each compression cycle, we empty the
cache as to simulate real world conditions. The results
comparing our approach and MapReduce are shown in
Table 7. As expected, the performance for both algorithms
decreases with increasing number of chunks, because of
the additional process required during the encoding (e.g.
reading the dictionary into memory). However, the increase
in program runtime for our approach is much smaller than
MapReduce. A possible explanation is that because our dic-
tionary reading operation is faster, the startup overhead of
our system is lower. It is also possible that the efficacy of the
popularity caching technique used by MapReduce decreases
disproportionately as the number of chunks increases.

8.2 Scalability

We test the scalability of our algorithm by varying the
number of processing cores and the size of the input data
set. We use the LUBM benchmark in our tests as it facilitates
the generation of datasets of arbitrary size.

8.2.1 Number of Cores
We fix the input data set to 1.1 billion triples and double the
number of cores from 12 (single node) till 384. The test re-
sults for our algorithm and the MapReduce-based approach
are shown in Figure 5(a). These results demonstrate that the
run time for both algorithms decreases with an increase in the
number of cores. The speedup obtained with an increasing
number of cores compared to a baseline of 12-cores for
both algorithms is presented in Figure 5(b). In our system,
with a small number of cores, the runtime is not linear,
since for a single node there is no network communication.
Nevertheless, starting from 24 cores, the speedup becomes
almost linear (scaled speedup, not shown in the figure, is
approximately 1.95). This result supports our theoretical
analysis in Section 6.4, and we attribute the small amount
of loss to network traffic. In contrast, the speedup of the
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Fig. 5. Scalability of two algorithms: (a) encoding 1.1 billion triples
with varying the number of computation cores from 12 to 384, (b) the
corresponding speedups achieved by varying the cores, and (c) the
number of triples starts with 690 million and repeatedly double to 11
billion (192 cores, on disk)

MapReduce-based approach is almost linear (even super-
linear) initially before plateauing for values of 92 cores
and greater. This result mirrors the results obtained in [7].
There can be several reasons for the latter slowdown: we
hypothesize that may be due to load imbalance, increased
I/O traffic and platform overhead.

8.2.2 Size of Datasets
To study the scalability of our algorithm with increasing
input data size, we create a large LUBM data set with 11 bil-
lion triples, which is roughly equivalent to the LUBM80000
benchmark. We split this data set into a number of chunks,
each of which contains 140K triples, allowing us to study
the effect of loop from Algorithm 5.

We start our tests with 690 million triples and repeatedly
double the size of the input until we reach a dataset compris-
ing 11 billion triples. Additionally, for each dataset, we also
vary the number of chunks read per loop for our implementa-
tion. The results are presented in Figure 5(c). We see that the
runtime for both algorithms is nearly linear with the size of
the input data sets. We also notice that MapReduce achieves
a slightly super-linear speedup until 5.5 billion triples. After
that, MapReduce speedup becomes linear with the input
size. For our algorithm, we have experimented with 1, 5, and
10 chunks in each loop. One can see that the scalability of
our algorithm is not linear with input data when reading 1
chunk per loop. But, speedup becomes better as we increase
the number of chunks read per loop, and it matches the ideal
linear speedup scenario when reading 10 chunks per loop.
The reason may be the same as for the transactional case
mentioned above, i.e. that a large number for loop results in
additional runtime overheads as a result of forking threads
and object type initializations. Small chunks also results in
redundant filter and push operations for the same terms at
the same place in different loops. Such an interpretation is
in sympathy with our expectations described in Section 6.1.

Furthermore, Figure 5(c) investigates the trade-off be-
tween reduced memory consumption and performance as
well. For the optimal scalability case with reading 10 chunks
at a time, we need to process 10 × 140K = 1.4M triples in
each loop. Since, in Table 2, we show that 1.1 billion triples is
about 190 GB, the size of 1.4 million triples would be about
250 MB, which is well within the RAM availability of most
machines. Not withstanding this optimal case implementa-
tions using 5 chunks at a time (125 MB) and 1 chunk at a
time (25 MB) is only accompanied with little and moderate
scalability loss respectively.

8.3 Load Balancing

We measure the load-balance characteristics of our algo-
rithm in terms of five metrics defined later in this section. We
instrument our code with counters to gather data for the first
four metrics. The data for the final metric is obtained using
the tracing option provided by the X10 implementation.

• number of outgoing terms: The number of terms trans-
ferred to a remote place. This metric gives insight
into the communication load balance achieved by our
algorithm. For example, the larger the number of
outgoing terms, the greater the associated network
traffic.

• number of misses: The number of terms that are not
already encoded (missed) in the dictionary and hence
require the generation of a new id.

• miss ratio: The number of misses divided by the sum
of hit and miss for the local dictionary.

• number of processed terms: the number of terms pro-
cessed by a computing node.

• received bytes: the size of processed terms in bytes at
a computing node.

We encoded 1.1 billion LUBM triples on a varying
number of cores to gather data for the first three metrics
described above. The results are presented in Table 8. We
can see that the average values of the three metrics for all



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, 201X 13

TABLE 8
Term Information during encoding 1.1 billion triples

# Core
# Outgoing (M) # Misses (M) Miss Ratio
Max Avg. Max Avg. Max Avg.

24 11.65 11.59 10.95 10.95 95.7% 94.5%
48 5.85 5.78 5.46 5.46 96.1% 94.5%
96 2.94 2.89 2.73 2.73 96.1% 94.5%
192 1.48 1.43 1.35 1.35 96.4% 94.5%
384 0.74 0.70 0.90 0.87 96.4% 94.5%

TABLE 9
Comparison of Received Data for each computing node when

processing 1.1 billion triples using 192 cores (In millions)

Algorithm
Recv. Bytes Recv. Records

Max. Avg. Max. Avg.

MapR.

Job1 9.94 4.02 24.04 1.73
Job2 135.61 79.77 30.91 17.28
Job3 120.81 106.82 19.61 17.28

X10 194.71 187.82 1.48 1.43

the tests are very close to the maximum values, suggesting
excellent load balancing performance. The scalability of
our algorithm with an increasing number of processing
cores is highlighted well in these results. There is a clear
linear decrease in all three metrics with an increase in
the number of processing cores. Finally, the results also
illustrate a consistent almost uniform miss probability for
each dictionary. The average miss ratio is about 94.5%,
indicating that we have redundant computation on average
for 5 out of every 100 terms. This ratio approached the ideal
value of 100%, which is nevertheless difficult to achieve
in a distributed systems without significant coordination
overhead. Additionally, our implementation is still based
on the all-to-all communication, which could possibly effect
the performance. However, our system does not repartition
all the data, but only transfers the mappings that are nec-
essary for each node. In this sense, our system performs
useful computation in terms of data locality in 94.5% of
the cases, meaning that although our approach does require
communication between all nodes, only moving the data
that actually needed.

The last two metrics capture the load at each compute
node in terms of the number of terms processed and size
of data received in bytes. These metrics are important for
measuring computational load balance and are used here
to provide comparison with the performance available us-
ing the MapReduce approach. Since MapReduce divides
the whole compression into three separate jobs and the
implementation does not provide the relative metrics, we
extract the reduce input records and reduce shuffle bytes in
the reduce phase of each job from the Hadoop logs. These
two items indicate the number of records processed and the
corresponding data sizes for each of the 192 reduce tasks.

The results are summarized in Table 9 and demonstrate
that the difference between the maximum and the average
value of these metrics for our implementation is much
smaller than MapReduce, indicating better load balancing
(in addition to the results, the minimum number of bytes
received is 184.70M and the minimum number of records

received is 1.37M in our approach, also showing minimal
skew). Furthermore, when comparing the sum total of bytes
received across the two implementations, it is clear that our
proposed technique results in better performance, figures
that confirm our theoretical analysis in Section 4.3. Con-
sequently even when comparing with the reduce phase of
MapReduce, our system results in a lighter workload and
less network communication overhead.

9 CONCLUSIONS

In this paper, we have summarized the challenges of dis-
tributed dictionary encoding of RDF data and discussed
the possible performance issues of the current approaches
through theoretical analysis. Based on that, we have in-
troduced a new dictionary encoding algorithm for the fast
compression of big Semantic Web data.

We have described the detailed implementation of our
algorithm utilising the X10 parallel programming language.
We find that, using the X10, and in turn the APGAS
model, has a number of advantages: (a) flexible and effi-
cient scheduling. APGAS, like PGAS, separates tasks from
underlying concurrency model, thereby allowing one to
implement an efficient scheduling strategy irrespective of
the number of tasks forked using async. (b) APGAS being
derived from both MPI and OpenMP programming models,
extracts parallelism at both the distributed and single ma-
chine hierarchies. (c) Finally, an abstract model provided by
the async, finish, places, and activities, helps one write
short code, which is easier to debug and maintain.

We have presented an extensive quantitative evalua-
tion of the proposed algorithm and conducted a compar-
ison with a state-of-art approach using the MapReduce
model [7]. The experimental results show that our proposed
algorithm is: (a) Highly scalable both with increments in
number of cores and in the size of the dataset, (b) Com-
putationally fast, encoding 11 billion statements in about
1.2 hours, and achieving a 2.6 − 7.4× improvement over
the MapReduce-based method, (c) Flexible for various se-
mantic application scenarios, (d) Robust against data skew,
showing excellent load balancing, and (e) Suitable for use
and further development as part of a high performance
distributed system.

Actually, we have adopted the encoding algorithm in a
large RDF analysis framework [38], [44] and the preliminary
results show that the method can vastly improve data load-
ing speeds for high throughput index building. We believe
that our approach will also contribute to other semantic
applications (e.g. reasoning [42]) in large-scale distributed
scenarios.
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