General Concept Inclusions with High Confidence in Finite Interpretations

Daniel Borchmann

QuantLA Summer Workshop 2013

2013-09-12

Confident GCIs in Finite Interpretations

Use description logic ontologies to represent knowledge of certain domains

Use description logic ontologies to represent knowledge of certain domains

Problem

How to obtain these ontologies?

Use description logic ontologies to represent knowledge of certain domains

Problem

How to obtain these ontologies?

Approach

Learn ontologies from domain data

Use description logic ontologies to represent knowledge of certain domains

Problem

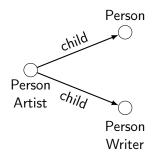
How to obtain these ontologies?

Approach

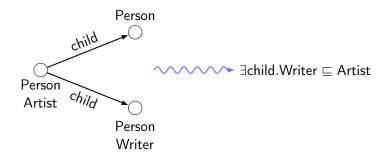
Learn first versions of ontologies from domain data

Extract terminological knowledge from factual knowledge.

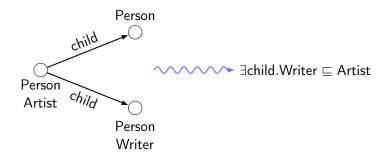
Extract terminological knowledge from factual knowledge.



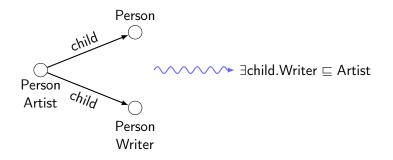
Extract terminological knowledge from factual knowledge.



Extract terminological knowledge from interpretations.



Extract finite bases of GCIs from interpretations.



 Use information from Wikipedia about famous persons and their children (via DBpedia)

- Use information from Wikipedia about famous persons and their children (via DBpedia)
- \blacktriangleright interpretation $\mathcal{I}_{DBpedia}$ with 5626 individuals, 60 concept names

- Use information from Wikipedia about famous persons and their children (via DBpedia)
- \blacktriangleright interpretation $\mathcal{I}_{DBpedia}$ with 5626 individuals, 60 concept names
- extract base of 1252 GCIs

- Use information from Wikipedia about famous persons and their children (via DBpedia)
- interpretation $\mathcal{I}_{\mathsf{DBpedia}}$ with 5626 individuals, 60 concept names
- extract base of 1252 GCIs

Some Results

- Use information from Wikipedia about famous persons and their children (via DBpedia)
- interpretation $\mathcal{I}_{\mathsf{DBpedia}}$ with 5626 individuals, 60 concept names
- extract base of 1252 GCIs

Some Results

 $\mathsf{CollegeCoach} \sqcap \mathsf{MilitaryPerson} \sqsubseteq \bot$

- Use information from Wikipedia about famous persons and their children (via DBpedia)
- interpretation $\mathcal{I}_{\mathsf{DBpedia}}$ with 5626 individuals, 60 concept names
- extract base of 1252 GCIs

Some Results

- Use information from Wikipedia about famous persons and their children (via DBpedia)
- \blacktriangleright interpretation $\mathcal{I}_{DBpedia}$ with 5626 individuals, 60 concept names
- extract base of 1252 GCIs

Some Results

$$\label{eq:collegeCoach} \begin{split} & \mathsf{CollegeCoach} \sqcap \mathsf{MilitaryPerson} \sqsubseteq \bot \\ & \mathsf{President} \sqcap \exists \mathsf{child}.\mathsf{Artist} \sqsubseteq \exists \mathsf{child}.\mathsf{Actor} \\ & \exists \mathsf{child}.\mathsf{CollegeCoach} \sqcap \exists \mathsf{child}.\mathsf{Philosopher} \sqcap \mathsf{Person} \sqsubseteq \bot \end{split}$$

- Use information from Wikipedia about famous persons and their children (via DBpedia)
- \blacktriangleright interpretation $\mathcal{I}_{DBpedia}$ with 5626 individuals, 60 concept names
- extract base of 1252 GCIs

Some Results

$$\label{eq:collegeCoach} \begin{split} & \mathsf{CollegeCoach} \sqcap \mathsf{MilitaryPerson} \sqsubseteq \bot \\ & \mathsf{President} \sqcap \exists \mathsf{child}.\mathsf{Artist} \sqsubseteq \exists \mathsf{child}.\mathsf{Actor} \\ & \exists \mathsf{child}.\mathsf{CollegeCoach} \sqcap \exists \mathsf{child}.\mathsf{Philosopher} \sqcap \mathsf{Person} \sqsubseteq \bot \end{split}$$

Observation

$\exists \mathsf{child}.\top \sqsubseteq \mathsf{Person}$

- Use information from Wikipedia about famous persons and their children (via DBpedia)
- \blacktriangleright interpretation $\mathcal{I}_{DBpedia}$ with 5626 individuals, 60 concept names
- extract base of 1252 GCIs

Some Results

$$\label{eq:collegeCoach} \begin{split} & \mathsf{CollegeCoach} \sqcap \mathsf{MilitaryPerson} \sqsubseteq \bot \\ & \mathsf{President} \sqcap \exists \mathsf{child}.\mathsf{Artist} \sqsubseteq \exists \mathsf{child}.\mathsf{Actor} \\ & \exists \mathsf{child}.\mathsf{CollegeCoach} \sqcap \exists \mathsf{child}.\mathsf{Philosopher} \sqcap \mathsf{Person} \sqsubseteq \bot \end{split}$$

Observation

$\exists \mathsf{child}. \top \sqsubseteq \mathsf{Person}$

does not hold in $\mathcal{I}_{\mathsf{DBpedia}}$

- Use information from Wikipedia about famous persons and their children (via DBpedia)
- \blacktriangleright interpretation $\mathcal{I}_{DBpedia}$ with 5626 individuals, 60 concept names
- extract base of 1252 GCIs

Some Results

$$\label{eq:collegeCoach} \begin{split} & \mathsf{CollegeCoach} \sqcap \mathsf{MilitaryPerson} \sqsubseteq \bot \\ & \mathsf{President} \sqcap \exists \mathsf{child}.\mathsf{Artist} \sqsubseteq \exists \mathsf{child}.\mathsf{Actor} \\ & \exists \mathsf{child}.\mathsf{CollegeCoach} \sqcap \exists \mathsf{child}.\mathsf{Philosopher} \sqcap \mathsf{Person} \sqsubseteq \bot \end{split}$$

Observation

$\exists \mathsf{child}.\top \sqsubseteq \mathsf{Person}$

does not hold in $\mathcal{I}_{DBpedia}$, because of 4 counterexamples: Teresa_Carpio, Charles_Heung, Adam_Cheng, Lydia_Shum.

- Use information from Wikipedia about famous persons and their children (via DBpedia)
- \blacktriangleright interpretation $\mathcal{I}_{DBpedia}$ with 5626 individuals, 60 concept names
- extract base of 1252 GCIs

Some Results

$$\label{eq:collegeCoach} \begin{split} & \mathsf{CollegeCoach} \sqcap \mathsf{MilitaryPerson} \sqsubseteq \bot \\ & \mathsf{President} \sqcap \exists \mathsf{child}.\mathsf{Artist} \sqsubseteq \exists \mathsf{child}.\mathsf{Actor} \\ & \exists \mathsf{child}.\mathsf{CollegeCoach} \sqcap \exists \mathsf{child}.\mathsf{Philosopher} \sqcap \mathsf{Person} \sqsubseteq \bot \end{split}$$

Observation

$\exists \mathsf{child}.\top \sqsubseteq \mathsf{Person}$

does not hold in $\mathcal{I}_{DBpedia}$, because of 4 erroneous counterexamples: Teresa_Carpio, Charles_Heung, Adam_Cheng, Lydia_Shum.

Outline

- 1 The Original Approach
- 2 Adding Confidence
- 3 Experiments with $\mathcal{I}_{\mathsf{DBpedia}}$
- Exploring Confident GCIs

Outline

1 The Original Approach

- 2 Adding Confidence
- 3 Experiments with $\mathcal{I}_{\mathsf{DBpedia}}$
- 4 Exploring Confident GCIs
- 5 Conclusions

Use $\mathcal{E\!L}$ and $\mathcal{E\!L}^\perp$ with usual semantics.

Use $\mathcal{E\!L}$ and $\mathcal{E\!L}^\perp$ with usual semantics.

General Concept Inclusions

Use \mathcal{EL} and \mathcal{EL}^{\perp} with usual semantics.

General Concept Inclusions

• General Concept Inclusions (GCIs) are of the form

$C \sqsubseteq D$

where C, D are \mathcal{EL}^{\perp} -concept descriptions.

Use \mathcal{EL} and \mathcal{EL}^{\perp} with usual semantics.

General Concept Inclusions

• General Concept Inclusions (GCIs) are of the form

$C \sqsubseteq D$

where C, D are \mathcal{EL}^{\perp} -concept descriptions.

• $C \sqsubseteq D$ holds in \mathcal{I} if and only if

$$C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$$

	small	medium	large	inner	outer	moon	no moon
Mercury	×			×			×
Venus	×			×			Х
Earth	×			×		×	
Mars	×			×		×	
Jupiter			×		×	×	
Saturn			×		×	×	
Uranus		×			×	×	
Neptune		×			×	×	
Pluto	×				×	×	

	small	medium	large	inner	outer	moon	no moon
Mercury	×			×			×
Venus	×			×			Х
Earth	×			×		×	
Mars	×			×		×	
Jupiter			×		×	×	
Saturn			×		×	×	
Uranus		×			×	×	
Neptune		×			×	×	
Pluto	×				×	×	

Example (Contextual Derivation)

	small	medium	large	inner	outer	moon	no moon
Mercury	×			×			×
Venus	×			×			×
Earth	×			×		×	
Mars	×			×		×	
Jupiter			×		×	×	
Saturn			×		×	×	
Uranus		×			×	×	
Neptune		×			×	×	
Pluto	×				×	×	

Example (Contextual Derivation)

 $\{ \textit{outer}, \textit{small} \}'$

	small	medium	large	inner	outer	moon	no moon
Mercury	×			×			×
Venus	×			×			Х
Earth	×			×		×	
Mars	×			×		×	
Jupiter			×		×	×	
Saturn			×		×	×	
Uranus		×			×	×	
Neptune		×			×	×	
Pluto	×				×	×	

Example (Contextual Derivation)

$$\{ outer, small \}' = \{ Pluto \}$$

	small	medium	large	inner	outer	moon	no moon
Mercury	×			×			×
Venus	×			×			×
Earth	×			×		×	
Mars	×			×		×	
Jupiter			×		×	×	
Saturn			×		×	×	
Uranus		×			×	×	
Neptune		×			×	×	
Pluto	×				×	×	

Example (Contextual Derivation)

ł

	small	medium	large	inner	outer	moon	no moon
Mercury	×			×			×
Venus	×			×			×
Earth	×			×		×	
Mars	×			×		×	
Jupiter			×		×	×	
Saturn			×		×	×	
Uranus		×			×	×	
Neptune		×			×	×	
Pluto	×				×	×	

Example (Contextual Derivation)

	small	medium	large	inner	outer	moon	no moon
Mercury	×			×			×
Venus	×			×			Х
Earth	×			×		×	
Mars	×			×		×	
Jupiter			×		×	×	
Saturn			×		×	×	
Uranus		×			×	×	
Neptune		×			×	×	
Pluto	×				×	×	

	small	medium	large	inner	outer	moon	no moon
Mercury	×			×			×
Venus	×			×			Х
Earth	×			×		×	
Mars	×			×		×	
Jupiter			×		×	×	
Saturn			×		×	×	
Uranus		×			×	×	
Neptune		×			×	×	
Pluto	×				×	×	

Observation

	small	medium	large	inner	outer	moon	no moon
Mercury	×			×			×
Venus	×			×			Х
Earth	×			×		×	
Mars	×			×		×	
Jupiter			×		×	×	
Saturn			×		×	×	
Uranus		×			×	×	
Neptune		×			×	×	
Pluto	×				×	×	

Observation

 $\{outer, moon\}'$

	small	medium	large	inner	outer	moon	no moon
Mercury	×			×			×
Venus	×			×			Х
Earth	×			×		×	
Mars	×			×		×	
Jupiter			×		×	×	
Saturn			×		×	×	
Uranus		×			×	×	
Neptune		×			×	×	
Pluto	×				×	×	

Observation

{ outer, moon }' = { Jupiter, Saturn, Uranus, Neptune, Pluto }

	small	medium	large	inner	outer	moon	no moon
Mercury	×			×			×
Venus	×			×			Х
Earth	×			×		×	
Mars	×			×		×	
Jupiter			×		×	×	
Saturn			×		×	×	
Uranus		×			×	×	
Neptune		×			×	×	
Pluto	×				×	×	

Observation

	small	medium	large	inner	outer	moon	no moon
Mercury	×			×			×
Venus	×			×			Х
Earth	×			×		×	
Mars	×			×		×	
Jupiter			×		×	×	
Saturn			×		×	×	
Uranus		×			×	×	
Neptune		×			×	×	
Pluto	×				×	×	

Observation

The implication $\{ outer \} \rightarrow \{ moon \}$ holds.

• A *formal context* is a triple $\mathbb{K} = (G, M, I)$, where G, M are sets and $I \subseteq G \times M$.

- A *formal context* is a triple $\mathbb{K} = (G, M, I)$, where G, M are sets and $I \subseteq G \times M$.
- If $A \subseteq G$, then its *derivation* in \mathbb{K} is defined as

$$A' := \{ m \in M \mid \forall g \in A \colon (g, m) \in I \}$$

- A *formal context* is a triple $\mathbb{K} = (G, M, I)$, where G, M are sets and $I \subseteq G \times M$.
- If $A \subseteq G$, then its *derivation* in \mathbb{K} is defined as

$$A' := \{ m \in M \mid \forall g \in A \colon (g, m) \in I \}$$

(A' is the set of common attributes).

- A formal context is a triple $\mathbb{K} = (G, M, I)$, where G, M are sets and $I \subseteq G \times M$.
- If $A \subseteq G$, then its *derivation* in \mathbb{K} is defined as

$$A' := \{ m \in M \mid \forall g \in A \colon (g, m) \in I \}$$

(A' is the set of common attributes).

• Analogously define B' for $B \subseteq M$ (set of *described objects*).

- A formal context is a triple $\mathbb{K} = (G, M, I)$, where G, M are sets and $I \subseteq G \times M$.
- If $A \subseteq G$, then its *derivation* in \mathbb{K} is defined as

$$A' := \{ m \in M \mid \forall g \in A \colon (g, m) \in I \}$$

 $(A' \text{ is the set of } common \ attributes).$

- Analogously define B' for $B \subseteq M$ (set of *described objects*).
- If $X, Y \subseteq M$, then the pair (X, Y) is called an *implication* of (G, M, I),

- A formal context is a triple $\mathbb{K} = (G, M, I)$, where G, M are sets and $I \subseteq G \times M$.
- If $A \subseteq G$, then its *derivation* in \mathbb{K} is defined as

$$A' := \{ m \in M \mid \forall g \in A \colon (g, m) \in I \}$$

(A' is the set of common attributes).

- Analogously define B' for $B \subseteq M$ (set of *described objects*).
- If $X, Y \subseteq M$, then the pair (X, Y) is called an *implication* of (G, M, I), written $X \rightarrow Y$.

- A formal context is a triple $\mathbb{K} = (G, M, I)$, where G, M are sets and $I \subseteq G \times M$.
- If $A \subseteq G$, then its *derivation* in \mathbb{K} is defined as

$$A' := \{ m \in M \mid \forall g \in A \colon (g, m) \in I \}$$

 $(A' \text{ is the set of } common \ attributes).$

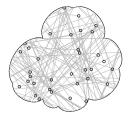
- Analogously define B' for $B \subseteq M$ (set of *described objects*).
- If $X, Y \subseteq M$, then the pair (X, Y) is called an *implication* of (G, M, I), written $X \rightarrow Y$.
- $X \to Y$ holds in \mathbb{K} if and only if $X' \subseteq Y'$.

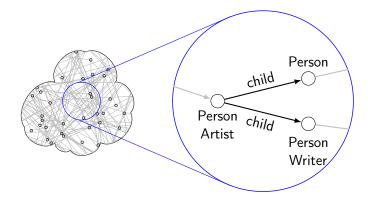
- A formal context is a triple $\mathbb{K} = (G, M, I)$, where G, M are sets and $I \subseteq G \times M$.
- If $A \subseteq G$, then its *derivation* in \mathbb{K} is defined as

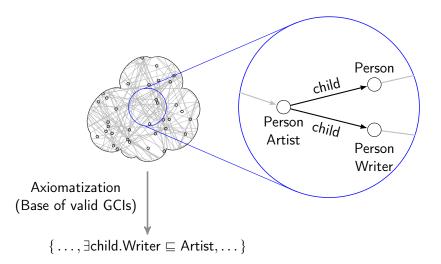
$$A' := \{ m \in M \mid \forall g \in A \colon (g, m) \in I \}$$

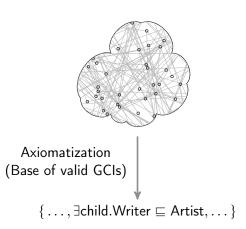
(A' is the set of common attributes).

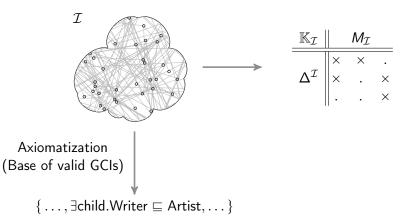
- Analogously define B' for $B \subseteq M$ (set of *described objects*).
- If $X, Y \subseteq M$, then the pair (X, Y) is called an *implication* of (G, M, I), written $X \rightarrow Y$.
- $X \to Y$ holds in \mathbb{K} if and only if $X' \subseteq Y'$.
- For each $X \subseteq M$, it is true that $X \subseteq X''$ and that $X \to X''$ is valid in \mathbb{K} .

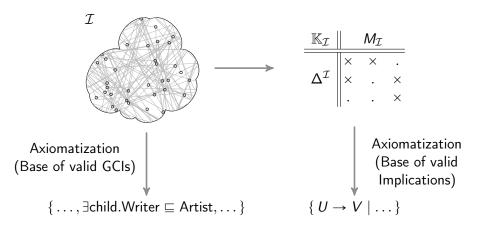


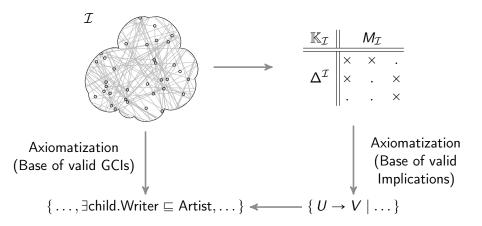












Confident GCIs in Finite Interpretations

Formal Concept Analysis provides methods to extract *implicational knowledge* from formal contexts

Formal Concept Analysis provides methods to extract *implicational knowledge* from formal contexts

Idea

Use these methods to learn GCIs from data!

Formal Concept Analysis provides methods to extract *implicational knowledge* from formal contexts

Idea

Use these methods to learn GCIs from data!

Parallels between FCA and DL

Formal Concept Analysis | Description Logics

Formal Concept Analysis provides methods to extract *implicational knowledge* from formal contexts

Idea

Use these methods to learn GCIs from data!

Parallels between FCA and DL

Formal Concept Analysis	Description Logics
objects G	individuals $\Delta^{\mathcal{I}}$

Formal Concept Analysis provides methods to extract *implicational knowledge* from formal contexts

Idea

Use these methods to learn GCIs from data!

Parallels between FCA and DL

Formal Concept Analysis	Description Logics
objects G	individuals $\Delta^{\mathcal{I}}$
attributes M	concept descriptions

Formal Concept Analysis provides methods to extract *implicational knowledge* from formal contexts

Idea

Use these methods to learn GCIs from data!

Parallels between FCA and DL

_

Formal Concept Analysis	Description Logics
objects G	individuals $\Delta^{\mathcal{I}}$
attributes M	concept descriptions
formal contexts ${\mathbb K}$	interpretations ${\cal I}$

Formal Concept Analysis provides methods to extract *implicational knowledge* from formal contexts

Idea

Use these methods to learn GCIs from data!

Parallels between FCA and DL

Formal Concept Analysis	Description Logics
objects G	individuals $\Delta^{\mathcal{I}}$
attributes M	concept descriptions
formal contexts ${\mathbb K}$	interpretations ${\mathcal I}$
implications	GCls

Formal Concept Analysis provides methods to extract *implicational knowledge* from formal contexts

Idea

Use these methods to learn GCIs from data!

Parallels between FCA and DL

Formal Concept Analysis	Description Logics
objects G	individuals $\Delta^{\mathcal{I}}$
attributes M	concept descriptions
formal contexts ${\mathbb K}$	interpretations ${\mathcal I}$
implications	GCIs
$A', A \subseteq M$	$(\Box A)^{\mathcal{I}}$

Formal Concept Analysis provides methods to extract *implicational knowledge* from formal contexts

Idea

Use these methods to learn GCIs from data!

Parallels between FCA and DL

Formal Concept Analysis	Description Logics
objects G	individuals $\Delta^{\mathcal{I}}$
attributes M	concept descriptions
formal contexts ${\mathbb K}$	interpretations ${\cal I}$
implications	GCls
$A', A \subseteq M$	$(\Box A)^{\mathcal{I}}$
$B',B\subseteq G$?

Need to describe sets $X \subseteq \Delta^{\mathcal{I}}$ as good as possible.

Need to describe sets $X \subseteq \Delta^{\mathcal{I}}$ as good as possible.

Definition

A concept description C is a model-based most-specific concept description of X if and only if

Need to describe sets $X \subseteq \Delta^{\mathcal{I}}$ as good as possible.

Definition

A concept description C is a model-based most-specific concept description of X if and only if

•
$$X \subseteq C^{\mathcal{I}}$$
 and

Need to describe sets $X \subseteq \Delta^{\mathcal{I}}$ as good as possible.

Definition

A concept description C is a model-based most-specific concept description of X if and only if

- $X \subseteq C^{\mathcal{I}}$ and
- for each D with $X \subseteq D^{\mathcal{I}}$, it is true that C is more specific than D

Need to describe sets $X \subseteq \Delta^{\mathcal{I}}$ as good as possible.

Definition

A concept description C is a model-based most-specific concept description of X if and only if

- $X \subseteq C^{\mathcal{I}}$ and
- for each D with $X \subseteq D^{\mathcal{I}}$, it is true that C is more specific than D

Difficulty

Existence can not be guaranteed in \mathcal{EL}^{\perp}

Need to describe sets $X \subseteq \Delta^{\mathcal{I}}$ as good as possible.

Definition

A concept description C is a model-based most-specific concept description of X if and only if

- $X \subseteq C^{\mathcal{I}}$ and
- for each D with $X \subseteq D^{\mathcal{I}}$, it is true that C is more specific than D

Difficulty

Existence can not be guaranteed in $\mathcal{EL}^\perp \rightsquigarrow \mathcal{EL}_{gfp}^\perp$

Need to describe sets $X \subseteq \Delta^{\mathcal{I}}$ as good as possible.

Definition

A concept description C is a model-based most-specific concept description of X if and only if

- $X \subseteq C^{\mathcal{I}}$ and
- for each D with $X \subseteq D^{\mathcal{I}}$, it is true that C is more specific than D

Difficulty

Existence can not be guaranteed in $\mathcal{EL}^\perp \rightsquigarrow \mathcal{EL}_{gfp}^\perp$

Example ($\mathcal{EL}_{gfp}^{\perp}$ Concept Description)

 $C := (A, \{A \equiv \mathsf{Writer} \sqcap \exists \mathsf{child}.B, B \equiv \mathsf{Writer} \sqcap \exists \mathsf{child}.A\})$

Set

$$M_{\mathcal{I}} := \{ \bot \} \cup N_{\mathcal{C}} \cup \{ \exists r. X^{\mathcal{I}} \mid X \subseteq \Delta^{\mathcal{I}}, X \neq \emptyset, r \in N_{\mathcal{R}} \}.$$

Set

$$M_{\mathcal{I}} := \{ \bot \} \cup N_{\mathcal{C}} \cup \{ \exists r. X^{\mathcal{I}} \mid X \subseteq \Delta^{\mathcal{I}}, X \neq \emptyset, r \in N_{\mathcal{R}} \}.$$

and define *induced formal context* $\mathbb{K}_{\mathcal{I}}$ of \mathcal{I} as $\mathbb{K}_{\mathcal{I}} = (\Delta^{\mathcal{I}}, M_{\mathcal{I}}, \nabla)$, where

$$(x, C) \in \nabla \iff x \in C^{\mathcal{I}}.$$

Set

$$M_{\mathcal{I}} := \{ \bot \} \cup N_{\mathcal{C}} \cup \{ \exists r. X^{\mathcal{I}} \mid X \subseteq \Delta^{\mathcal{I}}, X \neq \emptyset, r \in N_{\mathcal{R}} \}.$$

and define *induced formal context* $\mathbb{K}_{\mathcal{I}}$ of \mathcal{I} as $\mathbb{K}_{\mathcal{I}} = (\Delta^{\mathcal{I}}, M_{\mathcal{I}}, \nabla)$, where

$$(x, C) \in \nabla \iff x \in C^{\mathcal{I}}.$$

Theorem

Let $\mathcal I$ be a finite interpretation. If $\mathcal L$ is a base of all confident implications of $\mathbb K_{\mathcal I}$, then the set

$$\{ \prod U \to ((\prod U)^{\mathcal{I}})^{\mathcal{I}} \mid (U \to U'') \in \mathcal{L} \}$$

is a base of $\mathsf{Th}(\mathcal{I})$.

Outline

1 The Original Approach

2 Adding Confidence

3 Experiments with $\mathcal{I}_{\mathsf{DBpedia}}$

4 Exploring Confident GCIs

5 Conclusions

Recall

$\exists child. \top \sqsubseteq Person$

does not hold in $\mathcal{I}_{\mathsf{DBpedia}},$ but there are only 4 erroneous counterexamples.

Recall

$\exists \mathsf{child}.\top \sqsubseteq \mathsf{Person}$

does not hold in $\mathcal{I}_{DBpedia}$, but there are only 4 erroneous counterexamples.

Observation

From 2551 individuals satisfying ∃child.⊤, 2547 also satisfy Person, i.e.

Recall

$\exists \mathsf{child}.\top \sqsubseteq \mathsf{Person}$

does not hold in $\mathcal{I}_{DBpedia}$, but there are only 4 erroneous counterexamples.

Observation

From 2551 individuals satisfying \exists child. \top , 2547 also satisfy Person, i.e.

$$\mathsf{conf}_{\mathcal{I}_{\mathsf{DBpedia}}}(\exists \mathsf{child}.\top \sqsubseteq \mathsf{Person}) = \frac{2547}{2551}$$

The *confidence* of $C \sqsubseteq D$ in \mathcal{I} is defined as

$$\operatorname{conf}_{\mathcal{I}}(C \sqsubseteq D) := \begin{cases} 1 & \text{if } C^{\mathcal{I}} = \emptyset, \\ rac{|(C \sqcap D)^{\mathcal{I}}|}{|C^{\mathcal{I}}|} & \text{otherwise.} \end{cases}$$

The *confidence* of $C \sqsubseteq D$ in \mathcal{I} is defined as

$$\operatorname{conf}_{\mathcal{I}}(C \sqsubseteq D) := \begin{cases} 1 & \text{if } C^{\mathcal{I}} = \emptyset, \\ \frac{|(C \sqcap D)^{\mathcal{I}}|}{|C^{\mathcal{I}}|} & \text{otherwise.} \end{cases}$$

Let $c \in [0, 1]$. Define

$$\mathsf{Th}_{c}(\mathcal{I}) := \{ C \sqsubseteq D \mid \mathsf{conf}_{\mathcal{I}}(C \sqsubseteq D) \ge c \}.$$

The *confidence* of $C \sqsubseteq D$ in \mathcal{I} is defined as

$$\operatorname{conf}_{\mathcal{I}}(C \sqsubseteq D) := \begin{cases} 1 & \text{if } C^{\mathcal{I}} = \emptyset, \\ rac{|(C \sqcap D)^{\mathcal{I}}|}{|C^{\mathcal{I}}|} & \text{otherwise.} \end{cases}$$

Let $c \in [0, 1]$. Define

$$\mathsf{Th}_{c}(\mathcal{I}) := \{ C \sqsubseteq D \mid \mathsf{conf}_{\mathcal{I}}(C \sqsubseteq D) \ge c \}.$$

New Goal

Axiomatize $\mathsf{Th}_{c}(\mathcal{I})$, i. e. find a *finite base* of $\mathsf{Th}_{c}(\mathcal{I})$.

How to find bases for $\mathsf{Th}_c(\mathcal{I})$?

How to find bases for $\mathsf{Th}_c(\mathcal{I})$?

Observation

Related work by M. Luxenburger on partial implications

How to find bases for $\mathsf{Th}_c(\mathcal{I})$?

Observation

Related work by M. Luxenburger on partial implications

Approach (Luxenburger)

How to find bases for $\mathsf{Th}_c(\mathcal{I})$?

Observation

Related work by M. Luxenburger on partial implications

Approach (Luxenburger)

Separately axiomatize valid GCIs and properly confident GCIs

How to find bases for $\mathsf{Th}_c(\mathcal{I})$?

Observation

Related work by M. Luxenburger on partial implications

Approach (Luxenburger)

- Separately axiomatize valid GCIs and properly confident GCIs
- ${\scriptstyle \bullet}\,$ Consider concept descriptions of the form $({\it C}^{{\cal I}})^{{\cal I}}$ only

- Separately axiomatize valid GCIs and properly confident GCIs
- Consider concept descriptions of the form $(C^{\mathcal{I}})^{\mathcal{I}}$ only

- Separately axiomatize valid GCIs and properly confident GCIs
- Consider concept descriptions of the form $(C^{\mathcal{I}})^{\mathcal{I}}$ only

The Idea in FCA

- Separately axiomatize valid GCIs and properly confident GCIs
- Consider concept descriptions of the form $(C^{\mathcal{I}})^{\mathcal{I}}$ only

The Idea in FCA

Let $\mathcal B$ base of $\mathbb K$,

$$\mathcal{C} = \{ X'' \to Y'' \mid 1 > \operatorname{conf}_{\mathbb{K}}(X'' \to Y'') \ge c \}$$

and $1 > \operatorname{conf}(A \to B) \ge c$.

- Separately axiomatize valid GCIs and properly confident GCIs
- Consider concept descriptions of the form $(C^{\mathcal{I}})^{\mathcal{I}}$ only

The Idea in FCA

Let $\mathcal B$ base of $\mathbb K$,

$$\mathcal{C} = \{ X'' \to Y'' \mid 1 > \mathsf{conf}_{\mathbb{K}}(X'' \to Y'') \ge c \}$$

and $1 > \operatorname{conf}(A \to B) \ge c$. Then $\operatorname{conf}_{\mathbb{K}}(A \to B) = \operatorname{conf}_{\mathbb{K}}(A'' \to B'')$

- Separately axiomatize valid GCIs and properly confident GCIs
- Consider concept descriptions of the form $(C^{\mathcal{I}})^{\mathcal{I}}$ only

The Idea in FCA

Let $\mathcal B$ base of $\mathbb K$,

$$\mathcal{C} = \{ X'' \to Y'' \mid 1 > \mathsf{conf}_{\mathbb{K}}(X'' \to Y'') \ge c \}$$

and $1 > \operatorname{conf}(A \to B) \ge c$. Then $\operatorname{conf}_{\mathbb{K}}(A \to B) = \operatorname{conf}_{\mathbb{K}}(A'' \to B'')$ and

$$\mathcal{B} \cup \mathcal{C} \models A \to A''$$

- Separately axiomatize valid GCIs and properly confident GCIs
- Consider concept descriptions of the form $(C^{\mathcal{I}})^{\mathcal{I}}$ only

The Idea in FCA

Let $\mathcal B$ base of $\mathbb K$,

$$\mathcal{C} = \{ X'' \to Y'' \mid 1 > \mathsf{conf}_{\mathbb{K}}(X'' \to Y'') \ge c \}$$

and $1 > \operatorname{conf}(A \to B) \ge c$. Then $\operatorname{conf}_{\mathbb{K}}(A \to B) = \operatorname{conf}_{\mathbb{K}}(A'' \to B'')$ and

$$\mathcal{B} \cup \mathcal{C} \models A \to A'' \to B''$$

- Separately axiomatize valid GCIs and properly confident GCIs
- Consider concept descriptions of the form $(C^{\mathcal{I}})^{\mathcal{I}}$ only

The Idea in FCA

Let $\mathcal B$ base of $\mathbb K$,

$$\mathcal{C} = \{ X'' \to Y'' \mid 1 > \mathsf{conf}_{\mathbb{K}}(X'' \to Y'') \ge c \}$$

and $1 > \operatorname{conf}(A \to B) \ge c$. Then $\operatorname{conf}_{\mathbb{K}}(A \to B) = \operatorname{conf}_{\mathbb{K}}(A'' \to B'')$ and

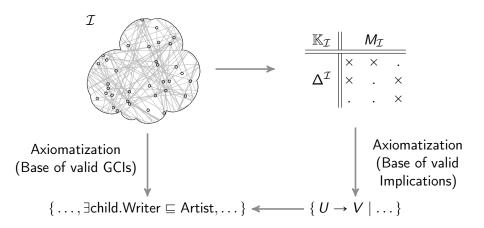
$$\mathcal{B} \cup \mathcal{C} \models A \to A'' \to B'' \to B$$

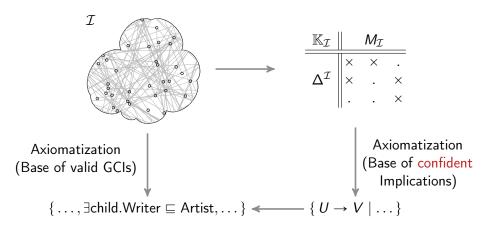
$$\mathsf{Conf}(\mathcal{I}, c) := \{ X^{\mathcal{I}} \sqsubseteq Y^{\mathcal{I}} \mid Y, X \subseteq \Delta_{\mathcal{I}}, 1 > \mathsf{conf}_{\mathcal{I}}(X^{\mathcal{I}} \sqsubseteq Y^{\mathcal{I}}) \ge c \}.$$

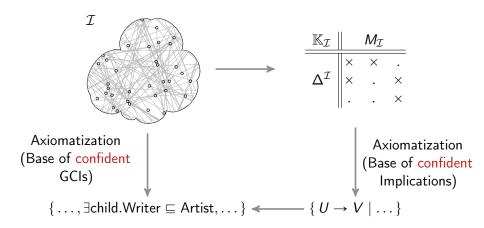
$$\mathsf{Conf}(\mathcal{I}, c) := \{ X^{\mathcal{I}} \sqsubseteq Y^{\mathcal{I}} \mid Y, X \subseteq \Delta_{\mathcal{I}}, 1 > \mathsf{conf}_{\mathcal{I}}(X^{\mathcal{I}} \sqsubseteq Y^{\mathcal{I}}) \ge c \}.$$

Theorem

Let \mathcal{B} be a finite base of \mathcal{I} , and $c \in [0,1]$. Then $\mathcal{B} \cup Conf(\mathcal{I}, c)$ is a finite base of $Th_c(\mathcal{I})$.







If \mathbb{K} is a formal context, $X \to Y$ an implication of \mathbb{K} , then

$$\operatorname{conf}_{\mathbb{K}}(X \to Y) := \begin{cases} 1 & X' = \emptyset \\ \frac{|(X \cup Y)'|}{|X'|} & \text{otherwise} \end{cases}$$

is the *confidence* of $X \to Y$ in \mathbb{K} .

If \mathbb{K} is a formal context, $X \to Y$ an implication of \mathbb{K} , then

$$\mathsf{conf}_{\mathbb{K}}(X o Y) := egin{cases} 1 & X' = arnothing\ rac{|(X \cup Y)'|}{|X'|} & ext{otherwise} \end{cases}$$

is the *confidence* of $X \to Y$ in \mathbb{K} . If $c \in [0, 1]$, then $\mathsf{Th}_c(\mathbb{K})$ denotes the set of all implications of \mathbb{K} with confidence at least c in \mathbb{K} .

If \mathbb{K} is a formal context, $X \to Y$ an implication of \mathbb{K} , then

$$\mathsf{conf}_{\mathbb{K}}(X o Y) := egin{cases} 1 & X' = arnothing\ rac{|(X \cup Y)'|}{|X'|} & ext{otherwise} \end{cases}$$

is the *confidence* of $X \to Y$ in \mathbb{K} . If $c \in [0, 1]$, then $\mathsf{Th}_c(\mathbb{K})$ denotes the set of all implications of \mathbb{K} with confidence at least c in \mathbb{K} .

Goal

Transform bases of $\mathsf{Th}_c(\mathbb{K})$ to bases of $\mathsf{Th}_c(\mathcal{I})$.

Lemma

If $X, Y \subseteq M_{\mathcal{I}}$, then

$$\operatorname{conf}_{\mathcal{I}}(\bigcap X \sqsubseteq \bigcap Y) = \operatorname{conf}_{\mathbb{K}_{\mathcal{I}}}(X \to Y).$$

Lemma

If $X, Y \subseteq M_{\mathcal{I}}$, then

$$\operatorname{conf}_{\mathcal{I}}(\bigcap X \sqsubseteq \bigcap Y) = \operatorname{conf}_{\mathbb{K}_{\mathcal{I}}}(X \to Y).$$

Definition

If \mathcal{L} is a set of implications of $\mathbb{K}_{\mathcal{I}}$, then

$$\prod \mathcal{L} := \{ \prod X \sqsubseteq \prod Y \mid (X \to Y) \in \mathcal{L} \}.$$

Lemma

If $X, Y \subseteq M_{\mathcal{I}}$, then

$$\operatorname{conf}_{\mathcal{I}}(\bigcap X \sqsubseteq \bigcap Y) = \operatorname{conf}_{\mathbb{K}_{\mathcal{I}}}(X \to Y).$$

Definition

If \mathcal{L} is a set of implications of $\mathbb{K}_{\mathcal{I}}$, then

$$\prod \mathcal{L} := \{ \prod X \sqsubseteq \prod Y \mid (X \to Y) \in \mathcal{L} \}.$$

Lemma

Let $\mathcal{L} \cup \{X \to Y\}$ be a set of implications of $\mathbb{K}_{\mathcal{I}}$. Then

$$\mathcal{L} \models (X \to Y) \implies \prod \mathcal{L} \models \prod X \sqsubseteq \prod Y.$$

Theorem

Let \mathcal{L} be a (confident) base of $\mathsf{Th}_c(\mathbb{K}_{\mathcal{I}})$. Then $\prod \mathcal{L}$ is a (confident) base of $\mathsf{Th}_c(\mathcal{I})$.

Theorem

Let \mathcal{L} be a (confident) base of $\mathsf{Th}_c(\mathbb{K}_{\mathcal{I}})$. Then $\prod \mathcal{L}$ is a (confident) base of $\mathsf{Th}_{c}(\mathcal{I}).$

"Corollary"

We can use data mining techniques to extract complete sets of confident implications from $\mathbb{K}_{\mathcal{I}}$, and thus to learn confident GCIs from interpretations! Proof (Sketch).

Show

Show

•
$$\prod \mathcal{L} \models (\prod U \sqsubseteq (\prod U)^{\mathcal{II}})$$
 for all $U \subseteq M_{\mathcal{I}}$

Show

- $\prod \mathcal{L} \models (\prod U \sqsubseteq (\prod U)^{\mathcal{II}})$ for all $U \subseteq M_{\mathcal{I}}$
- $\blacktriangleright \ \ \square \mathcal{L} \models \mathsf{Conf}(\mathcal{I}, c)$

Show

- $\prod \mathcal{L} \models (\prod U \sqsubseteq (\prod U)^{\mathcal{II}})$ for all $U \subseteq M_{\mathcal{I}}$
- $\blacktriangleright \ \ \square \mathcal{L} \models \mathsf{Conf}(\mathcal{I}, c)$

First claim: Let $U \subseteq M_{\mathcal{I}}$.

Show

- $\prod \mathcal{L} \models (\prod U \sqsubseteq (\prod U)^{\mathcal{II}})$ for all $U \subseteq M_{\mathcal{I}}$
- $\prod \mathcal{L} \models \mathsf{Conf}(\mathcal{I}, c)$

First claim: Let $U \subseteq M_{\mathcal{I}}$.

•
$$\mathcal{L} \models (U \rightarrow U'')$$

Show

- $\prod \mathcal{L} \models (\prod U \sqsubseteq (\prod U)^{\mathcal{II}})$ for all $U \subseteq M_{\mathcal{I}}$
- $\prod \mathcal{L} \models \mathsf{Conf}(\mathcal{I}, c)$

First claim: Let $U \subseteq M_{\mathcal{I}}$.

•
$$\mathcal{L} \models (U \rightarrow U'')$$

 $\blacktriangleright \square \mathcal{L} \models (\square U \sqsubseteq \square U'')$

Show

- $\prod \mathcal{L} \models (\prod U \sqsubseteq (\prod U)^{\mathcal{II}})$ for all $U \subseteq M_{\mathcal{I}}$
- $\prod \mathcal{L} \models \mathsf{Conf}(\mathcal{I}, c)$

First claim: Let $U \subseteq M_{\mathcal{I}}$.

- $\mathcal{L} \models (U \rightarrow U'')$
- $\bullet \ \square \mathcal{L} \models (\square U \sqsubseteq (\square U)^{\mathcal{II}})$

Show

- $\prod \mathcal{L} \models (\prod U \sqsubseteq (\prod U)^{\mathcal{II}})$ for all $U \subseteq M_{\mathcal{I}}$
- $\prod \mathcal{L} \models \mathsf{Conf}(\mathcal{I}, c)$

First claim: Let $U \subseteq M_{\mathcal{I}}$.

•
$$\mathcal{L} \models (U \rightarrow U'')$$

$$\bullet \ \square \mathcal{L} \models (\square U \sqsubseteq (\square U)^{\mathcal{II}})$$

Second Claim: Let $(X^{\mathcal{I}} \sqsubseteq Y^{\mathcal{I}}) \in \text{Conf}(\mathcal{I}, c)$.

Show

- $\prod \mathcal{L} \models (\prod U \sqsubseteq (\prod U)^{\mathcal{II}})$ for all $U \subseteq M_{\mathcal{I}}$
- $\prod \mathcal{L} \models \mathsf{Conf}(\mathcal{I}, c)$

First claim: Let $U \subseteq M_{\mathcal{I}}$.

•
$$\mathcal{L} \models (U \rightarrow U'')$$

$$\bullet \ \square \mathcal{L} \models (\square U \sqsubseteq (\square U)^{\mathcal{II}})$$

Second Claim: Let $(X^{\mathcal{I}} \sqsubseteq Y^{\mathcal{I}}) \in \text{Conf}(\mathcal{I}, c)$.

•
$$X^{\mathcal{I}} \equiv \prod X', Y^{\mathcal{I}} \equiv \prod Y'$$

Show

- $\prod \mathcal{L} \models (\prod U \sqsubseteq (\prod U)^{\mathcal{II}})$ for all $U \subseteq M_{\mathcal{I}}$
- $\prod \mathcal{L} \models \mathsf{Conf}(\mathcal{I}, c)$

First claim: Let $U \subseteq M_{\mathcal{I}}$.

•
$$\mathcal{L} \models (U \rightarrow U'')$$

$$\bullet \ \square \mathcal{L} \models (\square U \sqsubseteq (\square U)^{\mathcal{II}})$$

Second Claim: Let $(X^{\mathcal{I}} \sqsubseteq Y^{\mathcal{I}}) \in \text{Conf}(\mathcal{I}, c)$.

$$\bullet X^{\mathcal{I}} \equiv \prod X', Y^{\mathcal{I}} \equiv \prod Y'$$

• $\operatorname{conf}_{\mathbb{K}_{\mathcal{I}}}(X' \to Y') = \operatorname{conf}_{\mathcal{I}}(\prod X' \sqsubseteq \prod Y') \ge c$

Show

- $\prod \mathcal{L} \models (\prod U \sqsubseteq (\prod U)^{\mathcal{II}})$ for all $U \subseteq M_{\mathcal{I}}$
- $\prod \mathcal{L} \models \mathsf{Conf}(\mathcal{I}, c)$

First claim: Let $U \subseteq M_{\mathcal{I}}$.

•
$$\mathcal{L} \models (U \rightarrow U'')$$

$$\bullet \ \square \mathcal{L} \models (\square U \sqsubseteq (\square U)^{\mathcal{II}})$$

Second Claim: Let $(X^{\mathcal{I}} \sqsubseteq Y^{\mathcal{I}}) \in Conf(\mathcal{I}, c)$.

$$\bullet X^{\mathcal{I}} \equiv \prod X', Y^{\mathcal{I}} \equiv \prod Y'$$

• $\operatorname{conf}_{\mathbb{K}_{\mathcal{I}}}(X' \to Y') = \operatorname{conf}_{\mathcal{I}}(\prod X' \sqsubseteq \prod Y') \ge c$

•
$$\mathcal{L} \models (X' \rightarrow Y')$$

Show

- $\prod \mathcal{L} \models (\prod U \sqsubseteq (\prod U)^{\mathcal{II}})$ for all $U \subseteq M_{\mathcal{I}}$
- $\prod \mathcal{L} \models \mathsf{Conf}(\mathcal{I}, c)$

First claim: Let $U \subseteq M_{\mathcal{I}}$.

•
$$\mathcal{L} \models (U \rightarrow U'')$$

$$\bullet \ \square \mathcal{L} \models (\square U \sqsubseteq (\square U)^{\mathcal{II}})$$

Second Claim: Let $(X^{\mathcal{I}} \sqsubseteq Y^{\mathcal{I}}) \in Conf(\mathcal{I}, c)$.

$$\bullet X^{\mathcal{I}} \equiv \prod X', Y^{\mathcal{I}} \equiv \prod Y'$$

 $\blacktriangleright \operatorname{conf}_{\mathbb{K}_{\mathcal{I}}}(X' \to Y') = \operatorname{conf}_{\mathcal{I}}(\prod X' \sqsubseteq \prod Y') \ge c$

•
$$\mathcal{L} \models (X' \rightarrow Y')$$

$$\ \ \square \mathcal{L} \models (\square X' \sqsubseteq \square Y') \equiv (X^{\mathcal{I}} \sqsubseteq Y^{\mathcal{I}})$$

Show

- $\prod \mathcal{L} \models (\prod U \sqsubseteq (\prod U)^{\mathcal{II}})$ for all $U \subseteq M_{\mathcal{I}}$
- $\prod \mathcal{L} \models \mathsf{Conf}(\mathcal{I}, c)$

First claim: Let $U \subseteq M_{\mathcal{I}}$.

•
$$\mathcal{L} \models (U \rightarrow U'')$$

$$\bullet \ \square \mathcal{L} \models (\square U \sqsubseteq (\square U)^{\mathcal{II}})$$

Second Claim: Let $(X^{\mathcal{I}} \sqsubseteq Y^{\mathcal{I}}) \in Conf(\mathcal{I}, c)$.

$$\bullet X^{\mathcal{I}} \equiv \prod X', Y^{\mathcal{I}} \equiv \prod Y'$$

 $\blacktriangleright \operatorname{conf}_{\mathbb{K}_{\mathcal{I}}}(X' \to Y') = \operatorname{conf}_{\mathcal{I}}(\prod X' \sqsubseteq \prod Y') \ge c$

•
$$\mathcal{L} \models (X' \to Y')$$

$$\ \ \square \mathcal{L} \models (\square X' \sqsubseteq \square Y') \equiv (X^{\mathcal{I}} \sqsubseteq Y^{\mathcal{I}})$$

The set

 $\mathcal{S}_{\mathcal{I}} := \{ \{ C \} \rightarrow \{ D \} \mid C, D \in M_{\mathcal{I}}, C \text{ more specific than } D \}$

is a set of *non-trivial* implications.

The set

 $\mathcal{S}_{\mathcal{I}} := \{ \{ C \} \rightarrow \{ D \} \mid C, D \in M_{\mathcal{I}}, C \text{ more specific than } D \}$

is a set of *non-trivial* implications.

Theorem

Let $\mathcal{L} \cup S_{\mathcal{I}}$ be a (confident) base of $\mathsf{Th}_{c}(\mathbb{K}_{\mathcal{I}})$. Then $\prod \mathcal{L}$ is a (confident) base of $\mathsf{Th}_{c}(\mathcal{I})$.

The set

 $\mathcal{S}_{\mathcal{I}} := \{ \{ C \} \rightarrow \{ D \} \mid C, D \in M_{\mathcal{I}}, C \text{ more specific than } D \}$

is a set of *non-trivial* implications.

Theorem

Let $\mathcal{L} \cup S_{\mathcal{I}}$ be a (confident) base of $\mathsf{Th}_{c}(\mathbb{K}_{\mathcal{I}})$. Then $\prod \mathcal{L}$ is a (confident) base of $\mathsf{Th}_{c}(\mathcal{I})$.

The set

 $\mathcal{S}_{\mathcal{I}} := \{ \{ C \} \rightarrow \{ D \} \mid C, D \in M_{\mathcal{I}}, C \text{ more specific than } D \}$

is a set of *non-trivial* implications.

Theorem

Let $\mathcal{L} \cup S_{\mathcal{I}}$ be a (confident) base of $\mathsf{Th}_{c}(\mathbb{K}_{\mathcal{I}})$. Then $\prod \mathcal{L}$ is a (confident) base of $\mathsf{Th}_{c}(\mathcal{I})$.

$$\bigcap (\mathcal{L} \cup \mathcal{S}_{\mathcal{I}})$$

The set

 $\mathcal{S}_{\mathcal{I}} := \{ \{ C \} \rightarrow \{ D \} \mid C, D \in M_{\mathcal{I}}, C \text{ more specific than } D \}$

is a set of *non-trivial* implications.

Theorem

Let $\mathcal{L} \cup S_{\mathcal{I}}$ be a (confident) base of $\mathsf{Th}_{c}(\mathbb{K}_{\mathcal{I}})$. Then $\prod \mathcal{L}$ is a (confident) base of $\mathsf{Th}_{c}(\mathcal{I})$.

$$\bigcap (\mathcal{L} \cup \mathcal{S}_{\mathcal{I}}) = \bigcap \mathcal{L} \cup \bigcap \mathcal{S}_{\mathcal{I}}$$

The set

 $\mathcal{S}_{\mathcal{I}} := \{ \{ C \} \rightarrow \{ D \} \mid C, D \in M_{\mathcal{I}}, C \text{ more specific than } D \}$

is a set of *non-trivial* implications.

Theorem

Let $\mathcal{L} \cup S_{\mathcal{I}}$ be a (confident) base of $\mathsf{Th}_{c}(\mathbb{K}_{\mathcal{I}})$. Then $\prod \mathcal{L}$ is a (confident) base of $\mathsf{Th}_{c}(\mathcal{I})$.

$$\bigcap(\mathcal{L}\cup\mathcal{S}_{\mathcal{I}})=\bigcap\mathcal{L}\cup\bigcap\mathcal{S}_{\mathcal{I}}\equiv\bigcap\mathcal{L}$$

The set

 $\mathcal{S}_{\mathcal{I}} := \{ \{ C \} \rightarrow \{ D \} \mid C, D \in M_{\mathcal{I}}, C \text{ more specific than } D \}$

is a set of *non-trivial* implications.

Theorem

Let $\mathcal{L} \cup \mathcal{S}_{\mathcal{I}}$ be a (confident) base of $\mathsf{Th}_{c}(\mathbb{K}_{\mathcal{I}})$. Then $\prod \mathcal{L}$ is a (confident) base of $\mathsf{Th}_{c}(\mathcal{I})$.

$$\bigcap(\mathcal{L}\cup\mathcal{S}_{\mathcal{I}})=\bigcap\mathcal{L}\cup\bigcap\mathcal{S}_{\mathcal{I}}\equiv\bigcap\mathcal{L}$$

Outline

The Original Approach

2 Adding Confidence

3 Experiments with $\mathcal{I}_{\mathsf{DBpedia}}$

4 Exploring Confident GCIs

5 Conclusions

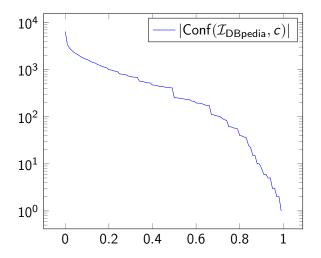
"Practical" Questions

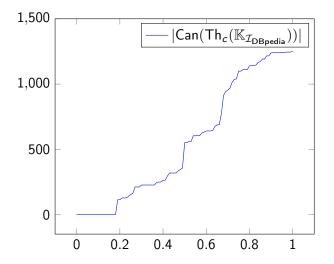
"Practical" Questions

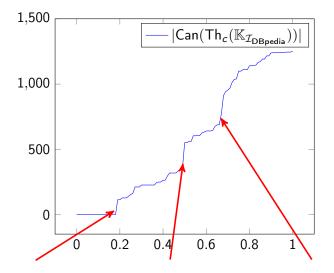
• How large is $|Conf(\mathcal{I}, c)|$?

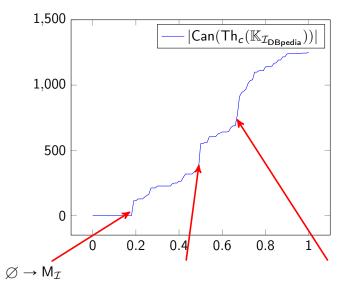
"Practical" Questions

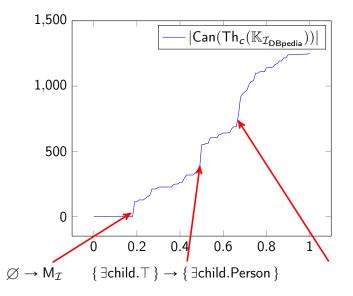
- How large is $|Conf(\mathcal{I}, c)|$?
- What "kind" of GCIs are in $|Conf(\mathcal{I}, c)|$?

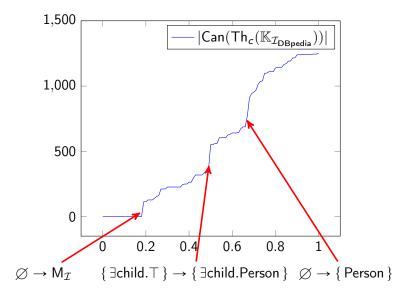












 $\mathsf{Conf}(\mathcal{I}_{\mathsf{DBpedia}}, 0.95) =$

$\begin{aligned} \mathsf{Conf}(\mathcal{I}_{\mathsf{DBpedia}}, 0.95) &= \{ \mathsf{Place} \sqsubseteq \mathsf{PopulatedPlace}, \\ \exists \mathsf{child}. \top \sqsubseteq \mathsf{Person}, \\ \exists \mathsf{child}. \exists \mathsf{child}. \top \sqcap \exists \mathsf{child}. \mathsf{OfficeHolder} \\ &\sqsubseteq \exists \mathsf{child}. (\mathsf{OfficeHolder} \sqcap \exists \mathsf{child}. \top) \, \end{aligned} \end{aligned}$

$\begin{aligned} \mathsf{Conf}(\mathcal{I}_{\mathsf{DBpedia}}, 0.95) &= \{ \mathsf{Place} \sqsubseteq \mathsf{PopulatedPlace}, \\ \exists \mathsf{child}. \top \sqsubseteq \mathsf{Person}, \quad \checkmark \\ \exists \mathsf{child}. \exists \mathsf{child}. \top \sqcap \exists \mathsf{child}. \mathsf{OfficeHolder} \\ & \sqsubseteq \exists \mathsf{child}. (\mathsf{OfficeHolder} \sqcap \exists \mathsf{child}. \top) \, \end{aligned} \end{aligned}$

$\begin{aligned} \mathsf{Conf}(\mathcal{I}_{\mathsf{DBpedia}}, 0.95) &= \{ \mathsf{Place} \sqsubseteq \mathsf{PopulatedPlace}, \\ \exists \mathsf{child}.\top \sqsubseteq \mathsf{Person}, \quad \checkmark \\ \exists \mathsf{child}.\exists \mathsf{child}.\top \sqcap \exists \mathsf{child}.\mathsf{OfficeHolder} \\ &\sqsubseteq \exists \mathsf{child}.(\mathsf{OfficeHolder} \sqcap \exists \mathsf{child}.\top) \, \end{aligned} \end{aligned}$

Counterexample for first GCI

Greenwich_Village

$\begin{aligned} \mathsf{Conf}(\mathcal{I}_{\mathsf{DBpedia}}, 0.95) &= \{ \begin{array}{ll} \mathsf{Place} \sqsubseteq \mathsf{PopulatedPlace}, & \checkmark \\ & \exists \mathsf{child}. \top \sqsubseteq \mathsf{Person}, & \checkmark \\ & \exists \mathsf{child}. \exists \mathsf{child}. \top \sqcap \exists \mathsf{child}. \mathsf{OfficeHolder} \\ & \sqsubseteq \exists \mathsf{child}. (\mathsf{OfficeHolder} \sqcap \exists \mathsf{child}. \top) \, \end{aligned} \end{aligned}$

Counterexample for first GCI

Greenwich_Village

$\begin{aligned} \mathsf{Conf}(\mathcal{I}_{\mathsf{DBpedia}}, 0.95) &= \{ \mathsf{Place} \sqsubseteq \mathsf{PopulatedPlace}, \quad \checkmark \\ \exists \mathsf{child}.\top \sqsubseteq \mathsf{Person}, \quad \checkmark \\ \exists \mathsf{child}.\exists \mathsf{child}.\top \sqcap \exists \mathsf{child}.\mathsf{OfficeHolder} \\ & \sqsubseteq \exists \mathsf{child}.(\mathsf{OfficeHolder} \sqcap \exists \mathsf{child}.\top) \, \end{aligned} \end{aligned}$

$\begin{aligned} \mathsf{Conf}(\mathcal{I}_{\mathsf{DBpedia}}, 0.95) &= \{ \begin{array}{ll} \mathsf{Place} \sqsubseteq \mathsf{PopulatedPlace}, & \checkmark \\ & \exists \mathsf{child}. \top \sqsubseteq \mathsf{Person}, & \checkmark \\ & \exists \mathsf{child}. \exists \mathsf{child}. \top \sqcap \exists \mathsf{child}. \mathsf{OfficeHolder} \\ & \sqsubseteq \exists \mathsf{child}. (\mathsf{OfficeHolder} \sqcap \exists \mathsf{child}. \top) \, \end{aligned} \end{aligned}$

Counterexample for third GCI

Pierre_Samuel_du_Pont_de_Nemours

$\begin{aligned} \mathsf{Conf}(\mathcal{I}_{\mathsf{DBpedia}}, 0.95) &= \{ \begin{array}{ll} \mathsf{Place} \sqsubseteq \mathsf{PopulatedPlace}, & \checkmark \\ & \exists \mathsf{child}. \top \sqsubseteq \mathsf{Person}, & \checkmark \\ & \exists \mathsf{child}. \exists \mathsf{child}. \top \sqcap \exists \mathsf{child}. \mathsf{OfficeHolder} \\ & \sqsubseteq \exists \mathsf{child}. (\mathsf{OfficeHolder} \sqcap \exists \mathsf{child}. \top) \, \end{aligned} \end{aligned}$

Counterexample for third GCI

Pierre_Samuel_du_Pont_de_Nemours

Two children (sons):

$\begin{aligned} \mathsf{Conf}(\mathcal{I}_{\mathsf{DBpedia}}, 0.95) &= \{ \begin{array}{ll} \mathsf{Place} \sqsubseteq \mathsf{PopulatedPlace}, & \checkmark \\ & \exists \mathsf{child}. \top \sqsubseteq \mathsf{Person}, & \checkmark \\ & \exists \mathsf{child}. \exists \mathsf{child}. \top \sqcap \exists \mathsf{child}. \mathsf{OfficeHolder} \\ & \sqsubseteq \exists \mathsf{child}. (\mathsf{OfficeHolder} \sqcap \exists \mathsf{child}. \top) \, \end{aligned} \end{aligned}$

Counterexample for third GCI

Pierre_Samuel_du_Pont_de_Nemours

Two children (sons):

Victor Marie du Pont, diplomat, four children,

$\begin{aligned} \mathsf{Conf}(\mathcal{I}_{\mathsf{DBpedia}}, 0.95) &= \{ \begin{array}{ll} \mathsf{Place} \sqsubseteq \mathsf{PopulatedPlace}, & \checkmark \\ & \exists \mathsf{child}. \top \sqsubseteq \mathsf{Person}, & \checkmark \\ & \exists \mathsf{child}. \exists \mathsf{child}. \top \sqcap \exists \mathsf{child}. \mathsf{OfficeHolder} \\ & \sqsubseteq \exists \mathsf{child}. (\mathsf{OfficeHolder} \sqcap \exists \mathsf{child}. \top) \, \end{aligned} \end{aligned}$

Counterexample for third GCI

Pierre_Samuel_du_Pont_de_Nemours

Two children (sons):

 Victor Marie du Pont, diplomat, four children, but none of them were "famous."

$\begin{aligned} \mathsf{Conf}(\mathcal{I}_{\mathsf{DBpedia}}, 0.95) &= \{ \begin{array}{ll} \mathsf{Place} \sqsubseteq \mathsf{PopulatedPlace}, & \checkmark \\ & \exists \mathsf{child}. \top \sqsubseteq \mathsf{Person}, & \checkmark \\ & \exists \mathsf{child}. \exists \mathsf{child}. \top \sqcap \exists \mathsf{child}. \mathsf{OfficeHolder} \\ & \sqsubseteq \exists \mathsf{child}. (\mathsf{OfficeHolder} \sqcap \exists \mathsf{child}. \top) \, \end{aligned} \end{aligned}$

Counterexample for third GCI

```
Pierre_Samuel_du_Pont_de_Nemours
```

Two children (sons):

- Victor Marie du Pont, diplomat, four children, but none of them were "famous."
- Eleuthère Irénée du Pont, industrial (gunpowder)

Confident GCIs in Finite Interpretations

$Conf(\mathcal{I}_{DBpedia}, 0.95) = \{ Place \sqsubseteq PopulatedPlace, \checkmark \\ \exists child. \top \sqsubseteq Person, \checkmark \\ \exists child. \exists child. \top \sqcap \exists child. OfficeHolder ? \\ \sqsubseteq \exists child. (OfficeHolder \sqcap \exists child. \top) \}$

Counterexample for third GCI

```
Pierre_Samuel_du_Pont_de_Nemours
```

Two children (sons):

- Victor Marie du Pont, diplomat, four children, but none of them were "famous."
- Eleuthère Irénée du Pont, industrial (gunpowder)

Confident GCIs in Finite Interpretations

$Conf(\mathcal{I}_{DBpedia}, 0.95) = \{ Place \sqsubseteq PopulatedPlace, \checkmark \\ \exists child. \top \sqsubseteq Person, \checkmark \\ \exists child. \exists child. \top \sqcap \exists child. OfficeHolder ? \\ \sqsubseteq \exists child. (OfficeHolder \sqcap \exists child. \top) \}$

Counterexample for third GCI

Pierre_Samuel_du_Pont_de_Nemours

$Conf(\mathcal{I}_{DBpedia}, 0.95) = \{ Place \sqsubseteq PopulatedPlace, \checkmark \\ \exists child. \top \sqsubseteq Person, \checkmark \\ \exists child. \exists child. \top \sqcap \exists child. OfficeHolder ? \\ \sqsubseteq \exists child. (OfficeHolder \sqcap \exists child. \top) \}$

Counterexample for third GCI

Pierre_Samuel_du_Pont_de_Nemours

Approach

$Conf(\mathcal{I}_{DBpedia}, 0.95) = \{ Place \sqsubseteq PopulatedPlace, \checkmark \\ \exists child. \top \sqsubseteq Person, \checkmark \\ \exists child. \exists child. \top \sqcap \exists child. OfficeHolder ? \\ \sqsubseteq \exists child. (OfficeHolder \sqcap \exists child. \top) \}$

Counterexample for third GCI

```
Pierre_Samuel_du_Pont_de_Nemours
```

Approach

Devise an exploration algorithm for confident GCIs!

Outline

1 The Original Approach

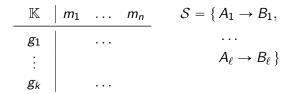
2 Adding Confidence

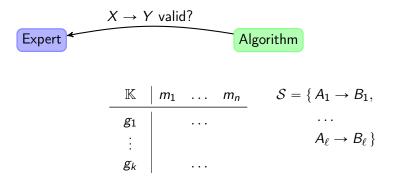
 \bigcirc Experiments with $\mathcal{I}_{\mathsf{DBpedia}}$

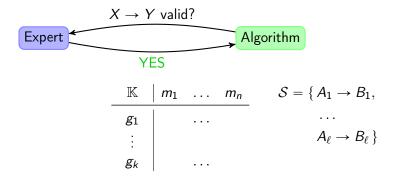
Exploring Confident GCIs

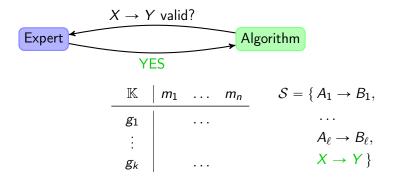
5 Conclusions

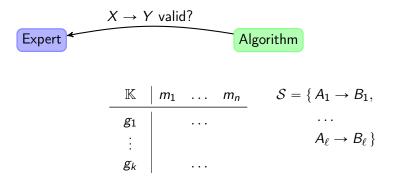
Algorithm

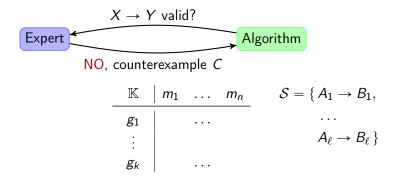


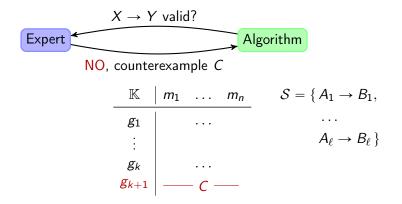




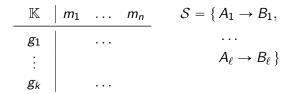




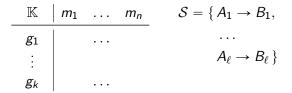




Algorithm

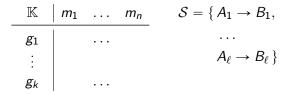


${\sf Algorithm}$



Note

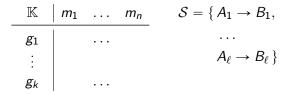
Algorithm



Note

 ▶ Upon termination, Cn(S) = Th(K) and S is a base of the implicational knowledge of the expert

Algorithm



Note

- ▶ Upon termination, Cn(S) = Th(K) and S is a base of the implicational knowledge of the expert
- The number of *confirmed* implications is as small as possible

${\sf Algorithm}$

Note

- Upon termination, $Cn(S) = Th(\mathbb{K})$ and S is a base of the implicational knowledge of the expert
- The number of *confirmed* implications is as small as possible

Result (Distel 2008)

Attribute Exploration also possible for valid GCIs of finite interpretations

Goal

Devise an exploration algorithm for confident GCIs

Devise an exploration algorithm for confident GCIs

Challenges

Devise an exploration algorithm for confident GCIs

Challenges

 Single counterexamples given by the expert should be enough to invalidate GCIs

Devise an exploration algorithm for confident GCIs

Challenges

 Single counterexamples given by the expert should be enough to invalidate GCIs → distinguish between initial data and counterexamples provided by expert

Devise an exploration algorithm for confident GCIs

Challenges

- Single counterexamples given by the expert should be enough to invalidate GCIs → distinguish between initial data and counterexamples provided by expert
- Compute candidate GCIs presented to the expert

Devise an exploration algorithm for confident GCIs

Challenges

- Single counterexamples given by the expert should be enough to invalidate GCIs → distinguish between initial data and counterexamples provided by expert
- Compute candidate GCIs presented to the expert

Plan

Devise an exploration algorithm for confident GCIs

Challenges

- Single counterexamples given by the expert should be enough to invalidate GCIs → distinguish between initial data and counterexamples provided by expert
- Compute candidate GCIs presented to the expert

Plan

• Extend classical attribute exploration to an *exploration by confidence*

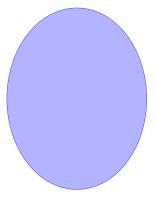
Devise an exploration algorithm for confident GCIs

Challenges

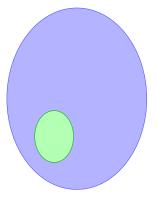
- Single counterexamples given by the expert should be enough to invalidate GCIs → distinguish between initial data and counterexamples provided by expert
- Compute candidate GCIs presented to the expert

Plan

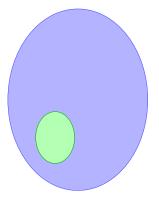
- > Extend classical attribute exploration to an *exploration by confidence*
- Lift this exploration by confidence to GCIs



• Interesting Implications \mathcal{L}

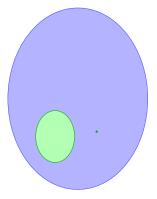


- Interesting Implications \mathcal{L}
- Known Implications \mathcal{S}



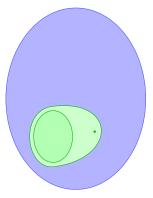
- Interesting Implications \mathcal{L}
- $\bullet \ \textit{Known Implications S}$

Which interesting but unknown implications are valid in our domain?



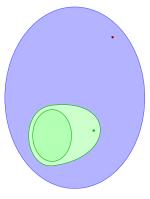
- Interesting Implications L
- $\bullet \ \textit{Known Implications S}$
- Expert can *confirm* implications,

Which interesting but unknown implications are *valid* in our domain?

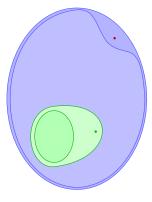


- $\bullet \ \textit{Interesting Implications } \mathcal{L}$
- $\bullet \ \textit{Known Implications S}$
- Expert can *confirm* implications, extending S

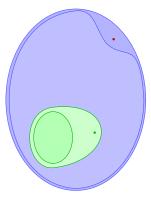
Which interesting but unknown implications are valid in our domain?



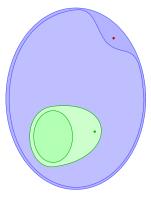
- Interesting Implications L
- Known Implications S
- Expert can *confirm* implications, extending S
- Expert can *reject* implications, providing counterexamples,



- Interesting Implications L
- Known Implications S
- Expert can *confirm* implications, extending S
- Expert can *reject* implications, providing counterexamples, shrinking *L*



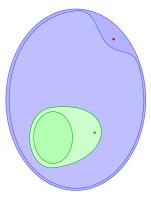
- Interesting Implications L
- Known Implications S
- Expert can *confirm* implications, extending S
- Expert can *reject* implications, providing counterexamples, shrinking *L*
- Iterate until $\mathcal{L} = \mathcal{S}$.



- Interesting Implications L
- Known Implications S
- Expert can *confirm* implications, extending S
- Expert can *reject* implications, providing counterexamples, shrinking *L*
- Iterate until $\mathcal{L} = \mathcal{S}$.

Which interesting but unknown implications are valid in our domain?

• Classical Attribute Exploration: $\mathcal{L} = \mathsf{Th}(\mathbb{K})$, ask special implications



- Interesting Implications L
- Known Implications S
- Expert can *confirm* implications, extending S
- Expert can *reject* implications, providing counterexamples, shrinking *L*
- Iterate until $\mathcal{L} = \mathcal{S}$.

- Classical Attribute Exploration: $\mathcal{L} = \mathsf{Th}(\mathbb{K})$, ask special implications
- Exploration by Confidence: $\mathcal{L} = \mathsf{Th}_c(\mathbb{K})$, ask special implications

- Computes an implicational base of the expert knowledge present in $\mathrm{Th}_c(\mathbb{K})$

- Computes an implicational base of the expert knowledge present in $\mathrm{Th}_c(\mathbb{K})$
- Allows to distinguish rare counterexamples from errors

- Computes an implicational base of the expert knowledge present in $\mathrm{Th}_c(\mathbb{K})$
- Allows to distinguish rare counterexamples from errors
- Asks minimal number of questions confirmed by the expert

- Computes an implicational base of the expert knowledge present in $\mathrm{Th}_c(\mathbb{K})$
- Allows to distinguish rare counterexamples from errors
- Asks minimal number of questions confirmed by the expert

Drawbacks

- Computes an implicational base of the expert knowledge present in $\mathrm{Th}_c(\mathbb{K})$
- Allows to distinguish rare counterexamples from errors
- Asks minimal number of questions confirmed by the expert

Drawbacks

- Closure operator $\mathsf{Th}_c(\mathbb{K})$ hard to compute

- Computes an implicational base of the expert knowledge present in $\mathrm{Th}_c(\mathbb{K})$
- Allows to distinguish rare counterexamples from errors
- Asks minimal number of questions confirmed by the expert

Drawbacks

- Closure operator $\mathsf{Th}_{c}(\mathbb{K})$ hard to compute
- Time between questions may grow exponentially

Why is the Closure under $Th_c(\mathbb{K})$ harder to compute?

Why is the Closure under $Th_c(\mathbb{K})$ harder to compute? Let $A \subseteq M$.

Why is the Closure under $Th_c(\mathbb{K})$ harder to compute? Let $A \subseteq M$.

Closure under $\mathsf{Th}(\mathbb{K})$:

Why is the Closure under $Th_c(\mathbb{K})$ harder to compute? Let $A \subseteq M$.

Closure under $\mathsf{Th}(\mathbb{K})$: Observe

 $(A \to A'') \in \mathsf{Th}(\mathbb{K}).$

Why is the Closure under $Th_c(\mathbb{K})$ harder to compute? Let $A \subseteq M$.

Closure under $\mathsf{Th}(\mathbb{K})$: Observe

$$(A \to A'') \in \mathsf{Th}(\mathbb{K}).$$

Closure under $\mathsf{Th}_c(\mathbb{K})$:

Why is the Closure under $Th_c(\mathbb{K})$ harder to compute? Let $A \subseteq M$.

Closure under $\mathsf{Th}(\mathbb{K})$: Observe

$$(A \rightarrow A'') \in \mathsf{Th}(\mathbb{K}).$$

Closure under $Th_c(\mathbb{K})$: It is possible that

 $(A \rightarrow \mathsf{Th}_{c}(\mathbb{K})(A)) \notin \mathsf{Th}_{c}(\mathbb{K}).$

Why is the Closure under $Th_c(\mathbb{K})$ harder to compute? Let $A \subseteq M$.

Closure under $\mathsf{Th}(\mathbb{K})$: Observe

$$(A \to A'') \in \mathsf{Th}(\mathbb{K}).$$

Closure under $Th_c(\mathbb{K})$: It is possible that

 $(A \to \mathsf{Th}_c(\mathbb{K})(A)) \notin \mathsf{Th}_c(\mathbb{K}).$

Naively:

Why is the Closure under $Th_c(\mathbb{K})$ harder to compute? Let $A \subseteq M$.

Closure under $\mathsf{Th}(\mathbb{K})$: Observe

$$(A \to A'') \in \mathsf{Th}(\mathbb{K}).$$

Closure under $Th_c(\mathbb{K})$: It is possible that

$$(A \to \mathsf{Th}_{c}(\mathbb{K})(A)) \notin \mathsf{Th}_{c}(\mathbb{K}).$$

Naively:

• Iterate through all subsets $B \subseteq A$, find set $C \subseteq M$ such that $(B \rightarrow C) \in \mathsf{Th}_c(\mathbb{K})$, add C to A and reiterate ...

Why is the Closure under $Th_c(\mathbb{K})$ harder to compute? Let $A \subseteq M$.

Closure under $\mathsf{Th}(\mathbb{K})$: Observe

$$(A \to A'') \in \mathsf{Th}(\mathbb{K}).$$

Closure under $Th_c(\mathbb{K})$: It is possible that

$$(A \to \mathsf{Th}_{c}(\mathbb{K})(A)) \notin \mathsf{Th}_{c}(\mathbb{K}).$$

Naively:

- Iterate through all subsets $B \subseteq A$, find set $C \subseteq M$ such that $(B \rightarrow C) \in \mathsf{Th}_c(\mathbb{K})$, add C to A and reiterate ...
- If $B \subseteq A$, $C \subseteq M$, then $(A \to C) \notin Th_c(\mathbb{K})$, $(B \to C) \in Th_c(\mathbb{K})$ possible

Computes intermediate questions:

Computes intermediate questions:

Ask
$$A \to \{m\}$$
 if $\operatorname{conf}_{\mathbb{K}}(A \to \{m\}) \ge c$

for all "reasonable" $m \in M$.

Computes intermediate questions:

Ask
$$A \to \{m\}$$
 if $\operatorname{conf}_{\mathbb{K}}(A \to \{m\}) \ge c$

for all "reasonable" $m \in M$.

- Avoids computation of closure under $\mathsf{Th}_c(\mathbb{K})$

Computes intermediate questions:

Ask
$$A \to \{m\}$$
 if $\operatorname{conf}_{\mathbb{K}}(A \to \{m\}) \ge c$

for all "reasonable" $m \in M$.

- Avoids computation of closure under $\mathsf{Th}_c(\mathbb{K})$

Drawbacks

Computes intermediate questions:

Ask
$$A \to \{m\}$$
 if $\operatorname{conf}_{\mathbb{K}}(A \to \{m\}) \ge c$

for all "reasonable" $m \in M$.

• Avoids computation of closure under $\mathsf{Th}_c(\mathbb{K})$

Drawbacks

May ask much more questions than necessary

Transfer exploration by confidence into setting of confident GCIs

Transfer exploration by confidence into setting of confident GCIs

Idea

Do exploration on induced context $\mathbb{K}_\mathcal{I}$

Transfer exploration by confidence into setting of confident GCIs

Idea

Do exploration on induced context $\mathbb{K}_\mathcal{I}$

Transfer exploration by confidence into setting of confident GCIs

Idea

Do exploration on induced context $\mathbb{K}_\mathcal{I}$

Challenges

 \blacktriangleright Interpretation ${\cal I}$ not known at the beginning

Transfer exploration by confidence into setting of confident GCIs

Idea

Do exploration on induced context $\mathbb{K}_\mathcal{I}$

Challenges

- Interpretation ${\cal I}$ not known at the beginning, and so is $M_{{\cal I}}$

Transfer exploration by confidence into setting of confident GCIs

Idea

Do exploration on induced context $\mathbb{K}_\mathcal{I}$

- Interpretation ${\cal I}$ not known at the beginning, and so is $M_{{\cal I}}$
- Incremental set of attributes

Transfer exploration by confidence into setting of confident GCIs

Idea

Do exploration on induced context $\mathbb{K}_\mathcal{I}$

- Interpretation ${\cal I}$ not known at the beginning, and so is $M_{{\cal I}}$
- Incremental set of attributes
- Counterexamples must be specified *completely*

Transfer exploration by confidence into setting of confident GCIs

Idea

Do exploration on induced context $\mathbb{K}_\mathcal{I}$

- Interpretation ${\cal I}$ not known at the beginning, and so is $M_{{\cal I}}$
- Incremental set of attributes
- Counterexamples must be specified *completely*
- Adapt expert interaction

Outline

1 The Original Approach

2 Adding Confidence

 \bigcirc Experiments with $\mathcal{I}_{\mathsf{DBpedia}}$

4 Exploring Confident GCIs

Summary

Motivated learning of confident GCIs from finite interpretations

- Motivated learning of confident GCIs from finite interpretations
- Construction of bases of confident GCIs

- Motivated learning of confident GCIs from finite interpretations
- Construction of bases of confident GCIs
- Experiments on the behavior of confident GCIs

- Motivated learning of confident GCIs from finite interpretations
- Construction of bases of confident GCIs
- Experiments on the behavior of confident GCIs
- Motivated exploration algorithms for confident GCIs

- Motivated learning of confident GCIs from finite interpretations
- Construction of bases of confident GCIs
- Experiments on the behavior of confident GCIs
- Motivated exploration algorithms for confident GCIs

Research Questions

- Motivated learning of confident GCIs from finite interpretations
- Construction of bases of confident GCIs
- Experiments on the behavior of confident GCIs
- Motivated exploration algorithms for confident GCIs

Research Questions

Exploration Algorithm for confident GCIs

- Motivated learning of confident GCIs from finite interpretations
- Construction of bases of confident GCIs
- Experiments on the behavior of confident GCIs
- Motivated exploration algorithms for confident GCIs

Research Questions

- Exploration Algorithm for confident GCIs
- Depth-Bounded Axiomatization

- Motivated learning of confident GCIs from finite interpretations
- Construction of bases of confident GCIs
- Experiments on the behavior of confident GCIs
- Motivated exploration algorithms for confident GCIs

Research Questions

- Exploration Algorithm for confident GCIs
- Depth-Bounded Axiomatization
- Minimal bases of confident GCIs

Thank You

So far, all bases of $\mathsf{Th}_{c}(\mathcal{I})$ were formulated in $\mathcal{EL}_{gfp}^{\perp}$.

So far, all bases of $\mathsf{Th}_{c}(\mathcal{I})$ were formulated in $\mathcal{EL}_{gfp}^{\perp}$.

Example

 $\exists child. \exists child. Person$ $<math display="block"> \sqsubseteq$ $(A, \{ A \equiv Person \sqcap \exists child. B \sqcap \exists child. C \sqcap \exists child. D,$ $B \equiv Person \sqcap \exists child. A \sqcap \exists child. C \sqcap \exists child. D,$ $C \equiv \top,$ $D \equiv Person \sqcap \exists child. C \})$

So far, all bases of $\mathsf{Th}_{c}(\mathcal{I})$ were formulated in $\mathcal{EL}_{gfp}^{\perp}$.

Example

 $\exists child. \exists child. Person$ $<math display="block"> \Box$ $(A, \{ A \equiv Person \sqcap \exists child. B \sqcap \exists child. C \sqcap \exists child. D, \\ B \equiv Person \sqcap \exists child. A \sqcap \exists child. C \sqcap \exists child. D, \\ C \equiv \top, \\ D \equiv Person \sqcap \exists child. C \})$

Goal

Construct easier-to-understand \mathcal{EL}^{\perp} bases.

So far, all bases of $\mathsf{Th}_{c}(\mathcal{I})$ were formulated in $\mathcal{EL}_{gfp}^{\perp}$.

Example

```
\exists child. Person 

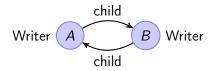
<math display="block"> \Box 
(A, \{ A \equiv Person \sqcap \exists child. B \sqcap \exists child. C \sqcap \exists child. D, \\ B \equiv Person \sqcap \exists child. A \sqcap \exists child. C \sqcap \exists child. D, \\ C \equiv \top, \\ D \equiv Person \sqcap \exists child. C \})
```

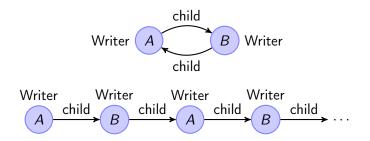
Goal

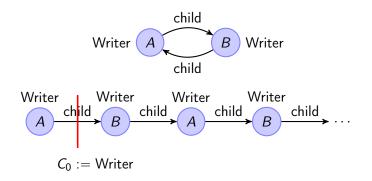
Construct easier-to-understand \mathcal{EL}^{\perp} bases.

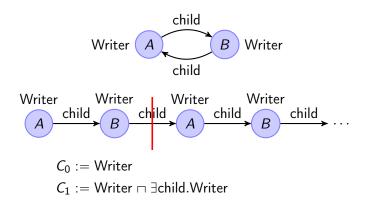
Approach

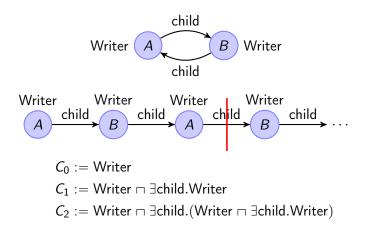
Use idea of unravelling $\mathcal{EL}_{gfp}^{\perp}$ concept descriptions.



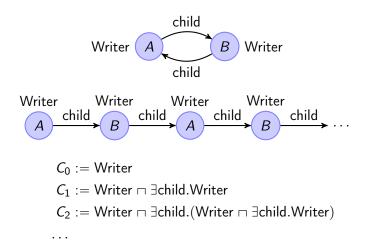








 $C := (A, \{A \equiv \mathsf{Writer} \sqcap \exists \mathsf{child}.B, B \equiv \mathsf{Writer} \sqcap \exists \mathsf{child}.A\})$



Problem

How to keep the expressiveness of $\mathcal{EL}_{gfp}^{\perp}$ concept descriptions?

Problem

How to keep the expressiveness of $\mathcal{EL}_{gfp}^{\perp}$ concept descriptions?

Lemma (Distel 2008)

Then there exists an effectively computable $d \in \mathbb{N}$ such that

$$(C_d)^{\mathcal{I}} = C^{\mathcal{I}}$$

is true for each $\mathcal{EL}_{gfp}^{\perp}$ concept description C.

Let $\mathcal{B} \cup \mathcal{C}$ be a confident base of $\mathsf{Th}_c(\mathcal{I})$ such that

- $\mathcal{B} \subseteq \mathsf{Th}(\mathcal{I})$,
- $\mathcal{C} \cap \mathsf{Th}(\mathcal{I}) = \emptyset$, and
- \mathcal{B} only contains GCIs of the form $E \sqsubseteq E^{\mathcal{II}}$.

Let $\mathcal{B} \cup \mathcal{C}$ be a confident base of $\mathsf{Th}_c(\mathcal{I})$ such that

- $\mathcal{B} \subseteq \mathsf{Th}(\mathcal{I})$,
- $\mathcal{C} \cap \mathsf{Th}(\mathcal{I}) = \emptyset$, and
- \mathcal{B} only contains GCIs of the form $E \sqsubseteq E^{\mathcal{II}}$.

Let $\mathcal{B} \cup \mathcal{C}$ be a confident base of $\mathsf{Th}_c(\mathcal{I})$ such that

- $\mathcal{B} \subseteq \mathsf{Th}(\mathcal{I})$,
- $\mathcal{C} \cap \mathsf{Th}(\mathcal{I}) = \emptyset$, and
- \mathcal{B} only contains GCIs of the form $E \sqsubseteq E^{\mathcal{II}}$.

$$\mathcal{X} := \{ (X^{\mathcal{I}})_d \sqsubseteq (X^{\mathcal{I}})_{d+1} \mid X \subseteq \Delta^{\mathcal{I}}, X \neq \emptyset \}$$

Let $\mathcal{B} \cup \mathcal{C}$ be a confident base of $\mathsf{Th}_c(\mathcal{I})$ such that

- $\mathcal{B} \subseteq \mathsf{Th}(\mathcal{I})$,
- $\mathcal{C} \cap \mathsf{Th}(\mathcal{I}) = \emptyset$, and
- \mathcal{B} only contains GCIs of the form $E \sqsubseteq E^{\mathcal{II}}$.

Definition

$$\mathcal{X} := \{ (X^{\mathcal{I}})_d \sqsubseteq (X^{\mathcal{I}})_{d+1} \mid X \subseteq \Delta^{\mathcal{I}}, X \neq \emptyset \}$$

Lemma

For each $Y \subseteq \Delta^{\mathcal{I}}$, it is true that

$$\mathcal{X} \models ((Y^{\mathcal{I}})_d \sqsubseteq Y^{\mathcal{I}}).$$

Let $\mathcal{B} \cup \mathcal{C}$ be a confident base of $\mathsf{Th}_c(\mathcal{I})$ such that

- $\mathcal{B} \subseteq \mathsf{Th}(\mathcal{I})$,
- $\mathcal{C} \cap \mathsf{Th}(\mathcal{I}) = \emptyset$, and
- \mathcal{B} only contains GCIs of the form $E \sqsubseteq E^{\mathcal{II}}$.

$$\mathcal{X} := \{ (X^{\mathcal{I}})_d \sqsubseteq (X^{\mathcal{I}})_{d+1} \mid X \subseteq \Delta^{\mathcal{I}}, X \neq \emptyset \}$$

Let $\mathcal{B} \cup \mathcal{C}$ be a confident base of $\mathsf{Th}_c(\mathcal{I})$ such that

- $\mathcal{B} \subseteq \mathsf{Th}(\mathcal{I})$,
- $\mathcal{C} \cap \mathsf{Th}(\mathcal{I}) = \emptyset$, and
- \mathcal{B} only contains GCIs of the form $E \sqsubseteq E^{\mathcal{II}}$.

$$\mathcal{X} := \{ (X^{\mathcal{I}})_d \sqsubseteq (X^{\mathcal{I}})_{d+1} \mid X \subseteq \Delta^{\mathcal{I}}, X \neq \emptyset \}$$
$$\mathcal{B}_0 := \{ E_d \sqsubseteq (E^{\mathcal{II}})_d \mid (E \sqsubseteq E^{\mathcal{II}}) \in \mathcal{B} \}$$
$$\cup \{ C_d \sqsubseteq (C^{\mathcal{II}})_d \mid (C \sqsubseteq D) \in \mathcal{C} \}$$

Let $\mathcal{B} \cup \mathcal{C}$ be a confident base of $\mathsf{Th}_c(\mathcal{I})$ such that

- $\mathcal{B} \subseteq \mathsf{Th}(\mathcal{I})$,
- $\mathcal{C} \cap \mathsf{Th}(\mathcal{I}) = \emptyset$, and
- \mathcal{B} only contains GCIs of the form $E \sqsubseteq E^{\mathcal{II}}$.

$$\begin{aligned} \mathcal{X} &:= \{ (X^{\mathcal{I}})_d \sqsubseteq (X^{\mathcal{I}})_{d+1} \mid X \subseteq \Delta^{\mathcal{I}}, X \neq \emptyset \} \\ \mathcal{B}_0 &:= \{ E_d \sqsubseteq (E^{\mathcal{II}})_d \mid (E \sqsubseteq E^{\mathcal{II}}) \in \mathcal{B} \} \\ &\cup \{ C_d \sqsubseteq (C^{\mathcal{II}})_d \mid (C \sqsubseteq D) \in \mathcal{C} \} \\ \mathcal{C}_0 &:= \{ (C^{\mathcal{II}})_d \sqsubseteq (D^{\mathcal{II}})_d \mid (C \sqsubseteq D) \in \mathcal{C} \} \end{aligned}$$

Let $\mathcal{B} \cup \mathcal{C}$ be a confident base of $\mathsf{Th}_c(\mathcal{I})$ such that

- $\mathcal{B} \subseteq \mathsf{Th}(\mathcal{I})$,
- $\mathcal{C} \cap \mathsf{Th}(\mathcal{I}) = \emptyset$, and
- \mathcal{B} only contains GCIs of the form $E \sqsubseteq E^{\mathcal{II}}$.

Definition

$$\mathcal{X} := \{ (X^{\mathcal{I}})_d \sqsubseteq (X^{\mathcal{I}})_{d+1} \mid X \subseteq \Delta^{\mathcal{I}}, X \neq \emptyset \}$$
$$\mathcal{B}_0 := \{ E_d \sqsubseteq (E^{\mathcal{II}})_d \mid (E \sqsubseteq E^{\mathcal{II}}) \in \mathcal{B} \}$$
$$\cup \{ C_d \sqsubseteq (C^{\mathcal{II}})_d \mid (C \sqsubseteq D) \in \mathcal{C} \}$$

Observation

Let $\mathcal{B} \cup \mathcal{C}$ be a confident base of $\mathsf{Th}_c(\mathcal{I})$ such that

- $\mathcal{B} \subseteq \mathsf{Th}(\mathcal{I})$,
- $\mathcal{C} \cap \mathsf{Th}(\mathcal{I}) = \emptyset$, and
- \mathcal{B} only contains GCIs of the form $E \sqsubseteq E^{\mathcal{II}}$.

Definition

$$\mathcal{X} := \{ (X^{\mathcal{I}})_d \sqsubseteq (X^{\mathcal{I}})_{d+1} \mid X \subseteq \Delta^{\mathcal{I}}, X \neq \emptyset \}$$
$$\mathcal{B}_0 := \{ E_d \sqsubseteq (E^{\mathcal{II}})_d \mid (E \sqsubseteq E^{\mathcal{II}}) \in \mathcal{B} \}$$
$$\cup \{ C_d \sqsubseteq (C^{\mathcal{II}})_d \mid (C \sqsubseteq D) \in \mathcal{C} \}$$

Observation

$$\mathcal{B}_0 \cup \mathcal{C}_0 \cup \mathcal{X} \models$$

Let $\mathcal{B} \cup \mathcal{C}$ be a confident base of $\mathsf{Th}_c(\mathcal{I})$ such that

- $\mathcal{B} \subseteq \mathsf{Th}(\mathcal{I})$,
- $\mathcal{C} \cap \mathsf{Th}(\mathcal{I}) = \emptyset$, and
- \mathcal{B} only contains GCIs of the form $E \sqsubseteq E^{\mathcal{II}}$.

Definition

$$\mathcal{X} := \{ (X^{\mathcal{I}})_d \sqsubseteq (X^{\mathcal{I}})_{d+1} \mid X \subseteq \Delta^{\mathcal{I}}, X \neq \emptyset \}$$
$$\mathcal{B}_0 := \{ E_d \sqsubseteq (E^{\mathcal{II}})_d \mid (E \sqsubseteq E^{\mathcal{II}}) \in \mathcal{B} \}$$
$$\cup \{ C_d \sqsubseteq (C^{\mathcal{II}})_d \mid (C \sqsubseteq D) \in \mathcal{C} \}$$

Observation

$$\mathcal{B}_0 \cup \mathcal{C}_0 \cup \mathcal{X} \models C \sqsubseteq \mathcal{C}_d$$

Let $\mathcal{B} \cup \mathcal{C}$ be a confident base of $\mathsf{Th}_c(\mathcal{I})$ such that

- $\mathcal{B} \subseteq \mathsf{Th}(\mathcal{I})$,
- $\mathcal{C} \cap \mathsf{Th}(\mathcal{I}) = \emptyset$, and
- \mathcal{B} only contains GCIs of the form $E \sqsubseteq E^{\mathcal{II}}$.

Definition

$$\mathcal{X} := \{ (X^{\mathcal{I}})_d \sqsubseteq (X^{\mathcal{I}})_{d+1} \mid X \subseteq \Delta^{\mathcal{I}}, X \neq \emptyset \}$$
$$\mathcal{B}_0 := \{ E_d \sqsubseteq (E^{\mathcal{II}})_d \mid (E \sqsubseteq E^{\mathcal{II}}) \in \mathcal{B} \}$$
$$\cup \{ C_d \sqsubseteq (C^{\mathcal{II}})_d \mid (C \sqsubseteq D) \in \mathcal{C} \}$$

Observation

$$\mathcal{B}_0 \cup \mathcal{C}_0 \cup \mathcal{X} \models \mathcal{C} \sqsubseteq \mathcal{C}_d \sqsubseteq (\mathcal{C}^{\mathcal{II}})_d$$

Let $\mathcal{B} \cup \mathcal{C}$ be a confident base of $\mathsf{Th}_c(\mathcal{I})$ such that

- $\mathcal{B} \subseteq \mathsf{Th}(\mathcal{I})$,
- $\mathcal{C} \cap \mathsf{Th}(\mathcal{I}) = \emptyset$, and
- \mathcal{B} only contains GCIs of the form $E \sqsubseteq E^{\mathcal{II}}$.

Definition

$$\mathcal{X} := \{ (X^{\mathcal{I}})_d \sqsubseteq (X^{\mathcal{I}})_{d+1} \mid X \subseteq \Delta^{\mathcal{I}}, X \neq \emptyset \}$$
$$\mathcal{B}_0 := \{ E_d \sqsubseteq (E^{\mathcal{II}})_d \mid (E \sqsubseteq E^{\mathcal{II}}) \in \mathcal{B} \}$$
$$\cup \{ C_d \sqsubseteq (C^{\mathcal{II}})_d \mid (C \sqsubseteq D) \in \mathcal{C} \}$$

Observation

$$\mathcal{B}_0 \cup \mathcal{C}_0 \cup \mathcal{X} \models \mathcal{C} \sqsubseteq \mathcal{C}_d \sqsubseteq (\mathcal{C}^{\mathcal{II}})_d \sqsubseteq (\mathcal{D}^{\mathcal{II}})_d$$

Let $\mathcal{B} \cup \mathcal{C}$ be a confident base of $\mathsf{Th}_c(\mathcal{I})$ such that

- $\mathcal{B} \subseteq \mathsf{Th}(\mathcal{I})$,
- $\mathcal{C} \cap \mathsf{Th}(\mathcal{I}) = \emptyset$, and
- \mathcal{B} only contains GCIs of the form $E \sqsubseteq E^{\mathcal{II}}$.

Definition

$$\mathcal{X} := \{ (X^{\mathcal{I}})_d \sqsubseteq (X^{\mathcal{I}})_{d+1} \mid X \subseteq \Delta^{\mathcal{I}}, X \neq \emptyset \}$$
$$\mathcal{B}_0 := \{ E_d \sqsubseteq (E^{\mathcal{II}})_d \mid (E \sqsubseteq E^{\mathcal{II}}) \in \mathcal{B} \}$$
$$\cup \{ C_d \sqsubseteq (C^{\mathcal{II}})_d \mid (C \sqsubseteq D) \in \mathcal{C} \}$$

Observation

$$\mathcal{B}_0 \cup \mathcal{C}_0 \cup \mathcal{X} \models \mathcal{C} \sqsubseteq \mathcal{C}_d \sqsubseteq (\mathcal{C}^{\mathcal{II}})_d \sqsubseteq (\mathcal{D}^{\mathcal{II}})_d \sqsubseteq \mathcal{D}^{\mathcal{II}}$$

Let $\mathcal{B} \cup \mathcal{C}$ be a confident base of $\mathsf{Th}_c(\mathcal{I})$ such that

- $\mathcal{B} \subseteq \mathsf{Th}(\mathcal{I})$,
- $\mathcal{C} \cap \mathsf{Th}(\mathcal{I}) = \emptyset$, and
- \mathcal{B} only contains GCIs of the form $E \sqsubseteq E^{\mathcal{II}}$.

Definition

$$\mathcal{X} := \{ (X^{\mathcal{I}})_d \sqsubseteq (X^{\mathcal{I}})_{d+1} \mid X \subseteq \Delta^{\mathcal{I}}, X \neq \emptyset \}$$
$$\mathcal{B}_0 := \{ E_d \sqsubseteq (E^{\mathcal{II}})_d \mid (E \sqsubseteq E^{\mathcal{II}}) \in \mathcal{B} \}$$
$$\cup \{ C_d \sqsubseteq (C^{\mathcal{II}})_d \mid (C \sqsubseteq D) \in \mathcal{C} \}$$

Observation

$$\mathcal{B}_0 \cup \mathcal{C}_0 \cup \mathcal{X} \models C \sqsubseteq \mathcal{C}_d \sqsubseteq (\mathcal{C}^{\mathcal{II}})_d \sqsubseteq (\mathcal{D}^{\mathcal{II}})_d \sqsubseteq \mathcal{D}^{\mathcal{II}} \sqsubseteq \mathcal{D}_d$$

Let $\mathcal{B} \cup \mathcal{C}$ be a confident base of $\mathsf{Th}_c(\mathcal{I})$ such that

- $\mathcal{B} \subseteq \mathsf{Th}(\mathcal{I})$,
- $\mathcal{C} \cap \mathsf{Th}(\mathcal{I}) = \emptyset$, and
- \mathcal{B} only contains GCIs of the form $E \sqsubseteq E^{\mathcal{II}}$.

Definition

$$\mathcal{X} := \{ (X^{\mathcal{I}})_d \sqsubseteq (X^{\mathcal{I}})_{d+1} \mid X \subseteq \Delta^{\mathcal{I}}, X \neq \emptyset \}$$
$$\mathcal{B}_0 := \{ E_d \sqsubseteq (E^{\mathcal{II}})_d \mid (E \sqsubseteq E^{\mathcal{II}}) \in \mathcal{B} \}$$
$$\cup \{ C_d \sqsubseteq (C^{\mathcal{II}})_d \mid (C \sqsubseteq D) \in \mathcal{C} \}$$

Observation

For $(C \sqsubseteq D) \in C$, it is true that

$$\mathcal{B}_0 \cup \mathcal{C}_0 \cup \mathcal{X} \models \mathcal{C} \sqsubseteq \mathcal{C}_d \sqsubseteq (\mathcal{C}^{\mathcal{II}})_d \sqsubseteq (\mathcal{D}^{\mathcal{II}})_d \sqsubseteq \mathcal{D}^{\mathcal{II}} \sqsubseteq \mathcal{D}_{\mathcal{II}}$$

thus $\mathcal{B}_0 \cup \mathcal{C}_0 \cup \mathcal{X} \models \mathcal{C}$.

Let $\mathcal{B} \cup \mathcal{C}$ be a confident base of $\mathsf{Th}_c(\mathcal{I})$ such that

- $\mathcal{B} \subseteq \mathsf{Th}(\mathcal{I})$,
- $\mathcal{C} \cap \mathsf{Th}(\mathcal{I}) = \emptyset$, and
- \mathcal{B} only contains GCIs of the form $E \sqsubseteq E^{\mathcal{II}}$.

$$\begin{aligned} \mathcal{X} &:= \{ (X^{\mathcal{I}})_d \sqsubseteq (X^{\mathcal{I}})_{d+1} \mid X \subseteq \Delta^{\mathcal{I}}, X \neq \emptyset \} \\ \mathcal{B}_0 &:= \{ E_d \sqsubseteq (E^{\mathcal{II}})_d \mid (E \sqsubseteq E^{\mathcal{II}}) \in \mathcal{B} \} \\ &\cup \{ C_d \sqsubseteq (C^{\mathcal{II}})_d \mid (C \sqsubseteq D) \in \mathcal{C} \} \\ \mathcal{C}_0 &:= \{ (C^{\mathcal{II}})_d \sqsubseteq (D^{\mathcal{II}})_d \mid (C \sqsubseteq D) \in \mathcal{C} \} \end{aligned}$$

Let $\mathcal{B} \cup \mathcal{C}$ be a confident base of $\mathsf{Th}_c(\mathcal{I})$ such that

- $\mathcal{B} \subseteq \mathsf{Th}(\mathcal{I})$,
- $\mathcal{C} \cap \mathsf{Th}(\mathcal{I}) = \emptyset$, and
- \mathcal{B} only contains GCIs of the form $E \sqsubseteq E^{\mathcal{II}}$.

Definition

$$\mathcal{X} := \{ (X^{\mathcal{I}})_d \sqsubseteq (X^{\mathcal{I}})_{d+1} \mid X \subseteq \Delta^{\mathcal{I}}, X \neq \emptyset \}$$
$$\mathcal{B}_0 := \{ E_d \sqsubseteq (E^{\mathcal{II}})_d \mid (E \sqsubseteq E^{\mathcal{II}}) \in \mathcal{B} \}$$
$$\cup \{ C_d \sqsubseteq (C^{\mathcal{II}})_d \mid (C \sqsubseteq D) \in \mathcal{C} \}$$

Theorem

The set $\mathcal{B}_0 \cup \mathcal{C}_0 \cup \mathcal{X}$ is a confident base of $\mathsf{Th}_c(\mathcal{I})$ that only contains \mathcal{EL}^{\perp} GCIs.

The base $\mathcal{B}_0 \cup \mathcal{C}_0 \cup \mathcal{X}$ might be considerably larger than $\mathcal{B} \cup \mathcal{C}$ (*d* might be too large!)

The base $\mathcal{B}_0 \cup \mathcal{C}_0 \cup \mathcal{X}$ might be considerably larger than $\mathcal{B} \cup \mathcal{C}$ (*d* might be too large!)

Question

The base $\mathcal{B}_0 \cup \mathcal{C}_0 \cup \mathcal{X}$ might be considerably larger than $\mathcal{B} \cup \mathcal{C}$ (*d* might be too large!)

Question

Can we do better?

The base $\mathcal{B}_0 \cup \mathcal{C}_0 \cup \mathcal{X}$ might be considerably larger than $\mathcal{B} \cup \mathcal{C}$ (*d* might be too large!)

Question

- Can we do better?
- Consider depth-bounded axiomatization instead?