

DATABASE THEORY

Lecture 4: Complexity of FO Query Answering

Markus Krötzsch

Knowledge-Based Systems

TU Dresden, 17 April 2023

More recent versions of this slide deck might be available. For the most current version of this course, see https://iccl.inf.tu-dresden.de/web/Database_Theory/en

How to Measure Query Answering Complexity

Query answering as decision problem \rightsquigarrow consider Boolean queries

Various notions of complexity:

- Combined complexity (complexity w.r.t. size of query and database instance)
- Data complexity (worst case complexity for any fixed query)
- Query complexity (worst case complexity for any fixed database instance)

Various common complexity classes:

 $L\subseteq NL\subseteq P\subseteq NP\subseteq PSpace\subseteq ExpTime$

An Algorithm for Evaluating FO Queries

$\texttt{function}\;\mathsf{Eval}(\varphi,I)$

01 switch (φ) {

02	case $p(c_1, \ldots, c_\ell)$: return $\langle c_1, \ldots, c_\ell \rangle \in p^I$
03	case $\neg \psi$: return $\neg Eval(\psi, I)$
04	$case\psi_1\wedge\psi_2:\;return\;Eval(\psi_1,I)\wedgeEval(\psi_2,I)$
05	case $\exists x.\psi$:
06	for $c \in \Delta^I$ {
07	if $Eval(\psi[x \mapsto c], I)$ then return true
80	}
09	return false
10	}

Let *m* be the size of φ , and let $n = |\mathcal{I}|$ (total table sizes)

Let *m* be the size of φ , and let $n = |\mathcal{I}|$ (total table sizes)

• Maximum depth of recursion (=max call tree depth)?

Let *m* be the size of φ , and let $n = |\mathcal{I}|$ (total table sizes)

- Maximum depth of recursion (=max call tree depth)?
 → in an Eval call (on a formula), Eval is called recursively only on shorter formulas
 → recursion depth bounded by length of φ: at most m
- Maximum number of direct calls from within one Eval call (=max branching degree)?

Let *m* be the size of φ , and let $n = |\mathcal{I}|$ (total table sizes)

- Maximum depth of recursion (=max call tree depth)?
 → in an Eval call (on a formula), Eval is called recursively only on shorter formulas
 → recursion depth bounded by length of φ: at most m
- Maximum number of direct calls from within one Eval call (=max branching degree)?
 → max(|Δ^I|, 2) (the max of lines 06–08 and line 04)
 → we simplify: max(|Δ^I|, 2) ≤ max(n, 2) ≤ n + 2
- Maximum number of total Eval calls?

Let *m* be the size of φ , and let $n = |\mathcal{I}|$ (total table sizes)

- Maximum depth of recursion (=max call tree depth)?
 → in an Eval call (on a formula), Eval is called recursively only on shorter formulas
 → recursion depth bounded by length of φ: at most m
- Maximum number of direct calls from within one Eval call (=max branching degree)?
 → max(|Δ^I|, 2) (the max of lines 06–08 and line 04)
 → we simplify: max(|Δ^I|, 2) ≤ max(n, 2) ≤ n + 2
- Maximum number of total Eval calls?

$$\sum_{\text{depth}=0}^{\text{max tree depth}} (\text{max branching degree})^{\text{depth}} \le \sum_{i=0}^{m} (n+2)^i \le (n+2)^{m+1}$$

• Maximum time needed for one Eval call (without subcalls)?

Let *m* be the size of φ , and let $n = |\mathcal{I}|$ (total table sizes)

- Maximum depth of recursion (=max call tree depth)?
 → in an Eval call (on a formula), Eval is called recursively only on shorter formulas
 → recursion depth bounded by length of φ: at most m
- Maximum number of direct calls from within one Eval call (=max branching degree)?
 → max(|Δ^I|, 2) (the max of lines 06–08 and line 04)
 → we simplify: max(|Δ^I|, 2) ≤ max(n, 2) ≤ n + 2
- Maximum number of total Eval calls?

 $\sum_{\text{depth}=0}^{\text{max tree depth}} (\text{max branching degree})^{\text{depth}} \le \sum_{i=0}^{m} (n+2)^i \le (n+2)^{m+1}$

Maximum time needed for one Eval call (without subcalls)?
 → Checking (c₁,..., c_l) ∈ p^T can be done in linear time w.r.t. *n* (line 02)
 → so can the **for** loop (lines 06-08), all other cases are less costly

Runtime in $(n + 2)^{m+1} \cdot O(n) \le O((n + 2)^{m+2})$

Time Complexity of FO Algorithm

Let *m* be the size of φ , and let $n = |\mathcal{I}|$ (total table sizes)

Runtime in $O((n+2)^{m+2})$

Time complexity of FO query evaluation

- Combined complexity: in ExpTime
- Data complexity (*m* is constant): in P
- Query complexity (*n* is constant): in ExpTime

FO Algorithm Worst-Case Memory Usage

We can get better complexity bounds by looking at memory

Let *m* be the size of φ , and let $n = |\mathcal{I}|$ (total table sizes)

- For each (recursive) call, store pointer to current subexpression of φ : $\log m$
- For each variable in φ (at most m), store current constant assignment (as a pointer): m · log n
- Checking $\langle c_1, \ldots, c_\ell \rangle \in p^I$ can be done in logarithmic space w.r.t. *n*

Memory in $m \log m + m \log n + \log n = m \log m + (m + 1) \log n$

Space Complexity of FO Algorithm

Let *m* be the size of φ , and let $n = |\mathcal{I}|$ (total table sizes)

Memory in $m \log m + (m + 1) \log n$

Space complexity of FO query evaluation

- Combined complexity: in PSpace
- Data complexity (*m* is constant): in L
- Query complexity (*n* is constant): in PSpace

FO Combined Complexity

The algorithm shows that FO query evaluation is in PSpace. Is this the best we can get?

Hardness proof: reduce a known PSpace-hard problem to FO query evaluation

FO Combined Complexity

The algorithm shows that FO query evaluation is in PSpace. Is this the best we can get?

Hardness proof: reduce a known PSpace-hard problem to FO query evaluation $\rightsquigarrow \mathsf{QBF}\xspace$ satisfiability

Let $Q_1X_1.Q_2X_2...Q_nX_n.\varphi[X_1,...,X_n]$ be a QBF (with $Q_i \in \{\forall, \exists\})$

- Database instance I with $\Delta^{I} = \{0, 1\}$
- One table with one row: true(1)
- Transform input QBF into Boolean FO query

 $Q_1x_1.Q_2x_2...Q_nx_n.\varphi[X_1 \mapsto \mathsf{true}(x_1),\ldots,X_n \mapsto \mathsf{true}(x_n)]$

It is easy to check that this yields the required reduction.

PSpace-hardness for DI Queries

The previous reduction from QBF may lead to a query that is not domain independent

Example: QBF $\exists p. \neg p$ leads to FO query $\exists x. \neg true(x)$

PSpace-hardness for DI Queries

The previous reduction from QBF may lead to a query that is not domain independent

Example: QBF $\exists p.\neg p$ leads to FO query $\exists x.\neg true(x)$

Better approach:

- Consider QBF Q₁X₁.Q₂X₂...Q_nX_n.φ[X₁,...,X_n] with φ in negation normal form: negations only occur directly before variables X_i (still PSpace-complete: exercise)
- Database instance I with $\Delta^{I} = \{0, 1\}$
- Two tables with one row each: true(1) and false(0)
- Transform input QBF into Boolean FO query

 $\mathsf{Q}_1 x_1 \cdot \mathsf{Q}_2 x_2 \cdot \cdots \cdot \mathsf{Q}_n x_n \cdot \varphi'$

where φ' is obtained by replacing each negated variable $\neg X_i$ with false(x_i) and each non-negated variable X_i with true(x_i).

Combined Complexity of FO Query Answering

Summing up, we obtain:

Theorem 4.1: The evaluation of FO queries is PSpace-complete with respect to combined complexity.

Combined Complexity of FO Query Answering

Summing up, we obtain:

Theorem 4.1: The evaluation of FO queries is PSpace-complete with respect to combined complexity.

We have actually shown something stronger:

Theorem 4.2: The evaluation of FO queries is PSpace-complete with respect to query complexity.

Summary and Outlook

The evaluation of FO queries is

- PSpace-complete for combined complexity
- PSpace-complete for query complexity

Open questions:

- What is the data complexity of FO queries?
- Are there query languages with lower complexities? (next lecture)
- Which other computing problems are interesting?