Chapter 7

Outline

- First-Order Formulas and Logical Truth
- The Completion semantics
- Soundness and restricted completeness of SLDNF-Resolution
- Extended consequence operator
- An alternative semantics: Standard models

[Lloyd, 1987] J.W. Lloyd. Foundations of Logic Programming: Second, Extended Edition. *Springer Verlag*, 1987.

[Cavedon and Lloyd, 1989] L. Cavedon and J.W. Lloyd. A Completeness Theorem for SLDNF Resolution. *Journal of Logic Programming*, 7:177-191, 1989.

[Apt and Bol, 1994] K. Apt and R. Bol. Logic Programming and Negation: A Survey. *Journal of Logic Programming*, 19/20: 9-71, 1994.

First-Order Formulas

 \prod , *F* ranked alphabets of predicate symbols and function symbols, respectively, *V* set of variables

The (first-order) formulas (over \prod , *F*, and *V*) are inductively defined as follows:

- if $A \in TB_{\prod, F, V}$, then A is a formula
- if G_1 and G_2 are formulas, then $\neg G_1$, $G_1 \land G_2$ (written G_1 , G_2), $G_1 \lor G_2$, $G_1 \leftarrow G_2$, and $G_1 \leftrightarrow G_2$ are formulas
- if G_1 is formula and $x \in V$, then $\forall x \in G$ and $\exists x \in G$ are formulas

Extended Notion of Logical Truth (I)

G formula, *I* interpretation with domain *D*, σ : *V* \rightarrow *D* state

G true in I under σ , written $I \models_{\sigma} G : \Leftrightarrow$ • $I \models_{\sigma} p(t_1, ..., t_n) : \Leftrightarrow (\sigma(t_1), ..., \sigma(t_n)) \in p_1$ • $I \models_{a} \neg G : \Leftrightarrow I \not\models_{a} G$ • $I \models_{\sigma} G_1 \land G_2 : \Leftrightarrow I \models_{\sigma} G_1 \text{ and } I \models_{\sigma} G_2$ • $I \models_{a} G_{1} \vee G_{2} : \Leftrightarrow I \models_{a} G_{1} \text{ or } I \models_{a} G_{2}$ • $I \models_{a} G_{1} \leftarrow G_{2} : \Leftrightarrow \text{ if } I \models_{a} G_{2} \text{ then } I \models_{a} G_{1}$ • $I \models_{\alpha} G_1 \leftrightarrow G_2 : \Leftrightarrow I \models_{\alpha} G_1 \text{ iff } I \models_{\alpha} G_2$ • $I \models_{a} \forall x G : \Leftrightarrow$ for every $d \in D$: $I \models_{a'} G$ • $I \models_{a} \exists x \; G : \Leftrightarrow \text{ for some } d \in D : I \models_{a'} G$

where σ' : $V \rightarrow D$ with $\sigma'(x) = d$ and $\sigma'(y) = \sigma(y)$ for every $y \in V - \{x\}$

Extended Notion of Logical Truth (II)

G formula, *S*, *T* sets of formulas, *I*, interpretation Let $x_1, ..., x_k$ be the variables occurring in *G*.

- $\forall x_1, ..., \forall x_k G$ universal closure of G (abbreviated $\forall G$)
- $I \models \forall G : \Leftrightarrow I \models_{\sigma} G$ for every state σ
- $I \models_{\sigma} p(t_1, ..., t_n) :\Leftrightarrow (\sigma(t_1), ..., \sigma(t_n)) \in p_I$
- *G* true in *I* (or: *I* model of *G*), written: $I \models G : \Leftrightarrow I \models \forall G$
- *I* model of S, written: $I \models S : \Leftrightarrow I \models G$ for every $G \in S$
- T semantic (or: logical) consequence of S, written S ⊨ T
 :⇔ every model of S is a model of T

Programs Never Have Negative Consequences (I)

 $P_{mem}: member(x, [x|y]) \leftarrow member(x, [y|z]) \leftarrow member(x, z)$

Then $P_{mem} \models member(a, [a,b])$ and $P_{mem} \not\models member(a, [])$.

Foundations of Logic Programming

But also $P_{mem} \not\models \neg member(a, [])$, since $HB_{\{member\},\{|,[],a\}} \not\models P_{mem}$ and $HB_{\{member\},\{|,[],a\}} \not\models \neg member(a, [])$.

Nevertheless the SLDNF-tree of $P_{mem} \cup \{\neg member(a, [])\}$ is successful: $\underline{\neg member(a,[])} - \underline{member(a(,[]))}$ failure

Negation: Declarative Interpretation

6

Programs Never Have Negative Consequences (II)

Problem: For every extended program *P* the "corresponding" Herbrand base is a model.

Hence: No negative ground literal *L* can ever be a logical consequence of *P*.

But: SLDNF-tree of $P \cup \{L\}$ may be successful!

⇒ Soundness of SLDNF-resolution?

Solution: Strengthen P by completion ("replace implications by equivalences") to comp(P) and compare SLDNF-resolution with comp(P) instead of P!

Completion (Example I)

P: happy	← sun, holidays
happy	← snow, holidays
snow	← cold, precipitation
cold	<i>← winter</i>
precipitation	← holidays
winter	\leftarrow
holidays	\leftarrow

comp(P):	happy	\leftrightarrow	(sun, holidays) ∨ (snow, holidays)
	snow	\leftrightarrow	cold, precipitation
	cold	\leftrightarrow	winter
	precipitation	\leftrightarrow	holidays
	winter	\leftrightarrow	true
	holidays	\leftrightarrow	true
	sun	\leftrightarrow	false

Then, $comp(P) \models happy$, snow, cold, precipitation, winter, holidays, $\neg sun$.

Completion (Example II)

$$comp(P): \forall x_1, x_2 \text{ member}(x_1, x_2) \leftrightarrow \exists x, y (x_1 = x, x_2 = [x|y]) \lor \\ \exists x, y, z (x_1 = x, x_2 = [y|z], \text{ member}(x, z)) \\ \forall x_1, x_2 \text{ disjoint}(x_1, x_2) \leftrightarrow \exists x (x_1 = [], x_2 = x) \lor \\ (\exists x, y, z \ x_1 = [x|y], x_2 = z, \\ \neg \text{ member}(x, z), \text{ disjoint}(y, z))$$

plus standard equality and inequality axioms

Then, e.g. $comp(P) \models member(a, [a|b]), \neg member(a, []), \neg disjoint([a], [a]).$

Foundations of Logic Programming

Completion (I)

Completion of extended program P (denoted by comp(P)) is the set of formulas constructed from P by the following 6 steps:

- Associate with every *n*-ary predicate symbol *p* a sequence of pairwise distinct variables x₁, ..., x_n which do not occur in *P*.
- 2. Transform each clause $c = p(t_1, ..., t_n) \leftarrow \underline{B}$ into $p(x_1, ..., x_n) \leftarrow x_1 = t_1, ..., x_n = t_n, \underline{B}$
- 3. Transform each resulting formula $p(x_1, ..., x_n) \leftarrow G$ into $p(x_1, ..., x_n) \leftarrow \exists \underline{z} G$

where \underline{z} is a sequence of the elements of Var(c).

Completion (II)

- 4. For every *n*-ary predicate symbol *p*, let *p*(*x*₁, ..., *x_n*) ← ∃<u>*z*</u>₁ *G*₁, ..., *p*(*x*₁, ..., *x_n*) ← ∃<u>*z*</u>_{*m*} *G*_{*m*}
 be all implications obtained in Step 3 (*m* ≥ 0).
- If m > 0, then replace these by the formula $\forall x_1, ..., x_n \ p(x_1, ..., x_n) \leftrightarrow \exists \underline{z}_1 \ G_1 \lor ... \lor \exists \underline{z}_m \ G_m$ (If some $\exists \underline{z}_i \ G_i$ is empty, then replace it by true.)
- If m = 0, then add the formula $\forall x_1, ..., x_n \ p(x_1, ..., x_n) \leftrightarrow false$

Completion (III)

- 5. Standard axioms of equality
 - $\forall [x = x$ $\forall [x = y \rightarrow y = x$ $\forall [x = y \land y = z \rightarrow x = z$ $\forall [x_i = y \rightarrow f(x_1, ..., x_i, ..., x_n) = f(x_1, ..., y, ..., x_n)$ $\forall [x_i = y \rightarrow (p(x_1, ..., x_i, ..., x_n) \leftrightarrow p(x_1, ..., y, ..., x_n))$
- 6. Standard axioms of inequality
 - $\forall [x_1 \neq y_1 \lor ... \lor x_n \neq y_n \rightarrow f(x_1, ..., x_n) \neq f(y_1, ..., y_n)]$ $\forall [f(x_1, ..., x_m) \neq g(y_1, ..., y_n)]$ (whenever $f \neq g$) $\forall [x \neq t]$ (whenever x is proper subterm of t)
- 5. and 6. ensure that = must be interpreted as equality!

Soundness of SLDNF-Resolution

P extended program, *Q* extended query, θ substitution:

- $\theta \mid_{Var(Q)}$ correct answer substitution of $Q : \Leftrightarrow comp(P) \models Q\theta$
- $Q\theta$ correct instance of $Q : \Leftrightarrow comp(P) \models Q\theta$

Theorem (cf. e.g. [Lloyd, 1987])

If there exists a successful SLDNF-derivation of $P \cup \{Q\}$ with CAS θ , then $comp(P) \models Q\theta$.

Corollary

If there exists a successful SLDNF-derivation of $P \cup \{Q\}$, then $comp(P) \models \exists Q$.

SLDNF-Resolution is Not Complete (I): Inconsistency

$$P: \qquad p \leftarrow \neg p$$

 $comp(P) \supseteq \{p \leftrightarrow \neg p\}$ "=" {false}.

Hence, $comp(P) \models p$ and $comp(P) \models \neg p$.

(because $I \not\models comp(P)$ for every interpretation *I*, i.e. comp(P) is inconsistent)

But there is neither a successful SLDNF-derivation of $P \cup \{p\}$ nor of $P \cup \{\neg p\}$.

SLDNF-Resolution is Not Complete (II): Non-Strictness

$$P: \qquad \begin{array}{c} p \leftarrow q \\ p \leftarrow \neg q \\ q \leftarrow q \end{array}$$

 $comp(P) \supseteq \{p \leftrightarrow q \lor \neg q, q \leftrightarrow q\}$ "=" $\{p \leftrightarrow true\}$.

Hence, $comp(P) \models p$.

But there is no successful SLDNF-derivation of $P \cup \{p\}$.

SLDNF-Resolution is Not Complete (III): Floundering

$$P: \qquad p(x) \leftarrow \neg q(x)$$

$$comp(P) \supseteq \{ \forall x_1 \ p(x_1) \leftrightarrow \exists x \ x_1 = x, \neg q(x), \quad \forall x_1 \ q(x_1) \leftrightarrow false \}$$

"=" { $\forall x_1 \ p(x_1) \leftrightarrow true, \quad \forall x_1 \ q(x_1) \leftrightarrow false \}.$

Hence, $comp(P) \models \forall x_1 p(x_1)$.

But there is no successful SLDNF-derivation of $P \cup \{p(x_1)\}$.

SLDNF-Resolution is Not Complete (IV): Unfairness

$$P: \qquad r \leftarrow p, q \\ p \leftarrow p$$

 $comp(P) \supseteq \{r \leftrightarrow p, q, p \leftrightarrow p, q \leftrightarrow false\}$ "=" $\{r \leftrightarrow false, q \leftrightarrow false\}$. Hence, $comp(P) \models \neg r$.

But there is no successful SLDNF-derivation of $P \cup \{\neg r\}$ w.r.t. leftmost selection rule.

Dependency Graphs

dependency graph D_P of an extended program P

∶⇔

directed graph with labeled edges, where

- the nodes are the predicate symbols of P;
- the edges are either labeled by + (positive edge) or by (negative egde);
- $p \stackrel{+}{\rightarrow} q$ edge in D_P : \Leftrightarrow

P contains a clause $p(s_1, ..., s_m) \leftarrow \underline{L}, q(t_1, ..., t_n), \underline{N}$

• $p \rightarrow q$ edge in D_p : \Leftrightarrow

P contains a clause $p(s_1, ..., s_m) \leftarrow \underline{L}, \neg q(t_1, ..., t_n), \underline{N}$

Strict, Hierarchical, Stratified Programs

P extended program, D_P dependency graph of *P*, *p*, *q* predicate symbols, *Q* extended query:

- *p* depends evenly (resp. oddly) on *q* :⇔
 there is a path in *D_p* from *p* to *q* with
 an even–including 0–(resp. odd) number of negative edges
- P is strict w.r.t. Q :⇔
 no predicate symbol occuring in Q depends both evenly and oddly on a predicate symbol in the head of a clause in P
- *P* is hierarchical : \Leftrightarrow no cycle exists in D_P
- *P* is stratified :⇔
 no cycle with a negative edge exists in D_P

Restricted Completeness of SLDNF-Resolution (I)

Theorem ([Lloyd, 1987])

Let *P* be a hierarchical and allowed program and *Q* be an allowed query.

If $comp(P) \models Q\theta$ for some θ such that $Q\theta$ is ground, then there exists a successful SLDNF-derivation of $P \cup \{Q\}$ with CAS θ .

Note:

Theorem does not hold, if arbitrary selection rule is fixed! Selection rule has to be safe!

Restricted Completeness of SLDNF-Resolution (II)

Theorem ([Cavedon and Lloyd, 1989])

Let *P* be a stratified and allowed program and *Q* be an allowed query, such that *P* is strict w.r.t. *Q*.

If $comp(P) \models Q\theta$ for some θ such that $Q\theta$ is ground, then there exists a successful SLDNF-derivation of $P \cup \{Q\}$ with CAS θ .

Note:

Theorem does not hold if arbitrary selection rule is fixed! Selection rule has to be safe and fair!

Fair Selection Rules

(extended) selection rule \mathcal{R} is fair : \Leftrightarrow

for every SLDNF-tree \mathcal{F} via \mathcal{R} and for every branch ξ in \mathcal{F} :

- either ξ is failed
- or for every literal L occurring in a query of ξ , (some further instantiated version

of) L is selected within a finite number of derivation steps

Example:

- selection rule "select leftmost literal" is unfair
- selection rule "select leftmost literal to the right of the literals introduced at the previous derivation step, if it exists; otherwise select leftmost literal" is fair

Extended Consequence Operator

Let *P* be an extended program and *I* a Herbrand interpretation. Then

 $T_{P}(I) :\Leftrightarrow \{H \mid H \leftarrow \underline{B} \in ground(P), I \models \underline{B}\}$

In case P is a definite program, we know that

- T_P is monotonic,
- T_P is continuous,
- T_P has the least fixpoint $\mathcal{M}(P)$,
- $\mathcal{M}(P) = T_P^w$.

In case of extended programs all of these properties are lost!

Extended T_P -Characterization (I)

Lemma 4.3 ([Apt and Bol, 1994])

Let *P* be an extended program and *I* a Herbrand interpretation. Then

$$I \models P$$
 iff $T_P(I) \subseteq I$.

```
Proof:
```

 $I \models P$ iff for every $H \leftarrow \underline{B} \in ground(P)$: $I \models \underline{B}$ implies $I \models H$ iff for every $H \leftarrow \underline{B} \in ground(P)$: $I \models \underline{B}$ implies $H \in I$ iff for every ground atom H: $H \in T_P(I)$ implies $H \in I$ iff $T_P(I) \subseteq I$

Extended T_P -Characterization (II)

Definition

Let *F* and \prod be ranked alphabets of function symbols and predicate symbols, respectively, let = $\notin \prod$ be a binary predicate symbol ("equality"), and let *I* be a Herbrand interpretation for *F* and \prod .

Then $I_{=} :\Leftrightarrow I \cup \{= (t, t) \mid t \in HU_{F}\}$ is called a standardized Herbrand interpretation for *F* and $\prod \cup \{=\}$.

Lemma 4.4 ([Apt and Bol, 1994])

Let *P* be an extended program and *I* a Herbrand interpretation. Then

 $I_{=} \models comp(P)$ iff $T_{P}(I) = I$.

Extended T_P -Characterization (III)

Proof Idea of Lemma 4.4:

 $I_{=} \models comp(P)$

iff (since $I_{=}$ is a model for standard axioms of equality and inequality) for every ground atom $H : I \models (H \leftrightarrow \lor_{(H \leftarrow \underline{B}) \in ground(P)} \underline{B})$ iff for every ground atom $H : H \in I \Leftrightarrow I \models \underline{B}$ for some $H \leftarrow \underline{B} \in ground(P)$ iff for every ground atom $H : H \in I \Leftrightarrow H \in T_P(I)$ iff $T_P(I) = I$

Completion may be Inadequate

 $ill \leftarrow \neg ill, infection$ $infection \leftarrow$

 $comp(P) \supseteq \{ill \leftrightarrow \neg ill, infection , infection \leftrightarrow true\}$ is inconsistent (it has no models). Hence, $comp(P) \models healthy$.

But $I = \{infection, ill\}$ is (the only) Herbrand model of *P*. Hence, $P \neq healthy$.

Non-Intended Minimal Herbrand Models

$$P_1: \qquad p \leftarrow \neg q$$

 P_1 has three Herbrand models:

 $M_1 = \{p\}, M_2 = \{q\}, \text{ and } M_3 = \{p, q\}$

 P_1 has no least, but two minimal Herbrand models: M_1 and M_2

However: M_1 , and not M_2 , is the "intuitive" model of P_1 .

Supported Herbrand Interpretations

A Herbrand interpretation *I* is supported

∶⇔

for every $H \in I$ there exists some $H \leftarrow \underline{B} \in ground(P)$ such that $I \models \underline{B}$

```
(Intuition: \underline{B} is an "explanation" for H)
```

Example:

 M_1 is a supported model of P_1 . ($\neg q$ is explanation for p)

 M_2 is no supported model of P_1 .

Also note (cf. Lemma 4.3) that $T_{P_1}(M_2) = \emptyset \subseteq M_2$, but in particular $T_{P_1}(M_1) = M_1$.

Extended T_P -Characterization (IV)

Lemma 6.2 ([Apt and Bol, 1994])

Let *P* be an extended program and *I* a Herbrand interpretation.

Then

```
I \models P and I supported iff T_P(I) = I.
```

Proof Idea:

 $I \models P \text{ and } I \text{ supported}$ iff for every $(H \leftarrow \underline{B}) \in ground(P)$: $I \models \underline{B} \text{ implies } I \models H$ and for every $H \in I$: $I \models \lor_{(H \leftarrow \underline{B}) \in ground(P)} \underline{B}$ iff for every ground atom H: $I \models (H \leftarrow \lor_{(H \leftarrow \underline{B}) \in ground(P)} \underline{B})$ and $I \models (H \rightarrow \lor_{(H \leftarrow \underline{B}) \in ground(P)} \underline{B})$ iff for every ground atom H: $I \models (H \leftrightarrow \lor_{(H \leftarrow \underline{B}) \in ground(P)} \underline{B})$ iff $I_{=}$ model for comp(P)iff (Lemma 4.4) $T_{P}(I) = I$

Foundations of Logic Programming

Non-Intended Supported Models

$$P_2: \qquad p \leftarrow \neg q \\ q \leftarrow q$$

 P_2 has three Herbrand models: $M_1 = \{p\}, M_2 = \{q\}, \text{ and } M_3 = \{p, q\}$

 P_2 has two supported Herbrand models: M_1 and M_2

However: M_1 , and not M_2 , is the "intended" model of P_2 . M_1 is called the standard model of P_2 (cf. slide VII/35).

Foundations of Logic Programming

Stratifications

P extended program and D_P dependency graph of *P*:

predicate symbol p defined in P

: \Leftrightarrow *P* contains a clause $p(t_1, ..., t_n) \leftarrow \underline{\underline{B}}$

- $P_1 \cup ... \cup P_n = P$ stratification of $P : \Leftrightarrow$
 - $P_i \neq \emptyset$ for every $i \in [1, n]$
 - $P_i \cap P_j = \emptyset$ for every $i, j \in [1, n]$ with $i \neq j$
 - for every *p* defined in P_i and edge $p \xrightarrow{+} q$ in D_p : *q* not defined in $\bigcup_{i=i+1}^n P_i$
 - for every *p* defined in P_i and edge $p \rightarrow q$ in D_p : *q* not defined in $\bigcup_{i=1}^n P_i$

Lemma 6.5 ([Apt and Bol, 1994])

An extended program is stratified iff it admits a stratification.

Note: A stratified program may have different stratifications.

Foundations of Logic Programming

Example (I)

 $P: \qquad zero(0) \leftarrow \\positive(x) \leftarrow num(x), \neg zero(x) \\num(0) \leftarrow \\num(s(x)) \leftarrow num(x) \end{cases}$

$$\begin{array}{l} P_1 \cup P_2 \cup P_3 \text{ is a stratification of } P, \text{ where} \\ P_1 = \{num(0) \leftarrow \ , \ num(s(x)) \leftarrow num(x)\} \\ P_2 = \{zero(0) \leftarrow\} \\ P_2 = \{positive(x) \leftarrow num(x), \neg zero(x)\} \end{array}$$

Example (II)

P:

 $\begin{array}{ll} num(0) \leftarrow & \\ num(s(x)) \leftarrow num(x) & \\ even(0) \leftarrow & \\ even(x) \leftarrow \neg odd(x), num(x) & \\ odd(s(x)) \leftarrow even(x) & \end{array}$

P admits no stratification.

Standard Models (Stratified Progams)

I Herbrand interpretation, \prod set of predicate symbols: $I \mid \prod : \Leftrightarrow I \cap \{p(t_1, ..., t_n) \mid p \in \prod, t_1, ..., t_n \text{ ground terms}\}$ Let $P_1 \cup ... \cup P_n$ be stratification of extended program P. M_1 : \Leftrightarrow least Herbrand model of P_1 such that $M_1 \mid \{p \mid p \text{ not defined in } P\} = \emptyset$ M_2 : \Leftrightarrow least Herbrand model of P_2 such that $M_2 \mid \{p \mid p \text{ defined nowhere or in } P_1\} = M_1$ Ē M_n : \Leftrightarrow least Herbrand model of P_n such that $M_n \mid \{p \mid p \text{ defined nowhere or in } P_1 \cup ... \cup P_{n-1}\} = M_{n-1}$ We call $M_P = M_n$ the standard model of *P*.

Example (I)

Let $P_1 \cup P_2 \cup P_3$ with $P_1 = \{num(0) \leftarrow , num(s(x)) \leftarrow num(x)\}$ $P_2 = \{zero(0) \leftarrow\}$ $P_3 = \{positive(x) \leftarrow num(x), \neg zero(x)\}$

be stratification of *P*.

Then:

$$\begin{split} M_1 &= \{num(t) \mid t \in HU_{\{s,0\}}\} \\ M_2 &= \{num(t) \mid t \in HU_{\{s,0\}}\} \cup \{zero(0)\} \\ M_3 &= \{num(t) \mid t \in HU_{\{s,0\}}\} \cup \{zero(0)\} \cup \{positive(t) \mid t \in HU_{\{s,0\}} - \{0\}\} \end{split}$$

Hence $M_P = M_3$ is the standard model of *P*.

Properties of Standard Models

Theorem 6.7 ([Apt and Bol, 1994])

Consider a stratified program *P*. Then,

- M_P does not depend on the chosen stratification of P,
- M_P is a minimal model of P,
- M_P is a supported model of P.

Corollary

For a stratified program P, comp(P) admits a Herbrand model.

Objectives

- First-Order Formulas and Logical Truth
- The Completion semantics
- Soundness and restricted completeness of SLDNF-Resolution
- Extended consequence operator
- An alternative semantics: Standard models