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First-Order Formulas

∏, F ranked alphabets of predicate symbols and function symbols, respectively, 
V set of variables

The (first-order) formulas (over ∏, F, and V) are inductively defined as follows:

if A  TB
∏,F,V 

, then A is a formula

if G1 and G2 are formulas, then ¬G1, G1 ∧ G2 (written G1, G2),G1 ∨ G2, 
G1 ← G2, and G1 ↔ G2 are formulas

if G1 is formula and x  V, then x G and x G are formulas
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Extended Notion of Logical Truth (I)

G formula, I interpretation with domain D,  : V → D state

G true in I under , written I ╞ G :Û

I ╞ p(t1, ..., tn) :Û ((t1), ..., (tn))  pI

I ╞ ¬G :Û I    G

I ╞ G1 ∧ G2 :Û I ╞ G1 and I ╞ G2

I ╞ G1 ∨ G2 :Û I ╞ G1 or I ╞ G2

I ╞ G1 ← G2 :Û if I ╞ G2 then I ╞ G1

I ╞ G1 ↔ G2 :Û I ╞ G1 iff I ╞ G2

I ╞ x G :Û for every d  D: I ╞' G

I ╞ x G :Û for some d  D: I ╞' G

where ' :  V → D with '(x) = d and '(y) = (y) for every y  V – {x}

/╞
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Extended Notion of Logical Truth (II)

G formula, S, T sets of formulas, I, interpretation

Let x1, ..., xk be the variables occurring in G.

x1, ..., xk G universal closure of G (abbreviated G)

I ╞ G :Û I ╞ G for every state 

I ╞ p(t1, ..., tn) :Û ((t1), ..., (tn))  pI

G true in I (or: I model of G), written: I ╞ G :Û I ╞ G

I model of S, written: I ╞ S :Û I ╞ G for every G  S

T semantic (or: logical) consequence of S, written S ╞ T
:Û every model of S is a model of T
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Programs Never Have Negative Consequences (I)

  Pmem: member(x, [x|y]) ←

 member(x, [y|z]) ← member(x, z)

Then Pmem ╞ member(a, [a,b])   and Pmem    member(a, [ ]).

But also Pmem    ¬member(a, [ ]), since

 HB{member},{|,[ ],a} ╞ Pmem   and HB{member},{|,[ ],a}    ¬member(a, [ ]).

Nevertheless the SLDNF-tree of Pmem  {member(a, [ ])} is successful:

 ¬member(a,[ ])

        member(a(,[ ])

            failure

     □
  success

/╞

/╞

/╞
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Programs Never Have Negative Consequences (II)

Problem: For every extended program P the “corresponding” Herbrand base is 
a model.

Hence: No negative ground literal L can ever be a logical consequence of P.

But: SLDNF-tree of P  {L} may be successful!

  Soundness of SLDNF-resolution?

Solution: Strengthen P by completion (“replace implications by equivalences”) 
to comp(P) and compare SLDNF-resolution with comp(P) instead of P!
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Completion (Example I)

 P: happy ← sun, holidays
 happy ← snow, holidays
 snow ← cold, precipitation
 cold ← winter
 precipitation ← holidays
 winter ←
 holidays ←

comp(P): happy ↔ (sun, holidays) ∨ (snow, holidays)
 snow ↔ cold, precipitation
 cold ↔ winter
 precipitation ↔ holidays
 winter ↔ true
 holidays ↔ true
 sun ↔ false

Then, comp(P) ╞ happy, snow, cold, precipitation, winter, holidays, ¬sun.
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Completion (Example II)

 P: member(x, [x|y]) ←
 member(x, [y|z]) ← member(x, z)
 disjoint([ ], x) ←
 disjoint([x|y], z) ← member(x, z), disjoint(y, z)

comp(P): x1, x2 member(x1, x2) ↔ x, y ( x1 = x, x2 = [x|y]) ∨
 x, y, z ( x1 = x, x2 = [y|z], member(x, z))
 x1, x2 disjoint(x1, x2) ↔ x ( x1 = [ ], x2 = x )∨
 (x, y, z  x1 = [x|y], x2 = z, 
 ¬member(x, z), disjoint(y, z))
 
 plus standard equality and inequality axioms

Then, e.g. comp(P) ╞ member(a, [a|b]), ¬member(a, [ ]), ¬disjoint([a], [a]).
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Completion (I)

Completion of extended program P (denoted by comp(P)) is the set of formulas 

constructed from P by the following 6 steps:

1. Associate with every n-ary predicate symbol p a sequence of pairwise distinct 

 variables x1, ..., xn which do not occur in P.

2. Transform each clause c = p(t1, ..., tn) ← B into

 p(x1, ..., xn) ← x1 = t1, ..., xn = tn, B

3. Transform each resulting formula p(x1, ..., xn) ← G into

 p(x1, ..., xn) ← z G

 where z is a sequence of the elements of Var(c).
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Completion (II)

4. For every n-ary predicate symbol p, let

 p(x1, ..., xn) ← z1 G1, ..., p(x1, ..., xn) ← zm Gm

 be all implications obtained in Step 3 (m  0).

If m > 0, then replace these by the formula

 x1, ..., xn  p(x1, ..., xn) ↔ z1 G1 ∨ ... ∨ zm Gm

  (If some zi Gi is empty, then replace it by true.)

 If m = 0, then add the formula

 x1, ..., xn  p(x1, ..., xn) ↔ false
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Completion (III)

5. Standard axioms of equality

  [ x = x ]

  [ x = y → y = x ]

  [ x = y ∧ y = z → x = z ]

  [ xi = y → f(x1, ..., xi, ..., xn) = f(x1, ..., y, ..., xn) ]

  [ xi = y → (p(x1, ..., xi, ..., xn) ↔ p(x1, ..., y, ..., xn)) ]

6. Standard axioms of inequality

  [ x1  y1 ∨ ... ∨ xn  yn → f(x1, ..., xn)  f(y1, ..., yn) ]

  [ f(x1, ..., xm)  g(y1, ..., yn) ] (whenever f  g)

  [ x  t ] (whenever x is proper subterm of t)

5. and 6. ensure that = must be interpreted as equality!
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Soundness of SLDNF-Resolution

P extended program, Q extended query,  substitution:

 |Var(Q) correct answer substitution of Q :Û comp(P) ╞ Q

Q correct instance of Q :Û comp(P) ╞ Q

Theorem (cf. e.g. [Lloyd, 1987])

If there exists a successful SLDNF-derivation of P  {Q} with CAS , then 
comp(P) ╞ Q.

Corollary

If there exists a successful SLDNF-derivation of P  {Q}, then comp(P) ╞ Q.
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SLDNF-Resolution is Not Complete (I):
Inconsistency

 P : p ← ¬p

comp(P)  ⊇ {p ↔ ¬p} “=” {false}.

Hence, comp(P) ╞ p and comp(P) ╞ ¬p.

(because I    comp(P) for every interpretation I, i.e. comp(P) is inconsistent)

But there is neither a successful SLDNF-derivation of P  {p} nor of P  {p}. 

/╞
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SLDNF-Resolution is Not Complete (II):
Non-Strictness

 P : p ← q

 p ← ¬q

 q ← q

comp(P)  ⊇ {p ↔ q ∨ ¬q, q ↔ q} “=” {p ↔ true}.

Hence, comp(P) ╞ p.

But there is no successful SLDNF-derivation of P  {p}. 
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SLDNF-Resolution is Not Complete (III):
Floundering

 P : p(x) ← ¬q(x)

comp(P)  ⊇ {x1 p(x1) ↔ x  x1 = x, ¬q(x),   x1 q(x1) ↔ false}

“=” {x1 p(x1) ↔ true,   x1 q(x1) ↔ false}.

Hence, comp(P) ╞ x1 p(x1).

But there is no successful SLDNF-derivation of P  {p(x1)}. 
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SLDNF-Resolution is Not Complete (IV):
Unfairness

 P : r ← p, q

  p ← p

comp(P)  ⊇ {r ↔ p, q,   p ↔ p,   q ↔ false} “=” {r ↔ false,   q ↔ false}.

Hence, comp(P) ╞ ¬r.

But there is no successful SLDNF-derivation of P  {r} w.r.t. leftmost selection rule. 



18Foundations of Logic Programming Negation: Declarative Interpretation

Dependency Graphs

dependency graph DP of an extended program P

:Û

directed graph with labeled edges, where

the nodes are the predicate symbols of P;

the edges are either labeled by + (positive edge) or by – (negative egde);

p → q edge in DP :Û

P contains a clause p(s1, ..., sm) ← L, q(t1, ..., tn), N

p → q edge in DP :Û

P contains a clause p(s1, ..., sm) ← L, ¬q(t1, ..., tn), N

+

–



19Foundations of Logic Programming Negation: Declarative Interpretation

Strict, Hierarchical, Stratified Programs

P extended program, DP dependency graph of P, p, q predicate symbols, Q extended 
query:

p depends evenly (resp. oddly) on q :Û
there is a path in DP from p to q with 
an even–including 0–(resp. odd) number of negative edges

P is strict w.r.t. Q :Û
no predicate symbol occuring in Q depends both evenly and oddly on a predicate 
symbol in the head of a clause in P

P is hierarchical :Û
no cycle exists in DP

P is stratified :Û
no cycle with a negative edge exists in DP
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Restricted Completeness of SLDNF-Resolution (I)

Theorem ([Lloyd, 1987])

Let P be a hierarchical and allowed program and Q be an allowed query.

If comp(P) ╞ Q for some  such that Q is ground, then there exists a 
successful SLDNF-derivation of P  {Q} with CAS .

Note:

Theorem does not hold, if arbitrary selection rule is fixed!

Selection rule has to be safe!
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Restricted Completeness of SLDNF-Resolution (II)

Theorem ([Cavedon and Lloyd, 1989])

Let P be a stratified and allowed program and Q be an allowed query, 
such that P is strict w.r.t. Q.

If comp(P) ╞ Q for some  such that Q is ground, then there exists a 
successful SLDNF-derivation of P  {Q} with CAS .

Note:

Theorem does not hold if arbitrary selection rule is fixed!

Selection rule has to be safe and fair!
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Fair Selection Rules

(extended) selection rule R is fair :Û
for every SLDNF-tree F via R and for every branch  in F:

either  is failed

or for every literal L occurring in a query of , (some further instantiated version 

of) L is selected within a finite number of derivation steps

Example:

selection rule “select leftmost literal” is unfair

selection rule “select leftmost literal to the right of the literals introduced at the 

previous derivation step, if it exists; otherwise select leftmost literal” is fair
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Extended Consequence Operator

Let P be an extended program and I a Herbrand interpretation.

Then

 TP(I) :Û {H | H ← B  ground(P), I ╞ B}

In case P is a definite program, we know that

TP is monotonic,

TP is continuous,

TP has the least fixpoint M(P),

M(P) = TP
w
.

In case of extended programs all of these properties are lost!
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Extended TP-Characterization (I)

Lemma 4.3 ([Apt and Bol, 1994])

Let P be an extended program and I a Herbrand interpretation.

Then

 I ╞ P   iff   TP(I) ⊆ I.

Proof:

 I ╞ P

iff for every H ← B  ground(P): I ╞ B implies I ╞ H

iff for every H ← B  ground(P): I ╞ B implies H  I

iff for every ground atom H : H  TP(I) implies H  I

iff TP(I) ⊆ I
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Extended TP-Characterization (II)

Definition

Let F and ∏ be ranked alphabets of function symbols and predicate symbols, 
respectively, let = ∉ ∏ be a binary predicate symbol (“equality”), and let I be a 
Herbrand interpretation for F and ∏.

Then I=  :Û I  {= (t, t) | t  HUF} is called a standardized Herbrand interpretation 
for F and ∏  {=}.

Lemma 4.4 ([Apt and Bol, 1994])

Let P be an extended program and I a Herbrand interpretation.

Then

 I= ╞ comp(P)   iff   TP(I) = I.
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Extended TP-Characterization (III)

Proof Idea of Lemma 4.4:

 I= ╞ comp(P)

iff (since I= is a model for standard axioms of equality and inequality)

 for every ground atom H : I ╞ (H ↔ ∨
(H ← B)ground(P)

 B)

iff for every ground atom H : H  I Û I ╞ B for some H ← B  ground(P)

iff for every ground atom H : H  I Û H  TP(I)

iff TP(I) = I
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Completion may be Inadequate

 ill ← ¬ill, infection

 infection ←

comp(P) ⊇ {ill ↔ ¬ill, infection      ,   infection ↔ true} 

is inconsistent (it has no models).

Hence, comp(P) ╞ healthy.

But I = {infection, ill} is (the only) Herbrand model of P.

Hence, P    healthy./╞
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Non-Intended Minimal Herbrand Models

 P1:    p ← ¬q

P1 has three Herbrand models:

M1 = {p}, M2 = {q}, and M3 = {p, q}

P1 has no least, but two minimal Herbrand models: M1 and M2

However: M1, and not M2, is the “intuitive” model of P1.
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Supported Herbrand Interpretations

A Herbrand interpretation I is supported

:Û

for every H  I there exists some H ← B  ground(P) such that I ╞ B

(Intuition: B is an “explanation” for H)

Example:

M1 is a supported model of P1. (¬q is explanation for p)

M2 is no supported model of P1.

Also note (cf. Lemma 4.3) that TP1
(M2) = ; ⊆ M2, but in particular TP1

(M1) = M1.
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Extended TP-Characterization (IV)

Lemma 6.2 ([Apt and Bol, 1994])

Let P be an extended program and I a Herbrand interpretation.

Then
 I ╞ P and I supported  iff   TP(I) = I.

Proof Idea:

  I ╞ P and I supported

iff for every (H ← B)  ground(P): I ╞ B implies I ╞ H

 and for every H  I : I ╞ ∨
(H ← B)ground(P)

 B

iff for every ground atom H : I ╞ (H ← ∨
(H ← B)ground(P)

 B) 

 and I ╞ (H → ∨
(H ← B)ground(P)

 B)

iff for every ground atom H : I ╞ (H ↔ ∨
(H ← B)ground(P)

 B)

iff I= model for comp(P)

iff (Lemma 4.4) TP(I) = I
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Non-Intended Supported Models

 P2: p ← ¬q

 q ← q

P2 has three Herbrand models:

M1 = {p}, M2 = {q}, and M3 = {p, q}

P2 has two supported Herbrand models: M1 and M2

However: M1, and not M2, is the “intended” model of P2.

M1 is called the standard model of P2 (cf. slide VII/35).
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Stratifications

P extended program and DP dependency graph of P:

predicate symbol p defined in P

:Û P contains a clause p(t1, ..., tn) ← B

P1  ...  Pn = P stratification of P :Û

 - Pi  ; for every i  [1, n]

 - Pi ∩ Pj = ; for every i, j  [1, n] with i  j

 - for every p defined in Pi and edge p → q in DP: q not defined in 

 - for every p defined in Pi and edge p → q in DP: q not defined in

Lemma 6.5 ([Apt and Bol, 1994])

An extended program is stratified iff it admits a stratification.

Note: A stratified program may have different stratifications.

+

–

∪j=i 1
n P j

∪j=i
n P j
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Example (I)

 P: zero(0) ←

 positive(x) ← num(x), ¬zero(x)

 num(0) ←

 num(s(x)) ← num(x)

P1  P2  P3 is a stratification of P, where

 P1 = {num(0) ←   ,   num(s(x)) ← num(x)}

 P2 = {zero(0) ←}

 P2 = {positive(x) ← num(x), ¬zero(x)}
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Example (II)

 P: num(0) ←

 num(s(x)) ← num(x)

 even(0) ←

 even(x) ← ¬odd(x), num(x)

 odd(s(x)) ← even(x)

 P admits no stratification.
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Standard Models (Stratified Progams)

I Herbrand interpretation, ∏ set of predicate symbols:

I | ∏ :Û I ∩ {p(t1, ..., tn) | p  ∏, t1, ..., tn ground terms}

Let P1  ...  Pn be stratification of extended program P. 

 M1 :Û least Herbrand model of P1 such that

 M1 | {p | p not defined in P} = ;

 M2 :Û least Herbrand model of P2 such that

 M2 | {p | p defined nowhere or in P1} = M1

       ⋮

 Mn :Û least Herbrand model of Pn such that

 Mn | {p | p defined nowhere or in P1  ...  Pn-1} = Mn-1

We call MP = Mn the standard model of P.
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Example (I)

Let P1  P2  P3 with

 P1 = {num(0) ←   ,   num(s(x)) ← num(x)}

 P2 = {zero(0) ←}

 P3 = {positive(x) ← num(x), ¬zero(x)}

be stratification of P. 

Then:

 M1 = {num(t) | t  HU{s,0}}

 M2 = {num(t) | t  HU{s,0}}  {zero(0)}

 M3 = {num(t) | t  HU{s,0}}  {zero(0)}  {positive(t) | t  HU{s,0} –  {0}}

Hence MP = M3 is the standard model of P.
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Properties of Standard Models

Theorem 6.7 ([Apt and Bol, 1994])

Consider a stratified program P. Then,

MP does not depend on the chosen stratification of P,

MP is a minimal model of P,

MP is a supported model of P.

Corollary

For a stratified program P, comp(P) admits a Herbrand model.
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First-Order Formulas and Logical Truth

The Completion semantics

Soundness and restricted completeness of SLDNF-Resolution
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