Concurrency Theory

Lecture 6: The Calculus of Communicating Systems (CCS)

Stephan Mennicke Knowledge-Based Systems Group

May 16-17, 2023

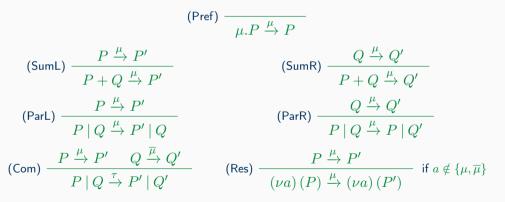
 $\mathcal{N} = \{a, b, c, \ldots\} \dots \text{set of names } (\tau \notin \mathcal{N})$ $\overline{\mathcal{N}} = \{\overline{\alpha} \mid \alpha \in \mathcal{N}\} \dots \text{set of conames}$ $Act = \mathcal{N} \cup \overline{\mathcal{N}} \cup \{\tau\} \text{ (note, there is no } \overline{\tau} \text{ and for } \alpha \in Act \setminus \{\tau\}, \ \overline{\overline{\alpha}} = \alpha)$ The set of (CCS) processes Pr is defined by $P \quad ::= \quad \mathbf{0} \mid \mu . P \mid P + P \mid P \mid P \mid (\nu a)(P) \mid K$

where $\mu \in Act$, $a \in \mathcal{N}$, and $K \in \mathcal{K}$.

Define the language CCS parameterized over Act, \mathcal{K} , and $\mathcal{T}_{\mathcal{K}} \subseteq \mathcal{K} \times Act \times Pr$. $CCS(Act, \mathcal{K}, \mathcal{T}_{\mathcal{K}})$

Structural Operational Semantics

 $CCS(Act, \mathcal{K}, \mathcal{T}_{\mathcal{K}})$ specifies an LTS $(Pr, Act, \rightarrow \cup \mathcal{T}_{\mathcal{K}})$ where $\rightarrow \subseteq (Pr \setminus \mathcal{K}) \times Act \times Pr$ is the smallest relation satisfying the following rules:



Algebraic Properties of CCS (1/2)

Theorem 1 For CCS processes P, Q, R, the following equivalences hold

$$P \mid Q \iff Q \mid P \tag{1}$$

$$P \mid (Q \mid R) \iff (P \mid Q) \mid R \tag{2}$$

$$P \mid \mathbf{0} \iff P \tag{3}$$

Thus, for a finite family of CCS processes $(P_i)_{i \in I}$ we may write

 $\prod_{i\in I} P_i$

for the parallel composition of all processes P_i ($i \in I$).

Algebraic Properties of CCS (2/2)

Theorem 2 For CCS processes P, Q, R, the following equivalences hold

$$P + Q \quad \Leftrightarrow \quad Q + P \tag{4}$$

$$P + (Q + R) \quad \rightleftharpoons \quad (P + Q) + R$$
 (5)

$$P + \mathbf{0} \quad \Leftrightarrow \quad P \tag{6}$$

$$P + P \quad \Leftrightarrow \quad P \tag{(1)}$$

Thus, for a finite family of CCS processes $(P_i)_{i \in I}$ we may write

 $\sum_{i \in I} P_i$

for the choice between all processes P_i ($i \in I$). UNIVERSITAT DECEMBER CONCURRENT C

Definition 3 (Head Standard Form) A process of the form $P = \sum_{i \in I} \mu_i \cdot P_i$ is in *head standard form* (if $I = \emptyset$, P = 0).

Theorem 4 (Expansion Lemma) If $P = \sum_{i \in I} \mu_i \cdot P_i$ and $P' = \sum_{j \in J} \mu'_j \cdot P'_j$, then $P \mid P' \quad \Leftrightarrow \quad \sum_{i \in I} \mu_i \cdot P_i \mid P' + \sum_{j \in J} \mu'_j \cdot P \mid P'_j + \sum_{\overline{\mu_i} = \mu'_j} \tau \cdot P_i \mid P'_j.$ (8)

Compositionality of Bisimilarity (1/2)

Lemma 5 If $P \rightleftharpoons Q$, then for all processes R, $\mu \in Act$, and $a \in \mathcal{N}$,

$$P \mid R \iff Q \mid R \tag{9}$$

$$P + R \iff Q + R \tag{10}$$

$$(\nu a) ()P \iff (\nu a) ()Q \tag{11}$$

$$\mu \cdot P \iff \mu \cdot Q \tag{12}$$

Compositionality of Bisimilarity (2/2)

Definition 6 (CCS Context) A *CCS context* is a process with a single occurrence of a hole • as a sub-expression. If C is a CCS context and P a CCS process, then C[P] is the CCS process C with the hole replaced by process P. If C and C' are CCS contexts, then C[C'] is the CCS context C where the hole in C is replaced by C'.

Theorem 7 (Congruence) In CCS. \Leftrightarrow is a congruence relation.

De Simone Format (1/2)

A transition rule is in *De Simone format* if it has the form $\frac{X_j \xrightarrow{\mu_j} Y_j (j \in J)}{f(X_1, \dots, X_n) \xrightarrow{\mu} T}$

where

- 1. f is an n-ary operator symbol in the language;
- 2. $J \subseteq \{1, ..., n\};$
- 3. $X_r \ (1 \leq r \leq n)$, and $Y_j \ (j \in J)$ are distinct variables;
- 4. T is a term of the language possibly containing the variables X'_1, \ldots, X'_n , where for each $r \in \{1, \ldots, n\}$ we have $X'_r = Y_r$ if $r \in J$ and $X'_r = X_r$ otherwise; moreover, each X'_i $(1 \le i \le n)$ occurs at most once in T.

Theorem 8 If all operators of a process language have transition rules in de Simone format, then bisimilarity is a congruence.

It is important to note that the de Simone format requires a single transition relation type involved in transition rules following the format.

Expressivity of CCS

Theorem 9 There are Act, \mathbb{C} , and $\mathcal{T}_{\mathbb{C}}$, so that $CCS(Act, \mathbb{C}, \mathcal{T}_{\mathbb{C}})$ is Turing-complete.

 \rightsquigarrow bisimilarity of CCS processes is undecidable.

Proof Plan:

- 1. Pick a Turing-complete model \rightsquigarrow Minsky machines
- 2. Encode computations by means of **CCS** using only finitely many actions, constants, and a finite constant transition relation per Minsky machine

1. Minsky Machine (or Counter Machine)

Definition 10 A *Minsky machine* is a pair $\mathcal{M} = (R, P)$, where $R = \{c_1, c_2, \ldots, c_n\}$ is a finite set of counters (or registers) and $P = \{l_0, l_1, \ldots, l_m\}$ is a finite set of *instructions* l_i $(i = 0, 1, \ldots, m)$ over \mathcal{M} , such that $l_i = \langle X_i, \text{inc } k : j \rangle$, $l_i = \langle X_i, \text{dec } k : j : j' \rangle$, and $l_m = \text{halt}$, where $i, j, j' \in \{0, 1, \ldots, m\}$ are line indizes and $k \in \{1, \ldots, n\}$ are counter indizes.

Definition 11

For Minsky machine $\mathcal{M} = (R, P)$ we call a pair $\langle i, \beta \rangle$ a configuration of \mathcal{M} if $l_i \in P$ and $\beta : R \to \mathbb{N}$. A configuration $\langle 0, \beta \rangle$ is called an initial configuration. Define a step of \mathcal{M} by $\langle i, \beta \rangle \triangleright \langle j, \beta' \rangle$ if, and only if, (1) $l_i = \langle X_i, \text{inc } k : j \rangle$ and $\beta' = \beta[c_k \mapsto \beta(c_k) + 1]$, (2) $l_i = \langle X_i, \text{dec } k : j : j' \rangle$, $\beta(c_k) > 0$ and $\beta' = \beta[c_k \mapsto \beta(c_k) - 1]$, and (3) $l_i = \langle X_j, \text{dec } k : j' : j \rangle$ and $\beta(c_k) = 0$.

1. Minsky and Turing

The Halting Problem for Minsky Machines is the language

 $\mathbf{L}_{\mathsf{HALT}} := \{ \langle \mathcal{M}, \beta \rangle \mid \exists n \in \mathbb{N} : \langle 0, \beta \rangle \triangleright^* \langle n, \mathtt{halt} \rangle \}.$

Theorem 12 $$\mathbf{L}_{\mathsf{HALT}}$$ is undecidable, even if only two counters are used.

Theorem 13 *Minsky Machines are Turing-complete.*

2. Implementing Minsky Machines in CCS

Construction: in two steps.

- 1. Implementing unbounded counters using finitely many actions and constants;
- 2. Implementing the program instructions

We do the second step first. As an interface to the counters c_1 and c_2 , we assume action names $\overline{u^1}, \overline{d^1}, z^1$ to control the first counter and $\overline{u^2}, \overline{d^1}, z^2$ for the second. For each $l_i \in P$, $X_i \in \mathbb{C}$, which we translate using the following theme (assuming $k \in \{1, 2\}$):

1. $\langle X_i, \text{inc } k : j \rangle \mapsto X_i \text{ with } X_i \xrightarrow{\overline{u^k}} X_j;$ 2. $\langle X_i, \text{dec } k : j : j' \rangle \mapsto X_i \text{ with } X_i \xrightarrow{\overline{d^k}} X_j \text{ and } X_i \xrightarrow{z^k} X_{j'};$ 3. $\langle X_i, \text{halt} \rangle \mapsto X_i \text{ with } X_i \xrightarrow{h} \mathbf{0}.$

2.1 Implementing Counters

A single counter may be realized using constants $C, C_1, C_2 \in \mathbb{C}$ and actions $u, d, \overline{z} \in Act$.

- 1. Define $C \xrightarrow{\overline{z}} C$ and $C \xrightarrow{u} (\nu a) (C_1 \mid a.C)$;
- 2. Define $C_1 \xrightarrow{d} \overline{a}.\mathbf{0}$ and $C_1 \xrightarrow{u} (\nu b) (C_2 \mid b.C_1);$
- 3. Define $C_2 \xrightarrow{d} \overline{b}.0$ and $C_2 \xrightarrow{u} (\nu a) (C_1 \mid a.C_2)$.

For any process P, reachable from C, define val(P) inductively:

Base: val(P) = 0 if P = C. **Step:** For process Q with val(Q) = n (n > 0), val(Q') = n + 1 if $Q \xrightarrow{u} Q'$ and val(Q') = n - 1 if $Q \xrightarrow{d} \cdot \xrightarrow{\tau} Q'$.

For two processes P and Q, reachable from C, we get val(P) = val(Q) iff $P \simeq Q$.

Putting Everything Together

Let $\mathcal{M} = (R, P)$ be a Minsky machine with $R = \{c_1, c_2\}$ and $P = \{l_0, l_1, \dots, l_n\}$.

Our construction uses $Act = \{u^1, d^1, z^1, u^2, d^2, z^2, \tau, \overline{u^1}, \overline{d^1}, \overline{z^1}, \overline{u^2}, \overline{d^2}, \overline{z^2}\}$ and $\mathbb{C} = \{C_1^1, C_2^1, C^1, C_1^2, C_2^2, C^2, X_0, X_1, \dots, X_n\}$, where n is the maximal line index of P. $\mathcal{T}_{\mathbb{C}}$ defined as before.

Theorem 14

For $\beta_0 = \{c_1 \mapsto 0, c_2 \mapsto 0\}$, $\langle 0, \beta_0 \rangle \triangleright^* \langle i, \beta \rangle$ with $\beta(c_1) = n_1$ and $\beta(c_2) = n_2$, we get $(\nu u^1, u^2, d^1, d^2, z^1, z^2) (X_0 \mid C^1 \mid C^2) \xrightarrow{\tau}^* (\nu u^1, u^2, d^1, d^2, z^1, z^2) (X_i \mid \underline{C^1} \mid \underline{C^2})$ such that $val(\underline{C_1}) = n_1$ and $val(\underline{C_2}) = n_2$.

 \rightsquigarrow halting problem for CCS is undecidable.

Outlook

- Alternative model: Carl Adam Petri and his Nets
- What is decidable about Petri nets?
- Enhancing CCS: the π -calculus

