
Concurrency Theory

Lecture 6: The Calculus of Communicating Systems (CCS)

Stephan Mennicke
Knowledge-Based Systems Group

May 16-17, 2023

CCS

N = {a, b, c, . . .} . . . set of names (τ /∈ N)

N = {α | α ∈ N} . . . set of conames

Act = N ∪N ∪ {τ} (note, there is no τ and for α ∈ Act \ {τ}, α = α)

The set of (CCS) processes Pr is defined by

P ::= 0 µ.P P + P P | P (νa)(P) K

where µ ∈ Act , a ∈ N , and K ∈ K.

Define the language CCS parameterized over Act , K, and TK ⊆ K ×Act × Pr.

CCS(Act ,K, TK)

Concurrency Theory – CCS 2

Structural Operational Semantics

CCS(Act ,K, TK) specifies an LTS (Pr,Act ,−→ ∪TK) where −→⊆ (Pr \ K)×Act × Pr is
the smallest relation satisfying the following rules:

(Pref)
µ.P

µ−→ P

(SumL)
P

µ−→ P ′

P +Q
µ−→ P ′

(SumR)
Q

µ−→ Q′

P +Q
µ−→ Q′

(ParL)
P

µ−→ P ′

P |Q µ−→ P ′ |Q
(ParR)

Q
µ−→ Q′

P |Q µ−→ P |Q′

(Com)
P

µ−→ P ′ Q
µ−→ Q′

P |Q τ−→ P ′ |Q′
(Res)

P
µ−→ P ′

(νa) (P)
µ−→ (νa) (P ′)

if a /∈ {µ, µ}

Concurrency Theory – CCS 3

Algebraic Properties of CCS (1/2)

Theorem 1
For CCS processes P,Q,R, the following equivalences hold

P |Q - Q | P (1)

P | (Q |R) - (P |Q) |R (2)

P | 0 - P (3)

Thus, for a finite family of CCS processes (Pi)i∈I we may write∏
i∈I

Pi

for the parallel composition of all processes Pi (i ∈ I).

Concurrency Theory – CCS 4

Algebraic Properties of CCS (2/2)

Theorem 2
For CCS processes P,Q,R, the following equivalences hold

P +Q - Q+ P (4)

P + (Q+R) - (P +Q) +R (5)

P + 0 - P (6)

P + P - P (7)

Thus, for a finite family of CCS processes (Pi)i∈I we may write∑
i∈I

Pi

for the choice between all processes Pi (i ∈ I).
Concurrency Theory – CCS 5

The Expansion Lemma

Definition 3 (Head Standard Form)
A process of the form P =

∑
i∈I µi . Pi is in head standard form (if I = ∅, P = 0).

Theorem 4 (Expansion Lemma)
If P =

∑
i∈I µi . Pi and P ′ =

∑
j∈J µ

′
j . P

′
j , then

P | P ′ -
∑
i∈I

µi . Pi | P ′ +
∑
j∈J

µ′
j . P | P ′

j +
∑

µi=µ′
j

τ . Pi | P ′
j . (8)

Concurrency Theory – CCS 6

Compositionality of Bisimilarity (1/2)

Lemma 5
If P - Q, then for all processes R, µ ∈ Act , and a ∈ N ,

P |R - Q |R (9)

P +R - Q+R (10)

(νa) ()P - (νa) ()Q (11)

µ . P - µ .Q (12)

Concurrency Theory – CCS 7

Compositionality of Bisimilarity (2/2)

Definition 6 (CCS Context)
A CCS context is a process with a single occurrence of a hole • as a sub-expression. If
C is a CCS context and P a CCS process, then C[P] is the CCS process C with the
hole replaced by process P . If C and C ′ are CCS contexts, then C[C ′] is the CCS
context C where the hole in C is replaced by C ′.

Theorem 7 (Congruence)
In CCS, - is a congruence relation.

Concurrency Theory – CCS 8

De Simone Format (1/2)

A transition rule is in De Simone format if it has the form

Xj
µj−→ Yj(j ∈ J)

f(X1, . . . , Xn)
µ−→ T

where

1. f is an n-ary operator symbol in the language;

2. J ⊆ {1, . . . , n};
3. Xr (1 ≤ r ≤ n), and Yj (j ∈ J) are distinct variables;

4. T is a term of the language possibly containing the variables X ′
1, . . . , X

′
n, where

for each r ∈ {1, . . . , n} we have X ′
r = Yr if r ∈ J and X ′

r = Xr otherwise;
moreover, each X ′

i (1 ≤ i ≤ n) occurs at most once in T .

Concurrency Theory – CCS 9

De Simone Format (2/2)

Theorem 8
If all operators of a process language have transition rules in de Simone format, then
bisimilarity is a congruence.

It is important to note that the de Simone format requires a single transition relation
type involved in transition rules following the format.

Concurrency Theory – CCS 10

Expressivity of CCS

Theorem 9
There are Act , C, and TC, so that CCS(Act ,C, TC) is Turing-complete.

⇝ bisimilarity of CCS processes is undecidable.

Proof Plan:

1. Pick a Turing-complete model ⇝ Minsky machines

2. Encode computations by means of CCS using only finitely many actions,
constants, and a finite constant transition relation per Minsky machine

Concurrency Theory – CCS 11

1. Minsky Machine (or Counter Machine)

Definition 10
A Minsky machine is a pair M = (R,P), where R = {c1, c2, . . . , cn} is a finite set of
counters (or registers) and P = {l0, l1, . . . , lm} is a finite set of instructions li

(i = 0, 1, . . . ,m) over M, such that li = ⟨Xi, inc k : j⟩,
li = ⟨Xi, dec k : j : j′⟩, and lm = halt, where i, j, j′ ∈ {0, 1, . . . ,m} are line
indizes and k ∈ {1, . . . , n} are counter indizes.

Definition 11
For Minsky machine M = (R,P) we call a pair ⟨i, β⟩ a configuration of M if li ∈ P

and β : R → N. A configuration ⟨0, β⟩ is called an initial configuration. Define a step
of M by ⟨i, β⟩ ▷ ⟨j, β′⟩ if, and only if, (1) li = ⟨Xi, inc k : j⟩ and
β′ = β[ck 7→ β(ck) + 1], (2) li = ⟨Xi, dec k : j : j′⟩, β(ck) > 0 and
β′ = β[ck 7→ β(ck)− 1], and (3) li = ⟨Xj , dec k : j′ : j⟩ and β(ck) = 0.

Concurrency Theory – CCS 12

1. Minsky and Turing

The Halting Problem for Minsky Machines is the language

LHALT := {⟨M, β⟩ | ∃n ∈ N : ⟨0, β⟩ ▷∗ ⟨n, halt⟩}.

Theorem 12
LHALT is undecidable, even if only two counters are used.

Theorem 13
Minsky Machines are Turing-complete.

Concurrency Theory – CCS 13

2. Implementing Minsky Machines in CCS

Construction: in two steps.

1. Implementing unbounded counters using finitely many actions and constants;
2. Implementing the program instructions

We do the second step first. As an interface to the counters c1 and c2, we assume
action names u1, d1, z1 to control the first counter and u2, d1, z2 for the second. For
each li ∈ P , Xi ∈ C, which we translate using the following theme (assuming
k ∈ {1, 2}):

1. ⟨Xi, inc k : j⟩ 7→ Xi with Xi
uk

−→ Xj ;

2. ⟨Xi, dec k : j : j′⟩ 7→ Xi with Xi
dk−→ Xj and Xi

zk−→ Xj′ ;

3. ⟨Xi, halt⟩ 7→ Xi with Xi
h−→ 0.

Concurrency Theory – CCS 14

2.1 Implementing Counters

A single counter may be realized using constants C,C1, C2 ∈ C and actions
u, d, z ∈ Act .

1. Define C
z−→ C and C

u−→ (νa) (C1 | a.C);
2. Define C1

d−→ a.0 and C1
u−→ (νb) (C2 | b.C1);

3. Define C2
d−→ b.0 and C2

u−→ (νa) (C1 | a.C2).

For any process P , reachable from C, define val(P) inductively:

Base: val(P) = 0 if P = C.
Step: For process Q with val(Q) = n (n > 0), val(Q′) = n+ 1 if Q u−→ Q′ and

val(Q′) = n− 1 if Q d−→ · τ−→ Q′.

For two processes P and Q, reachable from C, we get val(P) = val(Q) iff P - Q.

Concurrency Theory – CCS 15

Putting Everything Together

Let M = (R,P) be a Minsky machine with R = {c1, c2} and P = {l0, l1, . . . , ln}.

Our construction uses Act = {u1, d1, z1, u2, d2, z2, τ, u1, d1, z1, u2, d2, z2} and
C = {C1

1 , C
1
2 , C

1, C2
1 , C

2
2 , C

2, X0, X1, . . . , Xn}, where n is the maximal line index of
P . TC defined as before.

Theorem 14
For β0 = {c1 7→ 0, c2 7→ 0}, ⟨0, β0⟩ ▷∗ ⟨i, β⟩ with β(c1) = n1 and β(c2) = n2, we get
(νu1, u2, d1, d2, z1, z2) (X0 | C1 | C2)

τ−→
∗
(νu1, u2, d1, d2, z1, z2) (Xi | C1 | C2) such

that val(C1) = n1 and val(C2) = n2.

⇝ halting problem for CCS is undecidable.

Concurrency Theory – CCS 16

Outlook

• Alternative model: Carl Adam Petri and his Nets

• What is decidable about Petri nets?

• Enhancing CCS: the π-calculus

Concurrency Theory – CCS 17

