Concurrency Theory

Lecture 6: The Calculus of Communicating Systems (CCS)

Stephan Mennicke
Knowledge-Based Systems Group

May 16-17, 2023

CCS

N ={a,b,c,...} ...set of names (7 ¢ N)
N ={a|acN}...setof conames
Act = N UN U {7} (note, there is no 7 and for o € Act \ {7}, @ =)
The set of (CCS) processes Pr is defined by
P u= 0|pP|P+P|P|P|(va)(P)| K
where u € Act, a € N, and K € K.
Define the language CCS parameterized over Act, IC, and T € K x Act x Pr.
CCS(Act, K, Txc)

TECHNISCHE

& International Center
UNIVERSITAT 3 q "
DRESDEN Concu rrency Theory — CCS " for Computational Logic

Structural Operational Semantics

CCS(Act, K, Tx) specifies an LTS (Pr, Act,— UTx) where —C (Pr\ K) x Act x Pris
the smallest relation satisfying the following rules:

(Pref)

/LP&P

Ko pr koo

(SumlL) r _>f (SumR) @ —>MQ
P+Q > P P+Q =

Ko pr Hoof

(Parl) r 7 r (ParR) @ 7 @
PlQ=PQ PlQ=P|Q

P p By p X pr
Com O C - g (nm)
P|Q— P |Q (va) (P) = (va) (P’

TECHNISCHE International Center

UNIVERSITAT N .
DRESDEN Concurrency Theory - CCSs ‘: for Computational Logic

Algebraic Properties of CCS (1/2)

Theorem 1
For CCS processes P, (), R, the following equivalences hold

PlQ = QP
PI(@QIR) = (P|Q)|R
Pl0 & P

Thus, for a finite family of CCS processes (P;);c; we may write
I17
el

for the parallel composition of all processes P; (i € I).

TECHNISCHE

UNIVERSITAT
DRESDEN Concurrency Theory — CCS

. International Center
“ for Computational Logic

(1)

(3)

Algebraic Properties of CCS (2/2)

Theorem 2
For CCS processes P, (), R, the following equivalences hold
P+@ = Q+P
P+(Q+R) ¢ (P+Q)+R
P+0 =« P
P+P <« P

Thus, for a finite family of CCS processes (P;);c; we may write
2P
iel

Jor the choice between all processes P; (i € I).
UNIVERSITAT
DRESDEN Concurrency Theory — CCS

. International Center
“ for Computational Logic

—~
[©) NG]

The Expansion Lemma

Definition 3 (Head Standard Form)
A process of the form P =", ; ui;. P; is in head standard form (if I = (), P = 0).

Theorem 4 (Expansion Lemma)
If P = Zie]ui"P’i and P’ = ZJEJ/’L;P],’ then

P|P' = Y u.P|P'+> uj.P|Pj+ Y 7.P|P] (8)
il jeJd [

International Center

T .
DRESDEN Concurrency Theory - CCs “ for Computational Logic

Compositionality of Bisimilarity (1/2)

Lemma 5
If P < @, then for all processes R, j1 € Act, and a € N,
P|R = Q|R
P+R © Q+R
(va))P = (va))Q
p-P e p.Q

TECHNISCHE

UNIVERSITAT
DRESDEN Concurrency Theory — CCS

—~
=
= O

International Center
‘: for Computational Logic

Compositionality of Bisimilarity (2/2)

Definition 6 (CCS Context)
A CCS context is a process with a single occurrence of a hole e as a sub-expression. If

C'is a CCS context and P a CCS process, then C[P] is the CCS process C' with the
hole replaced by process P. If C'and C” are CCS contexts, then C[C'] is the CCS
context C' where the hole in C'is replaced by C’.

Theorem 7 (Congruence)
In CCS, < is a congruence relation.

TECHNISCHE . International Center

UNIVERSITAT q .
DRESDEN Concurrency Theory - CCs ¥ for Computational Logic

De Simone Format (1/2)

A transition rule is in De Simone format if it has the form
X; =5 Yi(j € J)
f(X1,..., X)) 5T

where

1. f is an n-ary operator symbol in the language;

2. JCA{1,...,n};

3. X, (1 <r<n),andYj (j € J) are distinct variables;

4. T is a term of the language possibly containing the variables X, ..., X/ where
for each r € {1,...,n} we have X/ =Y, if r € J and X| = X, otherwise;
moreover, each X/ (1 <1 < n) occurs at most once in 7.

TECHNISCHE International Center

UNIVERSITAT 3 q .
DRESDEN Concurrency Theory - CCs ;" for Computational Logic

De Simone Format (2/2)

Theorem 8
If all operators of a process language have transition rules in de Simone format, then
bisimilarity is a congruence.

It is important to note that the de Simone format requires a single transition relation
type involved in transition rules following the format.

EEI(I:\;‘ENREI(':I!AE ‘:.‘ International Center
DRESDEN

Concurrency Theory — CCS for Computational Logic

10

Expressivity of CCS

Theorem 9
There are Act, C, and T¢, so that CCS(Act,C,T¢) is Turing-complete.

~~ bisimilarity of CCS processes is undecidable.

Proof Plan:

1. Pick a Turing-complete model ~~ Minsky machines

2. Encode computations by means of CCS using only finitely many actions,
constants, and a finite constant transition relation per Minsky machine

ECHNISCHE International Center
UNIVERSITAT H i ; 11
DRESDEN Concurrency Theory — CCS %" for Compttational Logic

1. Minsky Machine (or Counter Machine)

Definition 10
A Minsky machine is a pair M = (R, P), where R = {c1,c2,...,¢,} is a finite set of

counters (or registers) and P = {lo,[1,...,l,} is a finite set of instructions [;
(¢=0,1,...,m) over M, such that [; = (X;,inc k : j),

l; =(X;,dec k : j : j'), and [, =halt, where i, j,j’ € {0,1,...,m} are line
indizes and k € {1,...,n} are counter indizes.

Definition 11

For Minsky machine M = (R, P) we call a pair (i,) a configuration of M if [; € P
and 3 : R — N. A configuration (0,) is called an initial configuration. Define a step
of M by (i, 8) > (4,8) if, and only if, (1) I; = (X;,inc k : j) and

B" = Blex = Blek) + 1], (2) li = (Xi,dec k = j : j'), B(cx) >0 and

p' = Blex — B(ex) — 1], and (3) [; = (Xj,dec k : j : j) and B(ck) =0.

R International Center
UNIVERSITAT 3 q .
DRESDEN Concurrency Theory — CCS “ for Computational Logic 12

1. Minsky and Turing

The Halting Problem for Minsky Machines is the language

Lyalt := {<M/B> ‘ dn e N: <0/ﬁ> >* (n,halt>}.

Theorem 12
Lyt is undecidable, even if only two counters are used.

Theorem 13
Minsky Machines are Turing-complete.

TECHNISCHE

o International Center
UNIVERSITAT 3 q A
DRESDEN Concurrency Theory - CCSs B for Computational Logic

13

2. Implementing Minsky Machines in CCS

Construction: in two steps.

1. Implementing unbounded counters using finitely many actions and constants;
2. Implementing the program instructions

We do the second step first. As an interface to the counters ¢; and ¢y, we assume
action names u!, d!, z! to control the first counter and u2, d!, 2> for the second. For

each [; € P, X; € C, which we translate using the following theme (assuming
ke {1,2}):

1. (Xiinc k :) X; with X; 5 X;;
2 (Xidec k : j i j)e X with X; D5 X; and X; 5 X
3. (X;,halt) — X; with X; 2 0.

RN e International Center
UNIVERSITAT 3 q .
DRESDEN Concurrency Theory - CCSs ;" for Computational Logic 14

2.1 Implementing Counters

A single counter may be realized using constants C, (', C5 € C and actions
u,d,z € Act.

1. Define C % C and C % (va) (C4 | a.0);
2. Define C; % @.0 and C7 % (vb) (Cs | b.CY);
3. Define Co % 5.0 and Cy % (va) (Cy | a.Ca).

For any process P, reachable from C, define val(P) inductively:
Base: val(P)=0if P=C.
Step: For process Q with val(Q) =n (n > 0), val(Q') =n+1if Q % Q' and
wl(@)=n-1fQ% 5 Q.
For two processes P and (), reachable from C, we get val(P) = val(Q) iff P < Q).

aﬁtl:\;‘ENklélt':l'rAE International Center
DRESDEN

Concurrency Theory - CCS ‘: for Computational Logic

15

Putting Everything Together

Let M = (R, P) be a Minsky machine with R = {¢1,c2} and P = {lp, L1, ..., [, }.

Our construction uses Act = {u!,d', 2!, u? d?, 22, 7, ul,d', 2t u2,d?, 22} and
C={C{,Ccl,ot,C?,C3,0% Xo, X1,...,X,}, where n is the maximal line index of
P. T¢ defined as before.

Theorem 14
For By = {c1 + 0,¢c2 = 0}, (0, Bo) ™ (i, B) with B(c1) = n1 and B(c2) = na, we get

(vul,u?,d', d?, 21, 22) (Xo | O | C?) &7 (vul,u?,dY, d2, 21, 22) (X; | CL | C?) such
that val(C1) = n1 and val(Cy) = no.

~~ halting problem for CCS is undecidable.

TECHNISCHE

& International Center
UNIVERSITAT 3 q " 16
DRESDEN Concurrency Theory — CCS " for Computational Logic

Outlook

e Alternative model: Carl Adam Petri and his Nets
e What is decidable about Petri nets?

e Enhancing CCS: the 7-calculus

I
DRESDEN Concurrency Theory — CCS

i

International Center
for Computational Logic

17

