Exact Learning Description Logic Ontologies from Data
Retrieval Examples

Boris Konev!, Ana Ozaki!, and Frank Wolter!

Department of Computer Science, University of Liverpool, UK

Abstract. We investigate the complexity of learning description logic ontologies
in Angluin et al.’s framework of exact learning via queries posed to an oracle. We
consider membership queries of the form “is individual a a certain answer to a data
retrieval query g of ABox A and the target TBox?” and equivalence queries of the
form “is a given TBox equivalent to the target TBox?”. We show that (i) DL-Lite
TBoxes with role inclusions and £LZ concept expressions on the right-hand side
of inclusions and (ii) ££ TBoxes without complex concept expressions on the
right-hand side of inclusions can be learned in polynomial time. Both results are
proved by a non-trivial reduction to learning from subsumption examples. We also
show that arbitrary €L TBoxes cannot be learned in polynomial time.

1 Introduction

Building an ontology is prone to errors, time consuming, and costly. A large number of
different research communities have addressed this problem by, for example, supplying
tool support for editing ontologies [15, 4, 9], developing reasoning support for debugging
ontologies [18], supporting modular ontology design [17], and investigating automated
ontology generation from data or text [8, 6, 5, 14]. One major problem when building an
ontology is the fact that domain experts are rarely ontology engineering experts and that,
conversely, ontology engineers are typically not familiar with the domain of the ontology.
An ontology building project therefore often relies on the successful communication
between an ontology engineer (familiar with the semantics of ontology languages) and a
domain expert (familiar with the domain of interest). In this paper, we consider a simple
model of this communication process and analyse, within this model, the computational
complexity of reaching a correct domain ontology. We assume that

— the domain expert knows the domain ontology and its vocabulary without being able
to formalize or communicate this ontology;

— the domain expert is able to communicate the vocabulary of the ontology and shares
it with the the ontology engineer. Thus, the domain expert and ontology engineer
have a common understanding of the vocabulary of the ontology. The ontology
engineer knows nothing else about the domain.

— the ontology engineer can pose queries to the domain expert which the domain
expert answers truthfully. Assuming that the domain expert can interpret data in
her area of expertise, the main queries posed by the ontology engineer are based on
instance retrieval examples:

e assume a data instance A and a query ¢(z) are given. Is the individual a a
certain answer to query ¢(z) in .4 and the ontology O?
In addition, we require a way for the ontology engineer to find out whether she
has reconstructed the target ontology already and, if this is not the case, to request
an example illustrating the incompleteness of the reconstruction. We abstract from
defining a communication protocol for this, but assume for simplicity that the
following query can be posed by the ontology engineer:
e Is this ontology H complete? If not, return a data instance A, a query ¢(x), and
an individual a such that a is a certain answer to ¢(z) in .A and the ontology O
and it is not a certain answer to ¢(x) in A and the ontology #.

Given this model, our question is whether the ontology engineer can learn the target
ontology O and which computational resources are required for this depending on
the ontology language in which the ontology O and the hypothesis ontologies 7 are
formulated. Our model obviously abstracts from a number of fundamental problems in
building ontologies and communicating about them. In particular, it is not realistic to
assume that the domain expert knows the domain ontology and its vocabulary (without
being able to formalize it) as it is well known that finding an appropriate vocabulary for
a domain of interest is a major problem in ontology design [8]. We make this assumption
here in order to isolate the problem of communication about the logical relationships
between known vocabulary items and its dependence on the ontology language within
which the relationships can be formulated.

The model described above is an instance of Angluin et al.’s framework of exact
learning via queries to an oracle [1]. The queries using instance retrieval examples can
be regarded as membership queries posed by a learner to an oracle and the completeness
query based on a hypothesis H can be regarded as an equivalence query by the learner
to the oracle. Formulated in Angluin’s terms we are thus interested in whether there
exists a deterministic learning algorithm that poses membership and equivalence queries
of the above form to an oracle and that learns an arbitrary ontology over a given
ontology language in polynomial time. We consider polynomial learnability in three
distinct DLs: we show that DL-Lite ontologies with role inclusions and arbitrary ££Z
concepts on the right-hand side of concept inclusions can be learned in polynomial
time if database queries in instance retrieval examples are ££Z instance queries (or,
equivalently, acyclic conjunctive queries). We call this DL DL—Lite?2 and note that it is the
core of the web ontology language profile OWL2 QL. We also note that without complex
ELT concepts on the right-hand side of concept inclusions, polynomial learnability
would be trivial as only finitely many non-equivalent such TBoxes exist over a given
vocabulary of concept and role names. The second DL we consider is ££ which is the
logic underpinning the web ontology language profile OWL2 EL. We show that ££
TBoxes cannot be learned in polynomial time using the protocol above if the database
queries in instance retrieval examples are £L instance queries. We then consider the
fragment £Lns of £L without complex concepts on the right-hand side of concept
inclusions and prove that it can be learned in polynomial time using the above protocol
with instance retrieval examples. The proofs of the positive learning results are by
reduction to polynomial time learnability results for DL—Lite% and €L for the case
in which concept subsumptions rather than instance retrieval examples as used in the

communication between the learner and the oracle [12]. Detailed proofs are provided in
the full version at http://cgi.csc.liv.ac.uk/anaozaki/publ.html.

2 Preliminaries

Let N¢ be a countably infinite set of concept names and Ng a countably infinite set of
role names. The dialect DL—Lite% of DL-Lite is defined as follows [7]. A role is a role
name or an inverse role r~ with r € Ng. A role inclusion (RI) is of the form r C s,
where 7 and s are roles. A basic concept is either a concept name or of the form 3r.T,
with r a role. A DL-Lite?a concept inclusion (CI) is of the form B C C, where B is
a basic concept expression and C' is an £LZ concept expression, that is, C' is formed
according to therule C,D := A | T | CN D | 3r.C | Ir~.C where A ranges over
Nc and r ranges over Nr. A DL-Lite?z TBox is a finite set of DL-Lite% CIs and RlIs.
As usual, an £L concept expression is an £LZ concept expression that does not use
inverse roles, an EL concept inclusion has the form C C D with C' and D €L concept
expressions, and a (general) £L TBox is a finite set of £L£ concept inclusions [2]. We
also consider the restriction €L, of general £L TBoxes where only concept names are
allowed on the right-hand side of concept inclusions. The size of a concept expression C,
denoted with |C/, is the length of the string that represents it, where concept names and
role names are considered to be of length one. A TBox signature is the set of concept
and role names occurring in the TBox. The size of a TBox T, denoted with |7, is
> ccper |Cl+1DI.

Let N be a countably infinite set of individual names. An ABox A is a finite non-
empty set containing concept name assertions A(a) and role assertions r(a,b), where
a, b are individuals in N, A is a concept name and r is a role. The set of individuals that
occur in A is denoted by Ind(A). We say that A is a singleton ABox if it contains only
one ABox assertion. Assertions of the form C(a) and r(a, b), where a,b € N, , C an
ELT concept expression, and r € Ng , are called instance assertions. Note that instance
assertions of the form C'(a) with C not a concept name nor C' = T do not occur in
ABoxes. The semantics of description logic is defined as usual [3]. We write Z = « to
say that an inclusion or assertion « is true in Z. An interpretation Z is a model of a KB
(T,A)ifT =aforalla € TUA. (T,A) = ameans that Z |= « for all models Z of
(T, A).

A learning framework § is a triple (X, L, ut), where X is a set of examples (also
called domain or instance space), £ is a set of learning concepts' and p is a mapping
from £ to 2X. The subsumption learning framework §s, studied in [12], is defined as
(Xs, L, us), where L is the set of all TBoxes that are formulated in a given DL; Xs is
the set of subsumption examples of the form C' = D, where C, D are concept expressions
of the DL under consideration; and ps(7) isdefinedas {C C D € Xs | T = C C D},
forevery T € L. It should be clear that us(7) = pus(7") if, and only if, the TBoxes T
and 7" entail the same set of inclusions, that is, they are logically equivalent.

!In the learning literature (e.g., [1]), the term ‘learning concept’ is often defined as a set of
examples. We do not distinguish between learning concepts and their representations and only
consider representable learning concepts to emphasize on the task of identifying a TBox that is
logically equivalent to the target TBox.

We study the data retrieval learning framework §p defined as (Xp, £, up), where
L is same as in §s; X is the set of data retrieval examples of the form (A, D(a)),
where A is an ABox, D(a) is a concept assertion of the DL under consideration, and
a € Ind(A); and u(T) = {(A,D(a)) € Xp | (T, A) = D(a)}. As in the case of
learning from subsumptions, ps(7) = ps(7T") if, and only if, the TBoxes 7 and 7 are
logically equivalent.

Given a learning framework § = (X, £, i), we are interested in the exact identi-
fication of a target learning concept [€ L by posing queries to oracles. Let MEM; x
be the oracle that takes as input some x € X and returns ‘yes’ if © € p(l) and ‘no’
otherwise. We say that x is a positive example for 1 if x € u(l) and a negative example
for | if x ¢ u(l). Then a membership query is a call to the oracle MEM; x. Similarly,
for every | € £, we denote by EQ;_x the oracle that takes as input a hypothesis learning
concept h € £ and returns ‘yes’, if u(h) = u(l), or a counterexample x € p(h) & u(l)
otherwise, where & denotes the symmetric set difference. An equivalence query is a call
to the oracle EQ; x.

We say that a learning framework (X, £, 1) is exact learnable if there is an algorithm
A such that for any target [€ L the algorithm A always halts and outputs I’ € £ such
that p(1) = p(l’) using membership and equivalence queries answered by the oracles
MEM; x and EQ, x, respectively. A learning framework (X, L, 1) is polynomially
exact learnable if it is exact learnable by an algorithm A such that at every step? of
computation the time used by A up to that step is bounded by a polynomial p(|I|, |z|),
where [is the target and = € X is the largest counterexample seen so far®. As argued in
the introduction, for learning subsumption and data retrieval learning frameworks we
additionally assume that the signature of the target TBox is always known to the learner.

An important class of learning algorithms—in particular, all algorithms presented
in [12, 10, 16] fit in this class—always make equivalence queries with hypotheses h
which are polynomial in the size of [and such that u(h) C (1), so that counterexamples
returned by the EQ; x oracles are always positive. We say that such algorithms use
positive bounded equivalence queries.

3 Polynomial Time Learnability

In this section we prove polynomial time exact learnability of the DL—Lite?2 and ELps
data retrieval learning frameworks. These frameworks are instances of the general
definition given above, where the concept expression D in a data retrieval example
(A, D(a)) is an LT concept expression in the DL-Lite3, framework and an £ £ concept
expression in the £ L), framework, respectively.

The proof is by reduction to learning from subsumptions. We illustrate its idea for
& Lyps. To learn a TBox from data retrieval examples we run a learning from subsumptions
algorithm as a ‘black box’. Every time the learning from subsumptions algorithm makes
a membership or an equivalence query we rewrite the query into the data setting and pass
it on to the data retrieval oracle. The oracle’s answer, rewritten back to the subsumption

2 We count each call to an oracle as one step of computation.
3 We assume some natural notion of a length of an example z and a learning concept I, denoted
|z| and ||, respectively.

A A A A A A A A
r’\:/s r\:/s r\:/s r\:/s
N5 N5
A A

(,f
A f’r‘\A/S)

Fig. 1: An ABox A = {r(a,a), s(a,a), A(a)} and its unravelling up to level n.

setting, is given to the learning from subsumptions algorithm. When the learning from
subsumptions algorithm terminates we return the learnt TBox. This reduction is made
possible by the close relationship between data retrieval and subsumption examples. For
every TBox 7 and inclusions C' C D, one can interpret a concept expression C' as a
labelled tree and encode this tree as an ABox A¢ with root po such that 7 = C E D
iff (T, Ac) = D(pc).

Then, membership queries in the subsumption setting can be answered with the
help of a data retrieval oracle due to the relation between subsumptions and instance
queries described above. An inclusion C' C D is a (positive) subsumption example
for some target TBox 7 if, and only if, (A¢c, D(pc)) is a (positive) data retrieval
example for the same target 7. To handle equivalence queries, we need to be able to
rewrite data retrieval counterexamples returned by the data retrieval oracle into the
subsumption setting. For every TBox 7 and data retrieval query (A, D(a)) one can
construct a concept expression Cy such that (7, A) = D(a) iff T |= C4 T D. Such
a concept expression C4 can be obtained by unravelling A into a tree-shaped ABox
and representing it as a concept expression. This unravelling, however, can increase the
ABox size exponentially. Thus, to obtain a polynomial bound on the running time of the
learning process, C4 T D cannot be simply returned as an answer to a subsumption
equivalence query. For example, for a target TBox 7 = {3r".A C B} and a hypothesis
H = () the data retrieval query (A, B(a)), where A = {r(a,a), s(a,a), A(a)}, is
a positive counterexample. The tree-shaped unravelling of A up to level n is a full
binary tree of depth n, as shown in Fig. 1. On the other hand, the non-equivalence of
T and H can already be witnessed by (A’, B(a)), where A" = {r(a,a), A(a)}. The
unravelling of A’ up to level n produces a linear size ABox {r(a,az),r(az,as),...,
r(an—1,an), A(a), A(as), ..., A(ay,)}, corresponding to the left-most path in Fig. 1,
which, in turn, is linear-size w.r.t. the target inclusion 3r".A C B. Notice that A’
is obtained from A by removing the s(a,a) edge and checking, using membership
queries, whether (7, A’) |= ¢ still holds. In other words, one might need to ask further
membership queries in order to rewrite answers to data retrieval equivalence queries
given by the data retrieval oracle into the subsumption setting.

We address the need of rewriting counterexamples by introducing an abstract notion
of reduction between different exact learning frameworks. To simplify notation, we
assume that both learning frameworks use the same set of learning concepts £ and only
consider positive bounded equivalence queries. This definition of reduction can be easily
extended to arbitrary learning frameworks and arbitrary queries.

We say that a learning framework § = (X, L, u) polynomially reduces to §' =
(X', L, p') if for some polynomials p;(-), p2(-) and p3(-,-) there exist a function f :
X’ — X and a partial function g : £ x £ x X — X', defined for every (I, h, z) such
that |h| = p1(JI]), u(h) C p(l) and = € X, for which the following conditions hold.

For all 2/ € X' we have 2’ € p/(1) if, and only if, f(z') € p(1);
For all z € X we have x € u(l) \ p(h) if, and only if, (I, h, z) € u/(1) \ ¢/ (h);
f(a') is computable in time pa(|z’]);
g(l, h, x) is computable in time p3 (]!
membership oracle MEM; x.

,|z|) and [can only be accessed by calls to the

As in the case of learning algorithms, we consider every call to the oracle as one step
of computation. Notice also that even though g takes h as input, the polynomial time
bound on computing g(l, h, x) does not depend on the size of h as g is only defined for
h polynomial in the size of [.

Theorem 1. Let (X, L, p) and (X', L, ') be learning frameworks. If there exists a
polynomial reduction from (X, L, u) to (X', L, p') and a polynomial learning algorithm
for (X', L, 1) that uses membership queries and positive bounded equivalence queries
then (X, L, p) is polynomially exact learnable.

We use Theorem 1 to prove that DL—Lite% and £L,s TBoxes can be learned in
polynomial time from data retrieval examples. We employ the following result:

Theorem 2 ([12]). The DL-Lite% and EL\ws subsumption learning frameworks are
polynomial time exact learnable with membership and positive bounded equivalence
queries.

As the existence of f is guaranteed by the following lemma, in what follows we prove
the existence of g and establish the corresponding time bounds.

Lemmal. Let L € {DL-Liz‘e%7 ELws} and let C T D be an L concept inclusion. Then
(T, Ac) E D(pc) if, and only if, T = C' T D.

Polynomial Reduction for DL-Lite?z TBoxes We show for any target 7 and hy-
pothesis H polynomial in the size of T that Algorithm 1 transforms every positive
counterexample in polynomial time to a positive counterexample with a singleton ABox
(i.e., of the form {A(a)} or {r(a,b)}). Using the equivalences (7, {A(a)}) E C(a) iff
TlEACCand (T,{r(a,b)}) = C(a)iff T |= 3Ir. T C C, we then obtain a positive
subsumption counterexample, so g(I, k,) is computable in polynomial time.

Given a positive data retrieval counterexample (A, C'(a)), Algorithm 1 exhaustively
applies the role saturation and parent-child merging rules introduced in [12]. We say that
an instance assertion C'(a) is role saturated for (T, A) if (T, A) & C’'(a) whenever
(" is the result of replacing a role r by some role s € Ng N X'y with 7}~ r C s and
T = s C r, where X7 is the signature of the target TBox 7 known to the learner.
To define parent/child merging, we identify each £L£Z concept C' with a finite tree T
whose nodes are labeled with concept names and edges are labeled with roles in the
standard way. For example, if C = 3t.(AM3r.3r~.3r.B)M3s.T then Fig. 2a illustrates

Algorithm 1 Reducing the positive counterexample

1: Let C(a) be an instance assertion such that (H, A) & C(a) and (T,.A) = C(a)
2: function REDUCECOUNTEREXAMPLE(A, C(a))

3: Find a role saturated and parent/child merged C'(a) (membership queries)

4 ifC =Con...nc, then

5 Find Cj, 0 < ¢ < n, such that (H, A) = Ci(a)
6: C = C»L
7
8

if C = 3r.C" and there is 7(a, b) € A such that (T,.A) &= C’(b) then
REDUCECOUNTEREXAMPLE(A, C’ (b))

9: else

10: Find a singleton A’ C A such that (7, A4") = C(a) but
11: (H, A") £ C(a) (membership queries)

12: return (A',C(a))

Tc. Now, we say that an instance assertion C'(a) is parent/child merged for T and A
if for nodes n1, ny, ng in T such that ny is an r-successor of nq, ng is an s-successor
of ngand 7 |=r~ = s we have (T, .A) [~ C’(a) if C’ is the concept that results from
identifying nq and ngs. For instance, the concept in Fig. 2c is the result of identifying the
leaf labeled with B in Fig. 2b with the parent of its parent.

We present a run of Algorithm 1 for 7 = {AC 3s.B,s Cr}andH = {s C r}. As-
sume the oracle gives as counterexample (A, C(a)), where A = {t(a,b), A(b), s(a,c)}
and C(a) = 3t.(AN Ir.Ir~.Fr.B) N Is.T(a) (Fig. 2a). Role saturation produces
C(a) = 3t.(AM3s.3s~.3s.B) M 3s. T (a) (Fig. 2b). Then, applying parent/child merg-
ing twice we obtain C'(a) = 3t.(AMJs.B) M 3s.T(a) (Fig. 2c and 2d).

(@) / () 7‘ © @
; ; 2z 5
77 S, S S
A A A 3 A
Y W A

Fig. 2: Concept C being role saturated and parent/child merged.

Since (H,A) £ 3t.(A M 3s.B)(a), after Lines 4-6, Algorithm 1 updates C' by
choosing the conjunct 3¢.(AM3s.B). As C is of the form 3¢.C” and there is t(a, b) € A
such that (7,.A) = C’'(b), the algorithm recursively calls the function “ReduceCoun-
terExample” with A 1 3s.B(b). Now, since (H,.A) [~ Is.B(b), after Lines 4-6, C
is updated to 3s.B. Finally, C is of the form 3¢.C’ and there is no t(b,¢) € A such
that (7, A) E C’(c). So the algorithm proceeds to Lines 11-12, where it chooses
A(b) € A. Since (T,{A(b)}) = 3s.B(b) and (H,{A(b)}) ¥ Is.B(b) we have that
TEACIs.Band H = AC 3s.B.

Lemma 2. Let (A, C(a)) be a positive counterexample. Then the following holds:

1. if C is a basic concept then there is a singleton A’ C A such that (T, A’) = C(a);

Algorithm 2 Minimizing an ABox .4
: Let A be an ABox such that (7, .A) = A(a) but (H,.A) = A(a), for A € N¢, a € Ind(A).
: function MINIMIZEABOX(.A)
Concept saturate A with H
for every A € Nc N X7 and a € Ind(.A) such that
(T, A) = A(a) and (H, A) [~ A(a) do
Domain Minimize 4 with A(a)
Role Minimize A with A(a)

return (A)

S AN A T ol e

N

. if C is of the form Ir.C" (or Ir—.C") and C is role saturated and parent/child
merged then either there is r(a,b) € A (orr(b,a) € A) such that (T, A) = C'(b)
or there is a singleton A’ C A such that (T, A’) = C(a).

Lemma 3. For any target DL-Lite% TBox T and hypothesis DL-Lite% TBox H given
a positive data retrieval counterexample (A, C(a)), Algorithm 1 computes in time
polynomial in |T|, |H|, |A| and |C| a counterexample C' (b) such that (T, A’) = C’(b),
where A" C A is a singleton ABox.

Proof. (Sketch) Let (A, C(a)) be the input of “ReduceCounterExample”. The number
of membership queries in Line 3 is polynomial in |C| and |7|. If C has more than
one conjunct then it is updated in Lines 4-6, so C' becomes either (1) a basic concept
or (2) of the form Jr.C’ (or Ir~.C"). By Lemma 2 in case (1) there is a singleton
A" C A such that (T, A") = C(a), computed by Line 11 of Algorithm 1. In case (2)
either there is a singleton A’ C A such that (7, A’") = C(a), computed by Line 11 of
Algorithm 1, or we obtain a counterexample with a refined C'. Since the size of the refined
counterexample is strictly smaller after every recursive call of “ReduceCounterExample”,
the total number of calls is bounded by |C|. 0

Using Theorem 2 and Theorem 1 we obtain:

Theorem 3. The DL-Lite% data retrieval framework is polynomially exact learnable.

Polynomial Reduction for £ L,s TBoxes In this section we give a polynomial algo-
rithm computing g for £Lns. First we note that the concept assertion in data retrieval
counterexamples (A, D(a)) can always be made atomic. Let X7 be the signature of the
target TBox 7.

Lemma 4. If (A, D(a)) is a positive counterexample then by posing polynomially many
membership queries one can find a concept name A € X1 and an individual b € Ind(A)
such that (A, A(b)) is also a counterexample.

Thus it suffices to show that given a positive counterexample (A, D(a)) with D €
Nc, one can compute an £L concept expression C' bounded in size by |7| such that
(T,{C(b)}) & A(b) and (H,{C(b)}) ¥~ A(b), where A € Nc. As (T,{C(b)})
A(D) if and only if T = C' C A, we obtain a positive subsumption counterexample.
Our algorithm for computing g is based on two operations: minimization, computed by

Algorithm 3 Computing a tree shaped ABox
1: function FINDTREE(A)
2 MINIMIZEABOX(.A)
3 while there is a cycle ¢ in A do
4: Unfold a € Ind(A) in cycle ¢
5.
6
7

MINIMIZEABOX(.A)

Let C be the concept expression corresponding to .4 with counterexample A(a).
return (C(a),A(a))

Algorithm 2, and unfolding. Algorithm 2 minimizes a given ABox with the following
rules.

(Concept saturate A with H) If A(a) ¢ A and (H, A) = A(a) then replace A by
AU{A(a)}, where A € Nc N X7 and a € Ind(A).

(Domain Minimize A with A(a)) If A(a) is a counterexample and (7, A~°) = A(a)
then replace A by A~%, where A~ is the result of removing from A all ABox assertions
in which b occurs.

(Role Minimize A with A(a)) If A(a) is a counterexample and (7, A~ "(>9) |=
A(a) then replace A by A~"(¢) where A~"("¢) be obtained by removing a role
assertion (b, ¢) from A.

Lemma 5. Given a positive counterexample (A, D(a)) with D € N¢, Algorithm 2
computes in polynomially many steps with respect to |A|, |H|, and | T| an ABox A’ such
that [Ind(A")| < |T | and (A’, A(b)) is a positive counterexample, for some A € N¢ and
b€ Ind(A").

It remains to show that A can be made tree-shaped. We say that A has an (undirected)
cycle if there is a finite sequence ag - 71 - a - ... - 7' - ag such that (i) ag = ag and (ii) there
are mutually distinct assertions of the form ;11 (a;, a;4+1) or r;11(a;+1,a;) in A, for
0 <i < k. The unfolding of acycle ¢ = ag-r1-a;-...-r;-a) in a given ABox A is obtained
by replacing c by the cycle ¢’ = ag-71-a1-...- T A1 Tk Ao-T1 - - Ap_1 Tk - Ag, Where
a; are fresh individual names, 0 < ¢ < k—1, in such a way that (i) if 7(a;, d) € A, for an
individual d not in the cycle, then r(a;, d) € A; and (ii) if A(a;) € Athen A(a;) € A.

We prove in the appendix that after every unfolding-minimisation step in Algorithm 3
the ABox A on the one hand becomes strictly larger and on the other does not exceed
the size of the target TBox 7. Thus Algorithm 3 terminates after a polynomial number
of steps yielding a tree-shaped counterexample.

Lemma 6. Algorithm 3 computes a minimal tree shaped ABox A with size polynomial
in |T| and runs in polynomially many steps in | T| and | A|.

Using Theorem 2 and Theorem 1 we obtain:

Theorem 4. The £ Lys data retrieval framework is polynomially exact learnable.

4 Limits of Polynomial Time Learnability

Our proof of non-polynomial learnability of general ££ TBoxes from data retrieval
examples extends previous results on non-polynomial learnability of ££ TBoxes from

subsumptions [12]. We start by giving a brief overview of the construction in [12], show
that it fails in the data retrieval setting and then demonstrate how it can be modified.

The non-learnability proof in [12] proceeds as follows. A learner tries to exactly
identify one of the possible target TBoxes {7z, | L € £, }, for a superpolynomial in
n set £,, defined below. At every stage of computation the oracle maintains a set of
TBoxes .S, which the learner is unable to distinguish based on the answers given so far.
Initially S = {7 | L € £,}. It has been proved that for any ££ inclusion C' C D either
7. = C C D forevery L € £, or the number of L € £, such that 7, F C C D
does not exceed |C|. When a polynomial learner asks a membership query C' C D the
oracle answers ‘yes’ if 7, = C C D for every L € £, and ‘no’ otherwise. In the
latter case the oracle removes polynomially many 77, such that 7, = C C D from S.
Similarly, for any equivalence query with hypothesis H asked by a polynomial learning
algorithm there exists a polynomial size inclusion C' C D, which can be returned as a
counterexample and that excludes only polynomially many TBoxes from .S. Thus, every
query to the oracle reduces the size of .S at most polynomially in n, but then the learner
cannot distinguish between the remaining TBoxes of our initial superpolynomial set .S.

The set of indices £,, and the target TBoxes 77, are defined as follows. Fix two
role names and s. An n-tuple L is a sequence of role sequences (o7, ..., 0y,), where
every o; is a sequence of role names 7 and s, thatis o; = o}0? ... o7 with o] € {r, s}.
Then £, is a set of n-tuples such that for every L, L’ € £, with L = (o1,...,04,),
L'=(o1,...,0,),ifo; = o) then L = L' and i = j. There are N' = |2" /n] different
tuples in £,,. For every n > 0 and every n-tuple L = (o7, ..., 0,) we define an acyclic
EL TBox T, as the union of 7o = {X; C Ir.X;411 M3s.X;11 | 0 < i < n} and the
following inclusions:

Al EHUl.MﬂXO AnEHUnMﬂXO
Blgalfl.MﬂXQ BnEHO'n.MﬂXO

AEX0|_|E|O'1.MT|"‘|_|30'7L.M.

where the expression 3o.C stands for 3o'.302 ... 3o™.C, M is a concept name that
‘marks’ a designated path given by o and 7 generates a full binary tree whose edges are
labelled with the role names r and s and with X at the root, X at level 1 and so on.

In contrast to the subsumption framework, every 7Ty, can be exactly identified using
data retrieval queries. For example, as Xg M 3doy. M M ---Mdo,. M C A € Tz, a
learning from data retrieval queries algorithm can learn all the sequences in the n-
tuple L = (o1, ...,0,), by defining an ABox A = {Xy(a1), r(a1,a2), s(a1,az),. ..,
r(an—1,an), $(an—1,an), M(a,)} and then proceeding with unfolding and minimizing
A via membership queries of the form (77,.4) = A(ay).

To show the non-tractability for data retrieval queries, we first modify S in such a
way that the concept expression which ‘marks’ the sequences in L = (o1,...,0,) is
now given by the set 9B,, of all conjunctions Fy M- -- M F,,, where F; € {E;, E;}, for
1 < ¢ < n. Intuitively, every member of B,, encodes a binary string of length n with E;
encoding 1 and F; encoding 0. For every L € £,, and every B € B,, we define 7,2 as
the union of 7y and the concept inclusions defined above with B replacing M.

Then for any sequence o of length n there exists at most one L € £, at most
one 1 < ¢ < n and at most one B € B,, such that TLB E A; C Jo.B and ’TLB =

B; C do.B. Notice that the size of each ’TLB is polynomial in n and so £,, contains
superpolynomially many n-tuples in the size of each 72, with L € £, and B € B,,.
Every 72 entails, among other inclusions, [|;_, C; C A, where every C, is either A; or
B;. Let X, be the signature of the TBoxes 7'LB and consider a TBox 7 * defined as the
following set of concept inclusions:

HT.(El M El) E (El M E:‘l), (El M Ejl) E HT.(El 1 E:l),
E'S.(El M El) E (E1 [l El), (El I El) E HS(El I El),

(E;ME;)C A foreveryl <i<mnandevery A€ X, NNc

The basic idea of extending our TBoxes with 7* is that if a € (E; N E;)%4, for
an ABox A and individual a € Ind(A), then for all L € £, and B € 9B,,, we have
(TB, A) = D(b), where D is any £L concept expression over X, and b € Ind(A) is
any successor or predecessor of a (or a itself). This means that for each individual in
A at most one B of the 2" binary strings in 2B,, can be distinguished by data retrieval
queries. The following lemma enables us to respond to membership queries without
eliminating too many L € £,, and B € %B,, used to encode 72 in the set of TBoxes that
the learner cannot distinguish.

Lemma 7. For any ABox A, any EL concept assertion D(a) over X, and any a €
Ind(A), if there is L € £, and B € B,, such that (TB U T*, A) = D(a) then:

— either (TR UT*, A) = D(a), for every L € £, and B € B,, or
- (TLE UT*, A) = D(a) for at most |D| elements L € £, or
- (T2 UT*, A) = D(a) for at most | A| elements B € B,

The next lemma (proved in Appendix E) is immediate from Lemma 15 presented in
[12]. Tt shows how the oracle can answer equivalence queries eliminating at most one
L € £, used to encode TLB in the set S of TBoxes that the learner cannot distinguish.

Lemma 8. For any n > 1 and any EL£ TBox H in X, with |H| < 2", there exists an
ABox A, an individual a € Ind(A) and an EL concept expression D over X, such that
(i) the size of A plus the size of D does not exceed 6n and (ii) if (H, A) = D(a) then
(TR, A) = D(a) for at most one L € £,, and if (H, A) £ D(a) then for every L € £,
we have (TB UT*, A) = D(a).

Then, by Lemmas 7 and 8, we have that: (i) any polynomial size membership query
can distinguish at most polynomially many TBoxes from S; and (ii) if the learner’s
hypothesis is polynomial size then there exists a polynomial size counterexample that
the oracle can give which distinguishes at most polynomially many TBoxes from S.

Theorem 5. The EL data retrieval framework is not polynomially exact learnable.

5 Future Work

We plan to consider an extension of the learning protocol in which arbitrary conjunctive
queries are admitted in queries to the domain expert/oracle. We then still have polynomial
time learnability for £ L5 but conjecture non-polynomial time learnability for DL-Lite%.
Another extension is exact learnability for the Horn-extension of DL-Lite7, for which
we conjecture that polynomial time learnability still holds.

Bibliography

[1] D. Angluin. Queries and concept learning. Machine Learning, 2(4):319-342, 1987.

[2] F. Baader, S. Brandt, and C. Lutz. Pushing the ££ envelope. In IJCAI, pages
364-369. Professional Book Center, 2005.

[3] F. Baader, D. Calvanese, D. McGuiness, D. Nardi, and P. Patel-Schneider. The De-
scription Logic Handbook: Theory, implementation and applications. Cambridge
University Press, 2003.

[4] S. Bechhofer, I. Horrocks, C. Goble, and R. Stevens. Oiled: a reason-able ontology
editor for the semantic web. In KI 2001: Advances in Artificial Intelligence, pages
396-408. Springer, 2001.

[5] D. Borchmann and F. Distel. Mining of ££-GCls. In The 11th IEEE International
Conference on Data Mining Workshops, Vancouver, Canada, 11 December 2011.
IEEE Computer Society.

[6] P. Buitelaar, P. Cimiano, and B. Magnini, editors. Ontology Learning from Text:
Methods, Evaluation and Applications. 10S Press, 2005.

[7] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable
reasoning and efficient query answering in description logics: The DL-Lite family.
Journal of Automated reasoning, 39(3):385-429, 2007.

[8] P. Cimiano, A. Hotho, and S. Staab. Learning concept hierarchies from text corpora
using formal concept analysis. J. Artif. Intell. Res. (JAIR), 24:305-339, 2005.

[9] J. Day-Richter, M. A. Harris, M. Haendel, S. Lewis, et al. Obo-edit an ontology
editor for biologists. Bioinformatics, 23(16):2198-2200, 2007.

[10] M. Frazier and L. Pitt. Learning From Entailment: An Application to Propositional
Horn Sentences. In ICML, pages 120-127, 1993.

[11] B. Konev, M. Ludwig, D. Walther, and F. Wolter. The logical difference for the
lightweight description logic EL. J. Artif. Intell. Res. (JAIR), 44:633-708, 2012.

[12] B. Konev, C. Lutz, A. Ozaki, and F. Wolter. Exact learning of lightweight descrip-
tion logic ontologies. In Principles of Knowledge Representation and Reasoning:
Proceedings of the Fourteenth International Conference, KR 2014, Vienna, Austria,
July 20-24, 2014, 2014.

[13] C. Lutz, R. Piro, and F. Wolter. Description logic TBoxes: Model-theoretic charac-
terizations and rewritability. In IJCAI, pages 983-988, 2011.

[14] Y. Ma and F. Distel. Learning formal definitions for snomed CT from text. In
Artificial Intelligence in Medicine - 14th Conference on Artificial Intelligence in
Medicine, AIME 2013, Murcia, Spain, May 29 - June 1, 2013. Proceedings, pages
73-77,2013.

[15] M. A. Musen. Protégé ontology editor. Encyclopedia of Systems Biology, pages
1763-1765, 2013.

[16] C. Reddy and P. Tadepalli. Learning First-Order Acyclic Horn Programs from
Entailment. In in Proceedings of the 15th International Conference on Machine
Learning; (and Proceedings of the 8th International Conference on Inductive Logic
Programming, pages 23-37. Morgan Kaufmann, 1998.

[17] H. Stuckenschmidt, C. Parent, and S. Spaccapietra, editors. Modular Ontologies:
Concepts, Theories and Techniques for Knowledge Modularization, volume 5445
of Lecture Notes in Computer Science. Springer, 2009.

[18] H. Wang, M. Horridge, A. Rector, N. Drummond, and J. Seidenberg. Debugging
OWL-DL ontologies: A heuristic approach. In The Semantic Web—ISWC 2005,
pages 745-757. Springer, 2005.

A Simulations and Canonical Models

The semantics of DL—Lite?Z and £Ls is given by interpretations. An interpretation
T = (A%, T) consists of a non-empty set A% and a function -Z that assigns each concept
name A to a set AZ C A7 and each role name r to a binary relation 77 C A% x AT,
We make the unique name assumption for the individuals of an ABox. To interpret an
ABox A, we consider interpretations Z which assign to each a € Ind(.A) an element
al € AT. An interpretation Z satisfies an assertion A(a) € A if aZ € AT and an
assertion r(a, b) € Aif (a,b?) € rZ. The extension CT of an £LT concept expression
C is inductively defined as follows:

- TZT=AZ

- (cnD)=ctnp?

- (3r.C)r ={de AT |3Jec CT : (d,e) e rt}
- (3.0t ={de AT |3eec CT : (e,d) ert}

An interpretation Z satisfies:

a concept inclusion C' C D, in symbols Z = C C D, if cT c D%,
arole inclusion r C s, in symbols Z = r C s, if rT C ¢Z;

an instance assertion C(a), in symbols Z |= C(a), if o € C7;

a role assertion 7(a, b), in symbols Z |= r(a, b), if (a,b?) € rL.

We say that an interpretation Z is a model of a TBox 7 (an ABox A) if 7 = «
forall « € T (o € A). A CI (a RI) « follows from a TBox T if every model of T
is a model of «, in symbols 7 = «a. = « is used to denote that « follows from the
empty TBox. A knowledge base (KB) is a pair K = (7, .4) consisting of a TBox and
an ABox. An instance assertion follows from K = (7, .A) if every individual name that
occurs in « also occurs in Ind(.A) and every model of (7, .A) is a model of ¢, in symbols
(T, A) E . For DL-Lite% KBs, we assume that the ABox A is closed under inverses,
ie., r(a,b) € Aiff r=(b,a) € A. If the add or remove assertions from an ABox A, we
silently do this assuming that the resulting A is again closed under inverses. For £ Ljns
KBs, role assertions in A do not have inverse roles and we do not make A closed under
inverses.

Homomorphisms and Simulations A path in an £EL£Z concept expression C'is a finite
sequence Cy-71-C1 -...- 1 - Ck, where Cy = C, k > 0, and 3r;1.C; 41 is a conjunct of
C;, for 0 < i < k. The set paths(C') contains all paths in C. We also define tail(p) = {A
| Ais a conjunct of C}}, where CY, is the last concept expression in path p.

Definition 1. The tree interpretation L of C'is defined as follows:

- Ale ={p=Cy-r1-Cy-...-1 - Cx | p € paths(C) }
- ATe = {p| A € tail(p)}
- e ={(p,p') |p' =p-r-D}

The next two lemmas relate our tree shaped interpretations with homomorphisms.
A homomorphism h : Zo — 7T between the tree interpretation of an ££Z concept
expression C' and an interpretation Z is defined as follows, for p,p’ € AZc:

— if p € AZC then h(p) € AL;
— if (p,p’) € rZ¢ then (h(p), h(p")) € 7Z.

Lemma 9. Let C be an ELT concept expression. Denote as Lo the tree shaped inter-
pretation of C. If there is a homomorphism h : Tc — I, such that h(pc) = d, where
pc is the root path of Ic, then d € C~.

Proof. In the base case let C' be a concept name A. Since py € AZ4, if there is a
homomorphism h : Z4 — Z, such that h(pa) = d, then d € AZ. Now we make a case
distinction:

— For C' = 'y 11 Cy: Suppose the lemma is true for a homomorphism hy : Zo, — 7
with hy(pc,) = d and a homomorphism hy : Zo, — Z with ha(pc,) = d. Then
d € C¥ and d € C%. By semantics of N, d € (Cy M Cy)L.

— For C' = 3r.C": We know that p € (Ir.C")Zc. By semantics of 3, there is d such
that (p,d) € rZ¢ and d € C"*¢. If there is a homomorphism % : Z — 7 then
(h(p), h(d)) € rT. Suppose the lemma is true for C’. Then, h(d) € C'T and we
have that h(p) € (3r.C")T.

— For C = 3r~.C": We know that p € (Ir—.C")%c. By semantics of 3, there is d
such that (d, p) € 7Z¢ and d € C"%¢ If there is a homomorphism h : Zc — T then
(h(d), h(p)) € rT. Suppose the lemma is true for C’. Then, h(d) € C' and we
have that h(p) € (3r—.C")~.

[

Lemma 10. Let C be an ELT concept expression. Denote as L the tree shaped in-
terpretation of C. If d € C* then there is a homomorphism h : T — I, such that
h(pc) = d, where pc is the root path of Zc.

Proof. In the base case let C be a concept name A. If d € A” then, since pa € T4, we
have that h(p4) = d is a homomorphism h : T4, — Z. Now we make a case distinction:

— For C = C; M Cy: If d € (Cy M Co)T then, by semantics of N, d € CT and
d € CZ. Suppose the lemma is true for d; € CT and d € CZ. Then there
is a homomorphism hy : Zg, — Z with hq(po,) = di and a homomorphism
hs : Zo, — Z with ha(pe,) = da. Now, we need to show that the lemma is also
true for C = C; M Cy. For p € AZ¢, we define h as follows:

d if p = p, where p is the root of Z¢:
h(p) =< ha(p') ifp=p/, wherep’ € ATe
hao(p') if p=p', where p’ € AZc2

We know that p € CZc. If d € CZ then h(p) = d is a partial homomorphism.
Since C = C M Cy, we have that for all p € AZc \ {p}, p € paths(C}) or
p € paths(Cy). By hypothesis hq and hs are homomorphisms, so h : Ze — Z is
also a homomorphism.

— For C = 3r.C": If d € (Ir.C")T then, by semantics of 3, there is a d’ such that
(d,d") € T and d’ € C'%. Suppose the lemma is true for d’ € C'Z. Then there is a
homomorphism 4’ : Zor — Z with b/ (pcr) = d’. Now, we need to show that the
lemma is also true for C = 3r.C’. For p € AZc | we define h as follows:

h(p) = d if p = p, where p is the root of Z¢
p)= R'(p) ifp=p-r-p andp’ € Alc’

We know that p € CZ¢. If d € C7 then h(p) = d is a partial homomorphism. Since
C = 3r.C’, we have that for all p € AZc \ {p},p = p-r-p with p’ € paths(C”).
By hypothesis 2’ is a homomorphism, so & : Zo — Z is also a homomorphism.

— For C = 3r=.C": It d € (Ir—.C")T then, by semantics of 3, there is a d’ such that
(d',d) € r* and d’ € C"%. Suppose the lemma is true for d’ € C'Z. Then there is a
homomorphism 4’ : Zcr — T with A/ (per) = d’. Now, we need to show that the
lemma is also true for C' = 3r~.C". Forp € AZc | we define h as follows:

h(p) = d if p = p, where p is the root of Z
p)= R'(p') ifp=p-r~-p andp € ATc

We know that p € CZ¢ . If d € C7 then h(p) = d is a partial homomorphism. Since
C = 3r~.C', we have that for all p € AZe\ {p},p = p-r~-p’ with p’ € paths(C”).
By hypothesis i’ is a homomorphism, so i : Zc — Z is also a homomorphism.

a

Let Z, J be interpretations and X a signature, d € AZ and e € AY. A relation
S C AT x A7 is a X-simulation from (Z,d) to (7, e) if the following conditions are
satisfied:

— for all concept names A € X and all (d,e) € S, if d € AT thene € A7;
— for all role names 7 € X, all (d,e) € S and all d € AL, if (d,d') € r’ then there
exists ¢/ € A7 such that (e, e’) € r7 and (d',¢') € S.

We write (Z,d) =5 (J,e) if there is a X-simulation from (Z,d) to (J,e). If
Y = Nc U Ng we omit X' and speak of a simulation (Z,d) = (7, e). Simulations
preserve the membership of £L concept expressions [13]:

Lemma 11. For all EL concept expressions C: ifd € CT and (I,d) = (J,e), then
ec Y.

The Canonical Model of an ABox The canonical models of DL-Lite?2 and £Lhs
knowledge bases is given by the pair (7, .4), where A is an ABox and T is a TBox with
DL—Lite?2 and £Ls CIs, respectively. Before we proceed with knowledge bases, we
present the canonical model of an ABox.

Definition 2. The canonical model T4 = (A%A,-Z4) of an ABox A is defined as
follows:

— A%4 = {a|a € Ind(A)}
- A4 ={a| A(a) € A, A € Nc}
- 174 = {(a,b) | r(a,b) € A 7 € Ng}

A.1 The Canonical Model for DL-Lite,?2

The canonical model Zr 4 = |JZ,>0 of a DL-Lite, knowledge base K = (T, A) is
defined by a sequence of interpretations Z,,. Let Z 4 be the canonical interpretation of A.
In the base case, Zy := Z 4. The domain AZ» contains, in addition to AZo, sequences
ag-19-Co11-C1 ey - Cppy where ag € Ind(A). Forp = ag-rg-Co-r1-Cr-.c.orpy - Cpy
andg=Ch-r}-C{-...-rl ., -Cl,wedefinep-s-g=ag-1r9-Co-1r1-C1cc - Ty -
Cp-s-Cy-ry-CL-...-rl, - C/,, that is, the concatenation of p and ¢ through the role
s. Assume Z,, has been defined. Let & < n be minimal such that there is a p € AT+ with
p€ BX, BC D e Tbutp ¢ D', Let Dy, D1, ..., D; be the conjuncts of D of the
form D; = 3s;.E;, 0 <4 < [. Now, we define Z,,;; as follows:

- Alnet = ATn U {p-s; - q| q € paths(E;), 0 <i < 1};

- Alntr = AT U {p-s; - q| A € tail(q),0 < i < I} U{p|if Ais aconjunct of D};

— It =0l U{(p-s;i-q,p-si-q) | (¢,q) €rtEi, T = Cr,0<i<I}
WH(p,p-si-E)|TEsiCEr,0<i<lI}

(The canonical model Zr ¢ = |JZ,>¢ of an ELZ concept expression C and a
DL—Lite% TBox 7 is defined analogously with Zy = Z, where Z¢ is the tree interpre-
tation of C'.)

As an example let A = {r(a,b), A(b), s(a,c)} and T = {A C 3s.B}. Figures 3a
and 3b shows the interpretations Z 4 and Zt 4, respectively.

It follows from Lemma 13 that the sequence of interpretations which define 71 4 =
UZ.>0 is the canonical model of a DL-Lite, knowledge base (77, .A). This lemma
requires a technical lemma, presented below, which states that there is a homomorphism
from Z7 4 to an arbitrary model of (7, A).

Lemma 12. Let J be a model of (T,A). Then there exists a homomorphism h :
Ir.4 — J mapping h(a) = a7 for all a € Ind(A) with the following properties:

— if p € ATTA then h(p) € A7;
— if (p,p') € rTTA then (h(p), h(p')) € r7, where p,p € ATT.A,

(a) The canonical model Z 4 (b) The canonical model Z7 4

Fig. 3: Canonical Models with A = {r(a,b), A(b), s(a,c)} and T = {A C 3s.B}

Proof. The proof is by induction on the sequence of interpretations for the canonical
model Z7 4. We define b = J,,~(ks and set hg : AT — AT with ho(a) = a7 for
a € Ao and a7 € A7. By definition of Zy, A(a) € Aiff a € AT and r(a,b) € A
iff (a,b) € r%o. Since J is a model of (T, A), if A(a) € Athen a € A7. Similarly,
if r(a,b) € Athen (a,b) € r7. So a € Ao implies ho(a) € A7. Also, (a,b) € rZo
implies (ho(a), ho(b)) € 7. Thus, hg is a homomorphism.

Suppose it was proven that h,, : Z,, — J is a homomorphism. Let £ < n be minimal
such that there is a p € ATx withp € BZx, BC D € T but p ¢ D, As described
above, for every conjunct D; of D = Dy M ..M D;, 0 <4 <1, 7,41 is defined as:

1. if D; is a concept name A then 7,1 is defined in the same way as Z,, except
that AZ»+1 = AZ» U {p}. Since J is a model of (T, A), if h,(p) € B and
BLC D € T then h,(p) € DY . Since D; = A is a conjunct of D, h,,(p) € A7. So
hp4+1 = hy, is a homomorphism.

2. otherwise D; is of the form ds.FE, where s can be an inverse role. Then a copy of
the tree shaped interpretation Zg of the concept expression E connected by the role
s is added to Z,, ; ; following the way described above. By hypothesis, h,, (p) € B .
Since J is a model of (7, A), if BC D € T then h,(p) € D7. Since D; = 3s.F
is a conjunct of D, h,,(p) € (3s.E)7 . By semantics of 3,

— (%) there is d € A7 such that (h,(p),d) € s7 andd € E7.
By Lemma 10, if d € EY then there is a homomorphism &’ : Tz, — J mapping
pE to d, where T is the tree interpretation of E rooted in pg. Now, for every
p-s-q € ATn+1 guch that ¢ € paths(E) we define h, 4 1(p-s-q) = h'(q). We
want to show that h,,4; is a homomorphism.

By definition of Z,,41, p-s-q € AI~+1 iff ¢ € AT, If ¢ € AT® then (since
h' : Ig — J is a homomorphism) h'(q) € A7.Sop-s-q € AT»+ implies
hni1(p-s-q) = h'(q) € A7 . Also, by definition of Z,, 11, (p-s-q,p-5-¢') € r¥n+
iff (¢,¢') € r*2 and T = ' C r. If (q,¢') € r'*# then (W (q),R'(¢')) € r'7.
Since J is a model of (T,.A),if T = ' C r then (W' (q),h(¢')) € 7. As
hpii(p-s-q)=h'(q)and hyy1(p-s-¢') =h(¢),if(p-s-q,p-5-¢) € ri
then (Rpy1(p-5-q), hny1(p-5-q')) € r7 . Finally, notice that by definition of Z,,, 1,
tIntt = tZn U {(p,p-s- E) | T |= s C t}. By (%), we have that (h,,(p),d) € s7.
Since J is a model of (7,.A),if T = s C t then (h,(p),d) € t7. By definition
of W :Ig — J, W (pr) =d.So hpi1(p-s-E) =d. Then (p,p-s- E) € tTn+1
implies (hy,(p), hns1(p-s- E)) € t7.

Thus, hp11 : Zy41 — J is @ homomorphism. Since Z7 4 = |JZ,,>0, there exists a
homomorphism h : Z7 4 — J. W

Lemma 13. Let o be an instance assertion, (T, A) a DL-Lite3, knowledge base and
It 4 defined as above. Then, It 4 |= o if and only if (T, A) |= a.

Proof. (=) We make a case distinction.

- «a is of the form C(a): Let J be a model of (7, A). If Zy 4 |= C(a), that is,
a € CT7.4, then by Lemma 10 there is a homomorphism h : Zc — Z7 4 mapping
pc to a. By Lemma 12, there is a homomorphism g : Zr 4 — J mapping a to a7
Then there is g o h : Zc — J, mapping pc to a” . This means that (Lemma 10)
a? € 07 . Since J is an arbitrary model of (7, .A), C(a) holds in every model of
(T,A). Thatis, (T,.A) = C(a).

- « is of the form r(a,b): Let J be a model of (7,.A4). By Lemma 12, there is a
homomorphism h : Zr 4 — J mapping a7+ to a? and b77A to b7 . If I 4 =
r(a,b), that is, (a,b) € rI7-4, then (h(a),h(b)) € r7. Since J is an arbitrary
model of (7,.A), r(a, b) holds in every model of (7, .A). Thatis, (T, .A) = r(a,b).

(<) We show that Zr 4 |= (T ,.A). By definition of Zy, a € A% iff A(a) € A and
a € (3r.T)%o iff r(a,b) € A, where r can be inverse. So if A = B(a) then a € B”o.
For inclusions B’ C D € T, where (T,A) = B’(a), we suppose a € BT and, by
definition of Z,, , 1, we have that a € DZ»+1, Now since Zr .4 =JZn>0 is amodel of

(T, A), (T, A) = C(a) implies Zr 4 = C(a). a

A.2 The Canonical Model for £L

The canonical model Zr 4 = |JZ,,>0 of an £L knowledge base IC = (T, .A) is defined
by a sequence of interpretations Z,,. Let Z 4 be the canonical interpretation of A. In
the base case, Zy := Z 4. The domain AZTn contains, in addition to AZo, sequences
CLO'T’O'CO'T‘l -C’l-...-rm-C'm, where ap € Ind(.A) FOI'p = CLO'T’O'CO'T'l 'Ol'...'Tm'Om
andg=C}-ry-C1-...-r ., -Cl , wedefinep-s-g=ag-r9-Co-r1-C1 ..oy -
Cpm-s-Ch-ri-CL-...-rl., - C! . thatis, the concatenation of p and ¢ through the role
s. Assume Z,, has been defined. Let £ < n be minimal such that there isa p € ATk with
peCT, CC D€ Thbutp ¢ DI Let Dy, Dy, ..., D; be the conjuncts of D of the

form D; = 3s;.F;, 0 < i <. Now, we define Z,, ;1 as follows:

- Alnet = ATn U {p-s; - q| q € paths(E;), 0 < i < [};
— Alnst = AT U {p-s; - q| A €tail(g), 0 < i <1} U{p | if Ais aconjunct of D};
— Pt =t U{(p-sioqp-sicd) | (g,¢) €r7EL 0 < <1

(The canonical model Zr ¢ = |JZ,,>0 of an L concept expression C' and an EL
TBox 7 is defined analogously with Zy = Z¢, where Z is the tree interpretation of C.)

The following lemma states the main property of the canonical model defined above.
It can be proved using lemmas similar to the ones in Appendix A.1.

Lemma 14. Ler o be an instance assertion, (T, A) an EL knowledge base and L 4
defined as above. Then, I 4 = « if and only if (T, A) |= «.

B Proofs for Polynomial Time Learnability

Proof of Theorem 1. Let (X, £, 1) and (X', £, /) be learning frameworks. If there
exists a polynomial reduction from (X, £, 1) to (X’, £, ') and a polynomial learning
algorithm for (X', £, 1/) that only uses positive bounded equivalence queries then
(X, L,) is polynomially exact learnable.

Proof. As (X, L,) polynomially reduces to learning (X', £, '), there are functions
f: X" Xandg: L x L x X — X’ such that f transforms a membership query
with z’ € X’ as input into a query with x € X and g transforms a counterexample
x € X into a counterexample =’ € X'. Let ¢1(|2’|) and ¢2(|I[, |x|) be the polynomial
upper bounds on the time needed to compute f(z’) and g(l, h, x), respectively. Denote
by y the largest z € X computed so far by function g. Since (X', £, 1) is polynomially
learnable by an algorithm A’ that only uses positive bounded equivalence queries,
at every step of computation the time used by A’ up to that step is bounded by a
polynomial p(|I|, g2(]{], |y|)), where || is the size of a target [€ L. Note that the largest
counterexample seen so far by Algorithm A’ is bounded by g=(|l|, |y|). Then, A’ is
computed in p/ ([, [y1) = p(|1], g2/, Iyl)) many steps.

We use A’ to learn (X, £, 1) as follows. Whenever a membership query with 2’ € X’
as input is called by A’ we compute f(z’) and call the MEM; x oracle. We return ‘yes’ if
f(2") € u(l) and ‘no’ otherwise. It should be clear that for every membership query with
x € X' asked by A’ we have |z’| < p/(]l], |y|). Whenever an equivalence query with
h € L as input is called by A" we pass it on to the EQ; x oracle. If it returns ‘yes’ then
the learner succeeded. Otherwise it returns ‘no’ and provides a positive counterexample
x € p(l) \ p(h). Then, we compute g(I, h, z) and return it to A’.

By definition of f and g all the answers provided to A’ are consistent with answers
the oracles MEM; x+ and EQ; x+ would provide to A’. As Algorithm A’ is polynomially
computable in p’(]I], |y|) steps we have that (X, £, 1) is exactly learned after at most
o' (1], 1y a1 (@' (|1, ly])-q2(]1], |y|) steps, which is polynomial in |I| and |y|, as required.

a

Proof of Lemma 1. Let L € {DL-Lite%SEmS} and let C' C D be an L concept
inclusion. Then (7, Ac) = D(p¢) if, and only if, T = C C D.

Proof. Let Zo and Zp be the tree interpretations of C' and D, respectively, and Z 4,
be the canonical model of A¢. For T a DL-Lite% (or an £Ljhs) TBox, let Zc 1 be the
canonical model of C' and 7. Similarly, let Z 4., 7 be the canonical model of A and 7.
Since Z¢ and Z 4, are isomorphic, Zo 7 and Z 4, 7 are also isomorphic. This means
that there is a homomorphism % : Zp — Z¢,7 mapping the root pp of Zp to p¢ iff
there is a homomorphism g : Zp — Z 4 7 mapping pp to pc. So, (T, Ac) = D(pc)
iff T =ECCD. a

C Proofs for Positive Reduction for DL-Lite?a TBoxes

Proof of Lemma 2. Let (A, C(a)) be a positive counterexample. Then the following
holds:

—_

if C is a basic concept then there is a singleton A’ C A such that (7, 4") &= C(a);
2. if C is of the form 3r.C’ (or Ir~.C") and C is role saturated and parent/child
merged then either there is r(a,b) € A (or r(b,a) € A) such that (7, .A) = C’(b)
or there is a singleton A’ C A such that (7, 4") = C(a).

Proof. We first prove Point (1). Assume C' is a basic concept B. By Lemma 13, if
(T, A) | B(a) then a € BZ74, where I 4 is the canonical model of (T ,.4). By
construction of Zr 4 = | JZ,,>0 we have that there is an n such that a € B%». We now
state a claim from which Point (1) of this lemma follows.

Claim 1 For all n, if @ € BZ», where B is a basic concept, then there is a single-
ton A’ C A such that a € BI7.4",

For n = 0, since Zy = Z4, B is either a concept name A with A(a) € A or B is
of the form 3r.T (or Ir~.T) with r(a,b) € A (or r(b, a) € A). In all cases, the lemma
is satisfied for Z,, with n = 0. Suppose the claim holds for n = k. We want to show now
for n = k + 1. Following the construction of Z7 4, assume a € Bk ¢ & DZr and
let B’ C D € T be such that a € D+, By induction hypothesis, there is a singleton
ABox A’ such that a € B'F7.4', where Z7 4 is the canonical model of (7, A"). If
B'C D e T then, as a € B#7.4' we know that @ € DZ7.4’ For every basic concept
B" such that @ € B7x+1 we have that either (a) a € B"Z* or (b) R = D C B”. In
case (a) we can apply the induction hypothesis. In case (b), as a € DZ7.4’, we know that
a € B"TT.« In both cases there is a singleton A’ C A such that a € B"Z7.4’, Then,
by Lemma 13, we have that (7, A’) = B"(a).

We now prove Point (2). We show the lemma for 3r.C’(a), the case where the
counterexample is of the form Ir~.C"(a) is analogous. If (7, .A) = 3r.C’(a) then, by
Lemma 13, a € (Ir.C’)Z7 4. By semantics of 3, there is d € AZ74 such that (a,d) €
774 and d € C*7.4, By assumption there is no 7(a, b) € A such that (7, A) = C’(b).
As d € C"!7.4, we have that d ¢ Ind(A). By Lemma 10, there is a homomorphism
h: Zer — Tr 4 mapping per to d. If there is p € AZe such that h(p) € Ind(A) then
this contradicts the fact that 3r.C”(a) is role saturated and parent/child merged. Then
we have that there is a singleton A" C A such that (7, A") = 3r.C’(a). 0

Proof of Lemma 3. For any target DL-Lite?2 TBox 7 and hypothesis DL-Lite?Z TBox H
given a positive data retrieval counterexample (A, C(a)), Algorithm 1 computes in time
polynomial in |7, |#|, |.A| and |C| a counterexample C”(b) such that (7, A") = C’(b),
where A’ C A is a singleton ABox.

Proof. Let C(a) be the counterexample given to the function “ReduceCounterExample”
(Line 2). In Line 3, Algorithm 1 exhaustively applies the following rules which rely on
posing membership queries to the oracle:

(Role saturation) if (7, A) = C’'(a) and C” is the result of replacing a role r in the
tree representation of C' to some role r’, where 7 |= ' C r and v’ 7 r, then consider
C’(a) instead of C'(a) as a counterexample.

(Parent/child merging) if (7, .A) = C’(a) and C” is the result of identifying p; and
ps in the tree interpretation of C, where p1, pa, p3 € paths(C) with po = py - r - C1,
p3 = pa-s-Coand r~ =7 s; then consider C’(a) instead of C(a) as a counterexample.

Let D(a) denote the counterexample obtained by the application of the rules above.
If D is of the form Dg M ... M D, then there is a D;, 0 < ¢ < n, such that D;(a) is also
a counterexample. In Line 5, Algorithm 1, chooses a conjunct D; such that D;(a) is a
counterexample. Otherwise, D is a basic concept or D is of the form 3r.E. In this case
consider D; = D. Now, we make a case distinction:

— D, is a basic concept B: then Point (1) of Lemma 2 applies.
— D; is of the form Jr.E and we make a case distinction:
1. there is r(a,b) € A such that (T, A) = E(b). In this case, Algorithm 1
recursively calls the function “ReduceCounterExample” (Lines 8-9).
2. otherwise, notice that since D(a) is role saturated and parent/child merged,
D;(a) also have the same properties. Then, Point (2) of Lemma 2 applies.

In case (1), with F(b) as the counterexample, observe that F'(b) is a refined version
of the initial counterexample C'(a). Since the size of the refined counterexample is
strictly smaller in every recursive call of the function “ReduceCounterExample”, the
number of calls to this function is bounded by |C'|. Then, conditions for Point (1) or
Point (2) of Lemma 2 are satisfied after polynomially many recursive calls.

It remains to show that termination is in polynomial time with respect to |T|, |H]|,
|C| and |.A]. Algorithm 1 makes membership queries in Lines 3, 8 and 11. In Line 3
the number of rule applications is bounded by |C|. In Line 8 it is verified for every
r(a,b) € Awhether (T,.A) = C’(b). So the number of membership queries is bounded
by [Ar(a,p)l. Where A, (qp) € Ais the set of assertions in A of the form (a, b), where
b is some element in Ind(.A) and 7 can be an inverse role. Finally, in Line 11 the number
of membership queries is bounded by |.A4,|, where A, C A is the set of assertions in
A where individual a occurs. Since the size of the counterexample is strictly smaller in
every recursive call of the function “ReduceCounterExample”, the number of calls to
this function is bounded by |C/. 0

D Proofs for Positive Reduction for € L, TBoxes

Since our target TBox 7 contains £ Lj,s concept inclusions, we can find counterexam-
ples by posing atomic queries (7,.A) = A(b) to the oracle, with A € N¢ N X' and
b € Ind(.A). We start our proofs in this section with a straightforward argument for this
fact.

Proof of Lemma 4. If (A, D(a)) is a positive counterexample then there exists a concept
name A and an individual b € Ind(.A) such that (A4, A(b)) is also a counterexample.

Proof. As (A, D(a)) is a positive counterexample, (7,.A) | D(a) and (H,.A)
D(a). Then, by Lemma 14, Zr 4 = D(a) and Zy 4 = D(a), where Z7 4 and Ty 4
are the canonical models of (7, .A) and (#, .A), respectively. As (7,.A) = D(a) and
Ty .4 = D(a) we have that Ty, 4 = T . Then, there is a concept inclusion C C A € T
and b € AT*.4A such that b € (C'\ A)Z*4. Thus, (T,.A) = A(b) and (H, A) £ A(b).

a

In order to compute a tree interpretation of an £L concept C' we first minimize
an ABox A so that |A] is bounded by |7]. Recall that we denote by A~* the result
of removing from A all ABox assertions where a occurs. That is, A~ = A\ A%,
where A* = {r(a,b) | b € Ind(A), r € X7 N Ng} U{r(b,a) | b € Ind(A), r €
YrNNg}U{A(a) | A € X7 N Nc}. Also, A~"(b) is obtained by removing a role
assertion r(a, b) from A. Let Z 4 be the canonical model of an ABox 4. We say that 7 4
is a countermodel if T4 [~ T and T4 = H. We define A as minimal if the following
conditions are satisfied:

1. Z 4 is a countermodel,
2. Tg-o« ET;and
3. IAﬂ-(a,b) ': T.

The following lemma shows that the size of a minimal ABox is polynomial in | 7.

Lemma 15. Let T4 be the canonical model of a minimal ABox A. Then, |ATA| < |T.

Proof. By Condition 1 of minimal ABoxes, Z 4 is a countermodel. So Z 4 [~ T. Then
there is C = A € T such that a € (C'\ A)%4, for some a € AZA. If a € CT4 then
(by Lemma 10) there is a homomorphism h : Zo — Z 4 mapping pc to a, where pc
is the root of Zo. We need to show that h is surjective. Suppose this is not the case.
Then, there is d € AT4 such that d ¢ Imy,, where Imy, = {e € AT4|e = h(p) for some
p € AZc}. Now, denote as Z 4« the result of removing d ¢ Imy, from Z4. Since Z 4—a
is a subinterpretation of Z4, if a ¢ A4 thena ¢ ATa-4.Soa € (C'\ A)%a-¢, which
means that Z 4« = 7. This contradicts the fact that Z 4« |= T for any element d from
AZA (Condition 3 of minimal ABoxes). Since C C A € T, we know that |AT¢| < |T.
Thus, |AT4| < |ATe| < |T].

Algorithm 2, presented in Section 3, minimizes A to an A’ with the properties
described above. Since the Algorithm receives a positive counterexample, we know that
T4 is not a model of T, that is, Z4 [~ T . In order to satisfy Condition 1 above and
reduce A (Conditions 2 and 3), Algorithm 2 applies rules ‘Concept saturate’, ‘Domain
Minimize’ and ‘Role Minimize’, as described in Section 3.

Proof of Lemma 5. Given a positive counterexample (A, D(a)) with D € N¢, Al-
gorithm 2 computes in polynomially many steps with respect to |4, ||, and |7 | an
ABox A’ such that [Ind(A")| < |T| and (A’, A(b)) is a positive counterexample, for
some concept name A and individual b € Ind(.A").

Proof. By Lemma 15, if A is a minimal ABox then |Ind(A)| < |T|. Then, we only need
the following claims to show this lemma.

Claim 1 Algorithm 2 computes a minimal ABox 4.

For Condition 1, we have that, in Line 3, Algorithm 2 concept saturates A with H.
Then, after computing Line 3, we have that Z4, = H. Since the minimization rules
described above do not remove any concept name implied by 7, the ABox computed by
the algorithm is a model of H in all steps that follow Line 3. By definition of the rules,

at least one counterexample is entailed by (7, .A), which is the counterexample where
the rules are being applied. So for all iterations of Algorithm 2, Z4 [~ 7.

For Condition 2, suppose there is A~ such that Z4—a [~ T Then thereis C C A €
T and a € ATa-dsuch thata € (C'\ A)%a-<. This contradicts the fact that, in Line 6,
domain minimization was applied in .4 for all counterexamples. Thus, Z 4 = T. The
argument is similar for role minimization (Condition 3).

Claim 2 Algorithm 2 runs in polynomially many steps with respect to |.4] and [Nc N X'
where Nc N X' are the concept names in the vocabulary.

s

We know that the number of possible concept name assertions in A is [NcNX'7|-|Ind(A)].
So, in Line 3, the number of applications of the rule Concept Saturate with H is
bounded by |[Nc N 27| - [Ind(.A)]. Also, the number of iterations in Line 4 is at most
[INc N 27| - |Ind(A)|. Since role and domain minimization is linear in |.A|, we have that
Algorithm 2 is polynomial with respect to |.A| and [Nc N X7 |.

As an example, let 7 = {3s.3r.(Is.B N It.B') C A;,Ir.(3t.B' M 3s.B) C
Ao, .(3s.BMI.B) C A3, Ir.3t.B' C B}, H = {Fr3t.B' C B} and A =
{r(a,b), s(b,a),t(b,c), s(b,d),t(d,b), B'(c)}. After concept saturating A with H we
have that B(a) is added to .A. Then we have A;(b), A3(a), A3(d) as counterexamples
(Figure 4a). Assume Algorithm 2 starts minimizing A in Line 4 with the counterexample
A1 (b). The algorithm eliminates s(b, d) and t(d, b) from A. As a result, A3(d) is not a
counterexample any more. In the next iteration, the algorithm tries to minimize .4 with
As(a), which does not eliminates any other assertion from .A. So A is now minimal. The
result of minimizing A is shown by Figure 4b, it contains now only A (b) and Az (a) as
counterexamples.

(]

(a) Initial A with the counterexamples (b) Minimal A with the counterexam-
A1(b), Az(a), As(d) ples A1(b), A2(a)

Fig. 4: Minimizing A

We have seen that a minimal ABox A is a countermodel bounded by |7|. Algorithm
3, presented in Section 3, is based on two operations (i) minimization, presented above,
and (ii) unfolding. The unfolding operation doubles the length of a cycle in A. By
increasing the length of cycles and then minimizing, the algorithm proceeds unfolding
elements until A is tree shaped. We say that A has a (undirected) cycle if there is a
finite sequence ag - 71 - @1 - ... - T - ag such that (i) ag = ay and (ii) there are mutually

distinct assertions of the form ;11 (a;, a;41) or riy1(a;y1,a;) in A, for 0 < i < k.
Foracyclec =ag-71-ay - ... - T - ag, denote as nodes(c) = {ag, ay, ...,ax—1} the
set of individuals that occur in c. Also, roles(c) = {ry,ro,..., 7} is the set of roles
that occur in ¢. We denote by a the copy of an element o created by the unfolding
operation described below. The set of copies of individuals that occur in ¢ is denoted
by nodes(¢) = {ap, a1, ...,ax—1}. Let Z4 be the canonical interpretation of an ABox
A. An element a € AZA is folded if there is acycle ¢ = ag - r1 - ay - ... - 7 - ap with
a = ag = ag. Without loss of generality we assume that r1(ag, a1) € A. The unfolding
of c is described below.

1. We first open the cycle by removing 71 (ag, a1) from A. So 714 := T4\ {(ag, a1)}.

2. Then we create copies of the nodes in the cycle:
- ATa = AZa U {b | b € nodes(c)}
- ATa = ATa U {b | b e ATA}
- rZa = rZa U {(b,d) | (b,d) € 174} U{(b,e) | (b,e) € 174, e ¢ nodes(c)}
3. As a third step we close again the cycle, now with double size. So we update
TIIA = leA U {(CLOvd\l)’ (ao, al)}'

We now show that our unfolding maintains the invariant that if A(a) is a counterex-
ample for (T, A) relative to (#H, .A) then A(a) will remain as a counterexample after
applying this operation over an arbitrary cycle in A. This is obtained by Lemmas 16 and
17.

Lemma 16. Let A’ be the result of unfolding a cycle c in A. Then the following relation
S C ATA x ATw s a simulation T = Ty :

— for a € AT4 \ nodes(c), (a¥4,a%4") € S;
— for a € nodes(c), (a4, a%4") € S and (a™4, @) € S.

Proof. We need to show that S is a simulation Z 4 = Z 4. That is, for d,d; € A?A and
e,e; € Al

1. for all concept names A € Y and all (d,e) € S, if d € AT4 thene € ATa;
2. for all role names r € X7, all (dy,e;) € S and all dy € AZA, if (dy,ds) € rT4
then there exists eo € AZ4’ such that (e, es) € 774’ and (dg, e2) € S.

For Point 1 we have that by definition of the unfolding operation (Step 2), if a € AZ4
then a € AT« and @ € A4, Point 2 follows from Claims 1 and 2 below.

Claim 1 If a4 has an r-successor b then a4’ has an r-successor d with (b, d) € S.
By definition of the unfolding operation (Step 1), r1(ag,a1) is the only role asser-
tion removed from .A. In Step 3 we include (ag, @1) to 714. By definition of S, we have
that (a1,a1) € S. So if aZ4 has an r-successor b then aZ4’ has an r-successor d with
(b,d) € S.

T

Claim 2 Tf a4 has an 7-successor b then @24’ has an r-successor e with (b, €) € S.

For (ag, a1) € I, in Step 3 we include (@, a;) to 7"11:“. By definition of .S, (af““/ , a%f") €
S. Otherwise, in Step 2 we have that for all r-successors b4 of a4 such that b ¢
nodes(c), (a4, b%a’) € rZa’. By definition of S, (b74,b%4’) € S. Also, in Step 2, for
the 7-successors b4 of a4 such that b € nodes(c), we have that (a4’) € pTar,
where bZ4’ is the copy of bZ4’. Again, by definition of S, (bIA,BIA’) es. 0

Lemma 17. Let A’ be the result of unfolding a cycle c in A. Let h,, : T4 — T 4 be the
following mapping:

— for a € ATA\ nodes(c), hy(aT4’) = a®4;
— for a € nodes(c), h.(aZa') = a4 and h,.(a%4') = aT4.

Then, hy : Zo — I 4 is a homomorphism.

Proof. By definition of the unfolding operation, no concept name assertion is removed
from A’. So a € AT+’ iff a € ATA. Also, in Step 2 of the unfolding operation we have
thata € AT« iffa € ATA. Soif a € AT4 ora € AT4 then h,(a) = h.(@) = a €
ATA_ Now, for (a,b) € rZ4’, we make a case distinction:

- a,b ¢ nodes(¢): in this case, the unfolding operation does not include any new role
assertion. Then, (a, b) € rZ4’ implies (a, b) € r4.

- abe nodes(¢): by Step 2 of the unfolding operation, if (6,3) € rZa’ then (a,b) €
rZa,

— @ € nodes(¢) and b ¢ nodes(c): for (ap,a1) € rlz““' we know that (ag,a;) € r74.
Otherwise, by Step 2, if (@, b) € rZ4’ then (a,b) € r4.

- a ¢ nodes(¢) and be nodes(¢): by the definition of the unfolding operation there
is only one case, in Step 3, which is (ag,a1) € rlz“‘“. In this case we know that
(ag,a1) € riA.

In all cases we have that for a,b € AT4’, (a,b) € rZ4’ implies (h.(a), hy (b)) € rT4.
4

Before we show Lemma 6 we need the following lemma, which shows the progress
of our unfolding operations.

Lemma 18. Let Z,, be the minimal ABox computed in the n-th iteration in Line 5 of
Algorithm 3. Assume T,, has a cycle. For alln > 0, |ATr+1| > | AT,

Proof. By assumption Z,, has a cycle c. Let Z, be the result of unfolding ¢ and Z,,41
be the result of minimizing Z,. Let h, : Z! — Z,, be the homomorphism defined
in Lemma 17. Let g = h,|,z,,, be h, restricted to A%n+1 C AZn . Since Z,, 11 is a
subinterpretation of Z/ , g : Z,,+1 — Z,, is a homomorphism.

Claim1 g : 1,41 — I, is a surjective homomorphism.
Suppose g is not surjective. Since Z,,+; is a countermodel (Condition 1 of minimal

ABoxes) there is C = A € T such that a € (C \ A)Tn+1, with a € AT»+1. Let J be
the subinterpretation of Z,, determined by the range of g. By the unfolding definition,

a € ATn+1iff g(a) € A%». Then g(a) € (C\ A)7. Since Z, is minimal, if g is not
surjective then this contradicts Condition 2 of minimal ABoxes.

Claim 2 Suppose g : I,,4+1 — Z, is an injective homomorphism. Then, for d;,ds €
AZ"*H (g(dl), g(dg)) € rln implies (dl, dg) € rlntr,

Suppose this is not the case and there is dy, dy € AZn+1 such that (g(d1), g(dz2)) € r»
and (dy,dsy) ¢ rZ»+1. Let J be the result of removing (g(d1), g(d2)) from rZ~. Since
g is injective, g : Z,4+1 — J is also a homomorphism. As 7,1 is a countermodel
(Condition 1 of minimal ABoxes) there is C = A € T such thata € (C'\ A)%~+1, with
a € ATn+1 Then, ¢’(a) € C7. By the unfolding definition, a € AZ#+1 iff g(a) € AT».
By definition of 7, g(a) € AT iff ¢’(a) € A . Then ¢'(a) € (C'\ A)7. Since J is Z,,
with (g(d1), g(dz)) removed from %=, this contradicts the fact that Z,, is role minimal
(Condition 3 of minimal ABoxes).

Claim 3 g : T,,+1 — Z,, is not an injective homomorphism.

As g is surjective (Claim 1), a or @ is in AT+, Suppose that g is injective. Then,
for each a € nodes(c), only one of {a,a} are in AZ~+1. Recall that cycle c is a sequence
ag-Tri-aj - ... Tk - ag, with ag = ag, where we defined w.l.g. that (ag,a;) € rlz".
Assume ag € AZr+1 (the case where @y € AZ»+1 is similar). Now, we make a case
distinction:

— k = 1: in this case, the cycle is a reflexive element. That is, ay = a1 and, then,
(ag, ag) € r¥. By definition of the unfolding operation, (ag, ag) ¢ TII"+1 - 7’117,‘. So
if ag € AT+ then (g(ao), g(ao)) € r7 and (ag,ao) ¢ 7’11"“, which contradicts
Claim 2.

— k > 1: By definition of the unfolding operation 71 (ag,a1), 71 (o, a1) are the
only role assertions between elements in nodes(c) and nodes(¢) in Z/,, where 7,
is Z,, with cycle ¢ unfolded. This means that (*) neither (@;, a;11) or (a;41,a;)
are in rizj_‘fl - rﬁl, for 1 < i < k. By assumption ag € AZ=+1. Then, for
1< i<k, a; € AT+ otherwise we would obtain a contradiction with Claim
2. Since ap = ap € AT+ and g is injective, ag = ar ¢ AZ+1. By the same
argument, as ay_; € AT7+1 we have that a;,_; ¢ AZ»+1. By definition of c, either

(ag—1,ax) or (ag, ax—1) are in rf". Together with the fact (*) that neither (ay_1, ax)

—~ . T, ol . . .
or (ax, ar—1) arein r," " C 1", this contradicts Claim 2.

Then g is not injective. Since g is surjective (Claim 1) and not injective (Claim 3),
|A1n+1| > |AIn . a

Proof of Lemma 6. Algorithm 3 computes a minimal tree shaped ABox .4 with size
polynomial in | 7| and runs in polynomially many steps in | 7| and |.A|.

Proof. The fact that the computed ABox is tree shaped follows from Line 3. Also, by
Lemma 5 the size of the ABox is bounded by |7|. So it remains to show that Algorithm
3 terminates after at polynomially many steps in |7 | and |.A|. By Lemma 5, Lines 2 and

5 is polynomial in |A| and |[Nc N X7|. Also, unfolding a cycle ¢ in Line 4 is linear in
|A|. It remains to show that the number of iterations is bounded by |7|. Let Z,, be the
minimal ABox computed in the n-th iteration in Line 5 of Algorithm 3. By Lemma 5,
for all n iterations of Algorithm 3, in Line 5 | A" | is bounded by | 7. By Lemma 18,
after each n + 1-th iteration of the algorithm, | AZ»+1| increases by at least one element
with respect to | AT"|. So the number of iterations is bounded by | 7. 0

E Proofs for Limits of Polynomial Time Learnability

To show Lemma 7, we first show Lemma 22, which uses Lemmas 20 and 21 from [12].
We also require the following lemma from [11], which characterizes concept inclusions
entailed by acyclic ££ TBoxes.

Lemma 19 ([11]). Let T be an acyclic EL TBox, r a role name and D an EL concept
expression. Suppose that T = [1,<;<, Ai N[1i<j<, Irj-C; & D, where A; are
concept names for 1 < i1 < n, Cj are EL concept expressions for 1 < j < m, and
m,n > 0, then

— if D is a concept name such that T does not contain an inclusion D = C, for some
concept expression C, then there exists A;, 1 < i <, such that T = A; C D;

— if D is of the form 3r.D’ then either (i) there exists A;, 1 < 1 < n, such that
T &= A; T 3r.D or (ii) there exists vj, 1 < j < m, such that r;j = r and
TEC,CD.

Lemma 20. Let B = F, M ..M F,,, where F; € {E;, E;}. For any 0 < m < n, any
sequence of role names o = o'...c™, any L = (o4,...,0,) € £, and any EL

concept expression C over X, if T2 |= C C 30.B then either:

1. m =n, 0 = o, for some 1 < i < nandC is of the form AN C', A; 1 C" or
B; N, for some EL concept expression C'; or
2. ECLC30.B.

Proof. We prove the proposition by induction on m. Since for all F; occurring in B,
T2 does not contain an inclusion F; = C, where C is an ££ concept expression, by
Lemma 19, there is a concept name Z such that ’7;:]3 E Z C F;. Then, form =0, C'is
of the form Z M C’, where Z is a concept name, C” is an £L concept expression and
7'LB E Z C F;. This is only possible if Z is Fj itself. As this holds for all F;, we have
that = C C B.

For m > 0. By Lemma 19 we have one of the following two cases:

- C'is of the form Z 1 C”, for some concept name Z and some €L concept expression
C’ such that T2 |= Z C 30.B. It is easy to see that this is only possible if m = n,
o =o;and Z isone of A, A; or B;.

— C'is of the form Jo1.C" 1 C” for some concept expressions C’ and C”’ such that
T8 & ¢’ C 302, ---Jo™.B. By induction hypothesis, = C' C Jo2.---3o™.B.
But then = C C Jo0.B.

a

Lemma 21 ([12]). For any acyclic EL TBox T, any inclusion A C C € T and any
concept expression of the form 3t.D we have T = A C 3t.D if, and only if, T = C C
3t.D.

We are now ready for Lemma 22.

Lemma 22. Forall EL concept inclusions C T D over X, where B is not a subconcept
of C:

— either TB = C C D forevery L € £, or
— the number of L € £,, such that ’TLB E C C D does not exceed the size of D.

Proof. To prove this lemma we argue by induction on the structure of D and show the
following.

Claim 1 For all £L concept inclusions C' T D over X, where B € 95, is not a
subconcept of C, if there is L € £,, and B € B,, such that 7'LB E C C D then:

— either TLB E C C D forevery L € £, and every B € 98,, or

— for each L € £,, such that TLB E C C D there is o in L and a sequence of
roles t1,...,tm, m > 0, such that = D T 3¢ty.---3t,,.30. T, where t; € {r, s},
1<j<m.

We assume throughout the proof that in all cases B is not a subconcept of C' and that
there exists some Lo € £,, such that TLBU ECCD.

Base case: D is a concept name. We make the following case distinction.

- Disoneof X;, A;, B;, E;or E; for1 < i < n. By Lemma 19, C' is of the form
Z N ', for some concept name Z, and ’TLE; &= Z C D.If Disone of X;, A;, B;,
E; or E;, then this can only be the case if Z = D. But then for every L € £,, we
have ’7'LB ECLCD.

— Dis Xy. By Lemma 19, C is of the form Z M C’, for some concept name Z, and
TLBO E Z C X,. This is the case if either Z = X, or Z is one of A, A;, B;,
1 <7 < n. In either case, for every L € £,, we have ’TLB ECC X,.

— Dis A. If C'is of the form AT C’ or, for all 4, 1 < i < n, A; or B; is a conjunct of
C, then for every L € £,, we have 7'LB E C C A. Assume now that C' is not of this
form. Then for some j such that 1 < j < n, C is neither of the form A 1 C’ nor
of the form A; M C” nor of the form B; M C’. Let L = (o1, ...,0,) € £, be such
that TLB = C C A. Notice that TLB ECCAforL = (01,...,0,) € £,,if, and
only if, ’71]3 ECLC XyMn3e;.BN---M3o,.B. By Lemma 20, for such a 7'LB we
must have = C C Jo;.B, but then this is not possible as B is not a subconcept of
C.

Thus if D is a concept name then either for every L € £, we have 7B |= C C D or
there exists no L € £,, such that TLB E C C D, where B is not a subconcept of C.
Induction step. If D = D1 M Dy, then T2 = C C D if, and only if, 7B = C C D;,
i € {1,2}. So the lemma follows from the induction hypothesis.

For D = 3t.D’, suppose that there is L € £,, such that TLB &= C C D. Then, by
Lemma 19, either (i) there exists a conjunct Z of C, Z a concept name, such that
TB B Z C 3t.D’ or (ii) there exists a conjunct Jt.C’ of C with TB | C' C D'.
Consider cases (i) and (ii).

(i) Let Z be a conjunct of C such that Z is a concept name and 72 |= Z C 3t.D’.
Notice that Z cannot be E; or E; as for no L € £,, we have ’TLB E E; C3t.D or
TB k= E; C 3t.D’. Consider the remaining possibilities.

e Z is one of X;, 0 < 7 < n. It is easy to see that for L, L’ € £, we have
71B = X; C 3t.D'if, and only if 7,2 = X; C 3t.D'. Thus, forevery L € £,
we have TB = Z C 3t.D'.

e Zisoneof A;, B; for1 <i < n.ByLemma 21, ’TLB E Z C 3¢.D' if, and only
if, 7B = X, M 30,.B C 3t.D’. By Lemma 19, either 72 = X, C 3t.D’ or
T8 EJo;.BC 3t.D' . If TB = X, C 3t.D’ then for every L € £,, we have
T2 | C C 3t.D’. Now, suppose that 3¢.D’ is such that T2 [~ X, C 3t.D’
and T2 = J0,.B C 3t.D’. By inductive applications of Lemma 19, this is
only possible when |= 3t.D’ C Jo;.T. Notice that since all o; are unique,
there exists exactly one L € £, (namely, L is Lg) such that TLB E ZC do,.F,
where = B C F.

e 7 is A. Suppose that for some L = (o71,...,0,) € £, we have 71]3 EALC
3t.D’, equivalently 72 |= Xo M 301.BM...30,.B C 3t.D’. By Lemma 19,
either T2 = Xo C 3t.D' or T2 = 30, B C 3t.D/, forsomei: 1 <i <mn,
s0, as above, unless 7'LB E Xy C 3t.D’ we have that = 3t.D’' C J07,.T, as
required.

(ii) Let 3t.C’ be a conjunct of C' with 7B = C’ C D'. The induction hypothesis
implies that either (a) for every L € £,, we have that 7'LB = C' C D’ or (b) for each
L € £, suchthat 7B = C' C D’ thereis o in L and a sequence of roles t1, .. ., t,
m > 0, such that = D" C 3¢t;.---3t,,.30.T, where t; € {r,s},1 < j < m.In
case (a), we have that for every L € £,,, T2 = C C 3t.D'. In case (b), if for each
L € £, such that 7B |= C' C D' there is o such that = D' C Jt;.... 3t,,,. 30 T
then same happens with 3¢.D’ (notice that for every L € £,, and every B € B,, we
have that 7B = C' C D' iff TB = 3t.C" C 3t.D").

To summarize, either ’TLB E C C 3t.D forevery L € £, and every B € 9B, or
TLB E C C 3t.D’ implies that = 3t.D’ C Jtg. ... It,,.do. T, m > 0, for some o in
L. Since all o are unique for each L € £,,, the number of different L € £,, such that
T8 = C C 3t.D’ does not exceed | D). a

Before we proceed to the proof of Lemma 7, we need Lemma 23.
Definition 3. The unravelling A" of A into a (possibly infinite) tree is defined as:

— Ind(AY) is the set of sequences byrq - - - Tp—1by, With by, . .., b, € Ind(A),
70y...,Tn_1 € Ng and ’I"i(bz', bi+1) €A

— for each A(b) € Aand o = byrg -+ 1rp—1 - by € Ind(A") with b,, = b, we have
A(a) € AY;

— for each a = byrg - - - Ty —1by, € Ind(A™) withn > 0, we have
Tn_1(b0’l“0 cee Tn_1bn_1, Oé) e A,

Lemma 23. For any ABox A and EL concept expression D over Xy, there is a concept
expression C 4 such that a € C’f(“ and, forevery L € £, and B € *B,,:

(T2, A) E D(a) iff T ECaAED.

Proof. Let A" be the unravelling of A. Let T2 be a TBox for some arbitrary B € 98,,
and L € £,,. By definition of .A* we have that (,A) | D(a) iff (TR, A%) = D(a).
Denote as A%* the subtree of .A* which is rooted in a € Ind(A") and has depth k& € N.
Let 7'LB/ be the result of removing Xy Mde1.BM---Mdo,.B C A from ’7'LB. Then,

(TR, A%) = D(a) iff (TB', A%'P!) = D(a). Let Zres 4. be the canonical model of
TB B’ and A“. By definition of 7B, one can make it a canonical model of 72 and A"

T g
by includingd € A TP 4" whenever d € (XoM3e;.BMN---N30,.B) 72 A", Then,

(T8, A%) & D(a) iff (T2 7./élZ"DHrn) = D(a). Let C 4 be the concept expression

corresponding to the tree interpretation of AZ"DHn rooted in a. We have that, for every

Leg,andBeB,, (TB,A) = D(a)iff TB =C4CD. |

We can now proceed to the proof of Lemma 7. We say that an £L£ concept expres-
sion C' occurs in an ABox A if there exists a € Ind(.A) such that A = C(a). For
a,b € Ind(A), a role chain from a to b is a sequence ag - tg - ... - tp—1 - ay, With ag = a,
an = band t;(a;,a;+1) € A, where 0 <i<n—landt; € {r, s}

Proof of Lemma 7. For any ABox A, any £L£ concept assertion D(a) over X}, and any
a € Ind(A), if there is L € £,, and B € B,, such that (T2 U T*, A) & D(a) then:

— either (TB UT*, A) = D(a), forevery L € £, and B € B,,, or
- (TBUT*, A) = D(a) for at most | D| elements L € £, or
- (TBUT*, A) = D(a) for at most | A| elements B € B,,.

Proof. We make a case distinction:

1. foralli, 1 < i <n, E; N E; does not occur in .A: first notice that in this case, for
every £L concept expression C over X, a € Ind(A) and T2 € S:

(TBUT* A) E Cla) iff (T2, A) E C(a).

For any A and £L concept expression D over X, by Lemma 23, there is a concept
expression C'y such that a € C’f{‘ and, forevery L € £, and B € B,

(T2, A) E D(a) iff T CaCD.

If there is no B € B,, such that B occurs in A then the Lemma follows from
Corollary 22. Notice that although our construction of C' 4 is not polynomial, Corol-
lary 22 does not impose any restriction in the size of C 4. Otherwise, since for all 4,
1 < i< n, E; N E; does not occur in .4, we have that the number of B € 8,, such
that B occurs in A is linear in the size of A. So the number of B € B,, such that
(TBUT*, A) = D(a) does not exceed the size of A.

2. there is 4, 1 < i < n, such that E; M E; occurs in A: let E; M E; 4 be the set
of individuals b € Ind(A) such that E; M E;(b) € A. By construction of 7%,
for every ABox A and every £L concept expression D over X,, we have that
(T*,A) = D(b), where b € E; N E; 4. Then, in particular, for every L € £, we
have that (72 U 7*, A) = D(b). For a € Ind(A) \ E; M E; 4 we make a case
distinction:

— there is a role chain from a to some b € E; [E; 4: by definition of 7*, as
(E;ME;) T A foreveryl <i<nandevery A € X, NNc, we have that
(T*,A) |= (Ey 11 Ey)(b). Then, since {3r.(E; N Ey) C (B, N Ey),3s.(E; N
E)C (BN Ey)} € T*, wehave that (T*, A) |= (E1 M E1)(a). In this case,
by the argument above, for every L € £,, and every £L concept expression D
over X,,, we have that (T2 U T*, A) & D(a).

— for all b € E; M E; 4, there is no role chain from a to b: let A’ = A\
{E;(b),E;(b) | b € E;ME;4}. Since in this case, for all b € E; M E; 4,
there is no role chain from a to b, we have that, for every £L concept expression
D, A |= D(a) iff A’ |= D(a). By definition of A’, E; I E; does not occur in
A’, then the lemma follows as in Case 1.

d

The next lemma from [12] prepares the proof of Lemma 8.

Lemma 24 ([12]). For any 0 < i < n and X,,-concept D, if Ty = X; T D then
there exists a sequence of role names t1,...t; such that = D T 3ty.---3t,.Y and
To b= X; E 3tq.---3,.Y, where Y is either T or a concept name, 0 <1 <n—i+ 1.

Proof of Lemma 8. For any n > 1 and any ££ TBox H in X, with |H| < 2", there ex-
ists an ABox A, an individual ¢ € Ind(.A) and an £ L concept expression D over X, such
that (i) the size of A plus the size of D does not exceed 6n and (ii) if (H,.A) = D(a)
then (T2, A) | D(a) for at most one L € £,, and if (H,.A) £ D(a) then for every
L€ g, wehave (TBUT* A) = D(a).

Proof. AsTBUT* =CLC Diff (TBUT* Ac,a) E D(a), where Ac, is an ABox
with canonical model isomorphic to the tree interpretation of C' with root pc mapped to
a € Ind(.A), to prove this lemma we show the following claim.

Claim 1 For any n > 1 and any ££ TBox H in X, with |H| < 2", there exists
an EL CIC C D over X, such that (i) the size of C' C D does not exceed 6n and (ii)
ifHE=CC DthenTLBUT* = CLC Dforatmostone L € £, andif H £ C C D
then for every L € £, wehave TEUT* =C C D.

We define an exponentially large TBox 7 and use it to prove that one can select an ££
concept inclusion C' C D in such a way that either X = C T D and 7o = C C D,
or vice versa. Then, the oracle can return (Ac¢ 4, D(a)) as a counterexample, where
Ac , is the tree shaped ABox corresponding to the ££ concept expression C' rooted in
a € Ind(A).

To define 7n, for any sequence b = by . ..b,, where every b; is either 0 or 1, we
denote by C}, the conjunction [| ;<n Ci, where C; = A;if b; = 1 and C; = B; if b; = 0.
Then we define -

Ta=ToU{Chb T AT Xo | be {0,1}"}.

Let A¢, be the ABox corresponding to a concept expression Cj, as defined above. Since,
forall i, 1 <14 < n, E; M E; does not occur in A¢, , we have that (T2 U T*, Ac,) E
C(a) iff (T2, Ac,) = C(a). Then, in the following we only consider 7;2. Consider
the possibilities for H and 7n.

(1) If H F~ Tr then there exists an inclusion C C D € T4 such that H = C C D.
Clearly, C C D is entailed by 7B, for every L € £,,, and the size of C' T D does not
exceed 6n, so C' C D is as required.

(2) Suppose that for some b € {0,1}™ and a concept expression of the form 3¢. D’
we have H | Cp C Jt.D' and Tn £ Cp C 3t.D’. To ‘minimise’ C, T 3t.D’,
notice that 7y & Xo C 3¢.D’. Then, by Lemma 24, there exists a sequence of role
names tq1,...,t;, for 0 < I < n+ 1and Y being T or a concept name such that
E3t.D C3t.---3.Y,soH EC, T Iy.---34.Y,and T = Xo C Fty.---3,.Y.
Clearly, the size of Cp T 3t;.---3t;.Y does not exceed 6n. It remains to prove that
TB | Cp T 3ty ---3,.Y forat most one L € £,,.

Suppose for some L € £, we have 7'LB E Cp C 3t;.---3t,.Y. By Lemma 19,
there is A; or B; suchthat 7B = A; C 3ty.--- 3. (or TB = B; C Jtq.--- .Y,
respectively). As To £ Xo C Jty.---3t,.Y it is easy to see that this is only possible
when ! = n, (t1,t2,...,t,) = 0, and Y is implied by B. Since every o is unique, for
every L' € £, such that L’ # L we have 7B }£ Cp C Jdo;.Y.

Thus, Cp C Jtq.---3t;.Y is as required.

(3) Finally, suppose that Case 1 and 2 above do not apply. Then H = T and
for every b € {0,1}"™ and every £L concept expression over X, of the form 3¢t.D’:
if H = Cp C 3t.D’ then Ty = Xy T Jt.D’. We show that unless there exists an
inclusion C' C D satisfying the conditions of the lemma, 7{ contains at least 2" different
inclusions. Thus, we have derived a contradiction.

Fix b € {0,1}". As H |= Tn we have H = Cp T A. Then there must exist an (at
least one) inclusion C C AT D € Hsuchthat H = Cp C C and £ C C A. Let
C=2zi1---NZ,N3t.C{N---M3t.C|, where Z...., Z,, are different concept
names. As H = Cp C 3t;.C% we have To |= Xo C 3.0, forj =1,... 1. AsH = Tr,
we have H = X QEItj.CJ’-,forj =1...SoHEZN---NZ,NX,C A

Suppose that for some 7 : 1 < ¢ < n there exists no j : 1 < 5 < m such that Z;
is either A; or B;. Then we have TLB EZin---NZ,MNXygC A, forany L € £,,.
Notice that in the worst case Z; - - - ' Z,,, contains the conjunction of all X/,,-concept
names, except A;, B;, so the size of Z; M --- M Z,, 1M Xy C A does not exceed 6n, and
ZiM---MZy M Xy E Ais as required.

Assume that Zy M1 --- M Z,, M X contains a conjunct B; such that b; # 0. Then
‘H = Cp C B; and forno L € £,, we have 7'LB E Cy C B;. The size of C C B; does
not exceed 6n, so it is as required.

Assume that Zy M1 --- 1 Z,, M X contains a conjunct A; such that b; # 1. Then
H = Cp C A; and forno L € £, we have T2 |= Cp T A;. The size of Cp, C A; does
not exceed 6n, so it is as required.

The only remaining option is that Z; M- - - M Z,,, M X, contains exactly the A; with
b; = 1 and exactly the B; with b; = 0.
This argument applies to arbitrary b € {0, 1}"™. Thus if there exists no inclusion
C C D satisfying the conditions of the lemma then H contains at least 2" inclusions.
a

Proof of Theorem 5. The ££ data retrieval framework is not polynomially exact learn-
able.

Proof. Assume that TBoxes are polynomial time learnable in the open data model. Then
there exists a learning algorithm whose running time is bounded at any stage by a
polynomial p(n, m). Choose n such that [2"/n| > (p(n,6n))? and let S; = £,, and
Sy = B,,. We follow Angluin’s strategy of removing elements from .S; and S, in such
a way that the learner cannot distinguish between any of the remaining 7,2 TBoxes
encoded by L € S; and B € Ss. The strategy is as follows.

Given an membership query (TBUT*, A) = D(a), with A = C(a),if TRUT*
C C D for every L € £, and every B € B,,, then the answer is ‘yes’; otherwise the
answer is ‘no’ and all L € £, and B € B,, with T2 UT* = C C D are removed from
S1 and S, respectively. By Lemma 7, at most the size of D elements can be removed
from Sy or at most the size of A elements can be removed from .S5. Given an equivalence
query with 7, the answer is ‘no’” and a concept inclusion C' C D not entailed by # such
that 72 U T* |= C C D for at most one L’ € £,, is guaranteed by Lemma 8. Then
a counterexample (7, A) = D(a) with A |= C(a) and bounded by 6n is produced
(consider the size of a query or a counterexample (7, .4) = D(a) as being the size of A
plus the size of concept expression D).

As all counterexamples produced are bounded by 67, the overall running time of the
algorithm is bounded by p(n, 6n). Hence, the learner asks no more than p(n, 6n) queries
and the size of every query does not exceed p(n,6n). By Lemmas 7 and 8, at most
(p(n,6n))? elements are removed from S; and S during the run of the algorithm. But
then the algorithm cannot distinguish between any TBoxes 7'LB and 7B’ for L # L' €S
and B # B’ € S based on the given answers and we have derived a contradiction.

a

