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A Formal Model of Learning

1. The learner's input: In the basic statistical 

learning setting, the learner has access to 

the following:

 Domain set: An arbitrary set, X. This is the set 

of objects that we may wish to label. For 

example, in the papaya learning problem, the 

domain set will be the set of all papayas,  

represented by a vector of features (like the 

papaya's color and softness). 
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 Label set: For our current discussion, we will 

restrict the label set Y to be a two-element 

set, usually {0, 1}. For our papayas example, 

let 1 represents being tasty and 0 stands for 

being not-tasty.

 Training data: S = ((x1, y1), …, (xm, ym)) is a 

finite sequence of pairs in X x Y: that is, a 

sequence of labeled domain points. This is 

the input that the learner has access to (like a 

set of papayas that have been tasted, 

represented by their color, softness, and 

tastiness). 
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2. The learner's output: The learner is requested 

to output a prediction rule, h : X → Y. This 

function is also called a predictor, a hypothesis, 

or a classifier. The predictor can be used to 

predict the label of new domain points. In our 

papayas example, it is a rule that our learner 

will employ to predict whether future papayas in 

the market are going to be tasty or not. We use 

the notation A(S) to denote the hypothesis that 

a learning algorithm, A, returns upon receiving 

the training sequence S.
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3. A data-generation model: How is the training data  

generated? First, we assume that the instances (the 

papayas) are generated by some probability distribution 

(in this case, representing the environment). Let us 

denote that probability distribution over X by D. It is 

important to note that we do not assume that the learner 

knows anything about this distribution. This could be any 

arbitrary probability distribution. As to the labels, in the 

current discussion we assume that there is some “correct” 

labeling function, f : X → Y, and that yi = f(xi) for all i. This 

assumption will be relaxed later. The labeling function is 

unknown to the learner. In fact, this is just what the 

learner is trying to figure out. In summary, each pair in the 

training data S is generated by first sampling a point xi

according to D and then labeling it by f.
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4. Measures of success: The error of h is the probability to 

draw a random instance x, according to the distribution 

D, such that h(x) does not equal f(x). Given a domain 

subset, A ⸦ X, the probability distribution, D, assigns a 

number, D(A), which determines how likely it is to 

observe a point x  A. We refer to A as an event and 

express it using a function  : X → {0,1}, namely,           

A = {x  X : (x) = 1}. In that case, we also use the 

notation PxD[(x)] to express D(A). Now, we can define 

the error of a prediction rule, h : X → Y, to be

L D,f (h) has several synonymous names such as the 

generalization error, the risk, or the true error of h.
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• Notice that the learner is blind to the 

underlying distribution D over the world 

and to the labeling function f. The only way 

the learner can interact with the 

environment is through observing the 

training set.
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Empirical Risk Minimization

• A learning algorithm receives as input a 

training set S, sampled from an unknown 

distribution D and labeled by some target 

function f, and should output a predictor  

hS : X → Y (the subscript S emphasizes 

the fact that the output predictor depends 

on S). The goal of the algorithm is to find 

hS that minimizes the error with respect to 

the unknown D and f.
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Empirical Risk Minimization

• Since the learner does not know what D

and f are, the true error is not directly 

available to the learner. A useful notion of 

error that can be calculated by the learner 

is the training error (the error the classifier 

incurs over the training sample):

where [m] = {1, …, m}.
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Empirical Risk Minimization

• The terms empirical error and empirical risk are 

often used interchangeably for training error.

• Since the training sample is the snapshot of the 

world that is available to the learner, it makes 

sense to search for a solution that works well on 

that data.

• This learning paradigm, which tries to come up 

with a predictor h that minimizes LS(h) is called 

Empirical Risk Minimization or ERM.
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Overfitting

• Although the ERM rule seems very natural, without being 

careful, this approach may fail miserably.

• To demonstrate such a failure, let us go back to the 

problem of learning to predict the taste of a papaya on 

the basis of its softness and color. 

• Consider a sample as depicted in the following:
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Overfitting

• Assume that the probability distribution D is such that 

instances are distributed uniformly within the gray square 

and the labeling function, f, determines the label to be 1 

if the instance is within the inner blue square, and 0 

otherwise. The area of the gray square in the picture is 2 

and the area of the blue square is 1.

• Consider the following predictor:
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Overfitting

• No matter what the sample is, LS(hS) = 0, and therefore 

this predictor may be chosen by an ERM algorithm. 

• On the other hand, the true error of any predictor that 

predicts the label 1 is, in this case, 1/2. Thus, LD(hS) = 1/2.

• So we have found a predictor whose performance on the 

training set is excellent, yet its performance on the true 

“world” is very poor. This phenomenon is called overfitting.

• That is, being correct by chance. 

• Intuitively, overfitting occurs when our hypothesis fits the 

training data “too well”. 
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Empirical Risk Minimization with 

Inductive Bias

• We have just demonstrated that the ERM rule might lead 

to overfitting. 

• Rather than giving up on the ERM paradigm, we will look 

for ways to rectify it. We will search for conditions under 

which there is a guarantee that ERM does not overfit, 

namely, conditions under which when the ERM predictor 

has good performance wrt the training data, it is also 

highly likely to perform well over the underlying data 

distribution.

• A common solution is to apply the ERM learning rule 

over a restricted search space.
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Empirical Risk Minimization with 

Inductive Bias

• Formally, the learner should choose in advance (before 

seeing the data) a set of predictors. This set is called a 

hypothesis class and is denoted by H. Each h  H is a 

function from X to Y. For a given class H, and a training 

sample, S, the ERMH learner uses the ERM rule to 

choose a predictor h  H, with the lowest possible error 

over S. Formally,

where argmin stands for the set of hypotheses in H that 

achieve the minimum value of LS(h) over H.
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Empirical Risk Minimization with 

Inductive Bias

• By restricting the learner to choosing a predictor from H, we bias it 

toward a particular set of predictors. Such restrictions are often called 

an inductive bias. 

• Since the choice of such a restriction is determined before the learner 

sees the training data, it should ideally be based on some prior 

knowledge about the problem to be learned. For example, for the 

papaya problem we may choose the class H to be the set of predictors 

that are determined by axis aligned rectangles. We will later show that 

ERMH over this class is guaranteed not to overfit. On the other hand, 

the example of overfitting that we have seen previously, demonstrates 

that choosing H to be a class of predictors that includes all functions 

that assign the value 1 to a finite set of domain points does not suffice 

to guarantee that ERMH will not overfit.
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• A fundamental question in learning theory 

is, over which hypothesis classes ERMH

learning will not result in overfitting. 

• Intuitively, choosing a more restricted 

hypothesis class better protects us against 

overfitting but at the same time might 

cause us a stronger inductive bias. 

• We will study this fundamental tradeoff.
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Finite Hypothesis Classes

• The simplest type of restriction on a class 

is imposing an upper bound on its size 

(that is, the number of predictors h in H). 

• We will show that if H is a finite class then 

ERMH will not overfit, provided it is based 

on a sufficiently large training sample (this 

size requirement will depend on the size of 

H).
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Finite Hypothesis Classes

• Limiting the learner to prediction rules 

within some finite hypothesis class may be 

considered as a reasonably mild 

restriction. 

• For example, H can be the set of all 

predictors that can be implemented by a 

Python program written in at most 109 bits 

of code. 
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Finite Hypothesis Classes

• Another example of H is the class of axis 

aligned rectangles for the papaya learning 

problem, with discretized representation.
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Performance Analysis of ERMH

• H is a finite class. 

• For a training sample, S, labeled according to 

some f : X → Y, let hS denote a result of applying 

ERMH to S, namely,
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Performance Analysis of ERMH

The Realizability Assumption: 

There exists h*  H s.t. LD,f(h*) = 0. 

Note that this assumption implies that with 

probability 1 over random samples, S, where 

the instances of S are sampled according to 

D and are labeled by f, we have LS(h*) = 0.
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Performance Analysis of ERMH

• … to be continued …
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