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Abstract

We propose an action formalism that is based on description
logics (DLs) and may be viewed as an instance of the Situ-
ation Calculus (SitCalc). In particular, description logic con-
cepts can be used for describing the state of the world, and
the pre- and post-conditions of actions. The main advantage
of such a combination is that, on the one hand, the expressive
power for describing world states and conditions is higher
than in other decidable fragments of the SitCalc, which are
usually propositional. On the other hand, in contrast to the
full SitCalc, effective reasoning is still possible. In this paper,
we perform a detailed investigation of how the choice of the
DL influences the complexity of the standard reasoning tasks
executability and projection in the corresponding action for-
malism. We also discuss semantic and computational prob-
lems in natural extensions of our framework.

Introduction
Action formalisms such as the Situation Calculus (SitCalc)
use full first-order logic for describing the state of the world,
and the pre- and post-conditions of actions (Reiter 2001).
Consequently, reasoning in such formalisms is undecid-
able. In contrast, the propositional variants of these for-
malisms enjoy decidability, but are rather restricted in ex-
pressive power. This dichotomy raises the obvious question
whether some compromise between the two extremes can
be found: an action formalism that offers more expressivity
than propositional logic for describing world states and pre-
and post-conditions of actions, but for which reasoning is
still decidable.

Description Logics (DLs) are a well-known family of
knowledge representation formalisms that may be viewed
as fragments of first-order logic (FO). The main strength
of DLs is that they offer considerable expressive power go-
ing far beyond propositional logic, while reasoning is still
decidable (Baaderet al. 2003). In this paper, we make an
initial proposal for an action formalism in which the state
of the world and the pre- and post-conditions can be de-
scribed using DL concepts. The proposal is generic in the
sense that our framework can be instantiated with many
standard DLs. We show that our action formalism can be
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viewed as a fragment of the Situation Calculus and thus in-
herits SitCalc’s well-established solution of the frame prob-
lem (Reiter 1991). Concerning reasoning, we focus on the
basic tasks of executability and projection, which are mu-
tually polynomially reducible in our framework. We exhibit
a close connection between projection in our formalism in-
stantiated with a description logicL, and standard DL rea-
soning tasks in a moderate extension ofL. More precisely,
we show that projection inL can be polynomially reduced to
ABox consistency inLO, the extension ofL with so-called
nominals, i.e., singleton concepts.

This reduction allows us to prove decidability and up-
per complexity bounds for executability and projection in
our action formalism instantiated with a large number of
standard DLs. Thus, we give a positive answer to the ques-
tion whether there exists a decidable compromise between
propositional and FO action theories. To pinpoint the exact
computational complexity of our formalism, we show that,
in a certain sense, the reduction mentioned above can be re-
versed: standard DL reasoning inLO can polynomially be
reduced to projection inL. In particular, this means that the
additional computational complexity (sometimes) caused by
the introduction of nominals cannot be avoided. By combin-
ing the two reductions, we obtain tight complexity bounds
for projection in many standard DLs, where the complexity
ranges from PSPACE-complete to co-NEXPTIME-complete.

We also consider some natural extensions of our basic for-
malism and point out some of the problems encountered
with these extensions. In particular, we show that admit-
ting more powerful post-conditions leads to undecidability
of the basic reasoning problems. Due to space constraints,
all proofs and a more detailed discussion of the relationship
to the situation calculus must be omitted. They can be found
in the accompanying technical report (Baaderet al.2005).

The description logicALCQIO
The action formalism proposed in this paper is not restricted
to a particular DL. However, for our complexity results we
consider the DLALCQIO and a number of its sublan-
guages. The reason for choosing this family of DLs is that
they are very expressive, but nevertheless admit practical
reasoning. Indeed, DLs from this family underlie highly op-
timized DL systems such asFaCT andRACER.

In DL, concepts are inductively defined with the help of a



Name Syntax Semantics

inverse role s− {(y, x) | (x, y) ∈ sI}
conjunction C uD CI ∩DI

negation ¬C ∆I \ CI

at-least number
restriction (> n r C)

{x | card({y | (x, y) ∈ rI ∧
y ∈ CI}) ≥ n}

nominal {a} {aI}

Table 1: Syntax and semantics ofALCQIO.

set ofconstructors, starting with a setNC of concept names,
a setNR of role names, and a setNI of individual names.
The constructors determine the expressive power of the DL.
Table 1 shows a minimal set of constructors from which all
constructors ofALCQIO can be defined. The first row con-
tains the only role constructor: inALCQIO, a role is ei-
ther a role names ∈ NR or the inverses− of a role name
s. Conceptsof ALCQIO are formed using the remaining
constructors shown in Table 1, wherer is a role,n a positive
integer, anda an individual name. Using these constructors,
several other constructors can be defined as abbreviations:

• C tD := ¬(¬C u ¬D) (disjunction),

• > := A t ¬A for a concept nameA (top-concept),

• ∃r.C := (> 1 r C) (existential restriction),

• ∀r.C := ¬∃r.¬C (value restriction),

• (6 n r C) := ¬(> (n+ 1) r C) (at-most restriction).

The DL that allows for negation, conjunction, and value re-
strictions is calledALC. The availability of additional con-
structors is indicated by concatenating the corresponding
letter: Q stands for number restrictions;I stands for in-
verse roles, andO for nominals. This explains the name
ALCQIO for our DL, and also allows us to refer to sub-
languages in a simple way.

The semantics ofALCQIO-concepts and roles is defined
in terms of aninterpretationI = (∆I , ·I). The domain∆I
of I is a non-empty set of individuals and the interpretation
function·I maps each concept nameA ∈ NC to a subsetAI

of ∆I , each role names ∈ NR to a binary relationsI on∆I ,
and each individual namea ∈ NI to an elementaI ∈ ∆I .
The extension of·I to arbitrary concepts and roles is induc-
tively defined, as shown in the third column of Table 1. Here,
the functioncardyields the cardinality of the given set. Note
that the third column of Table 1 suggests a straightforward
translation of DL concepts into first-order formulas with one
free variable, as explicated e.g. in (Baaderet al.2003).

A concept definitionis an identity of the formA ≡ C,
whereA is a concept name andC anALCQIO-concept.
A TBoxT is a finite set of concept definitions with unique
left-hand sides. Concept names occurring on the left-hand
side of a definition ofT are calleddefined inT whereas
the others are calledprimitive in T . The TBoxT is acyclic
iff there are no cyclic dependencies between the definitions
(Baaderet al.2003).

The semanticsof TBoxes is defined in the obvious way:
the interpretationI is amodelof the TBoxT iff it satisfies
all its definitions, i.e.,AI = CI holds for allA ≡ C in

T . In the case of acyclic TBoxes, any interpretation of the
primitive concepts and of the role names can uniquely be
extended to a model of the TBox (Nebel 1990).

An ABox assertionis of the form C(a), s(a, b) or
¬s(a, b), wherea, b ∈ NI,C is a concept, ands a role name.1

An ABoxis a finite set of ABox assertions. The interpretation
I is amodelof the ABoxA iff it satisfies all its assertions,
i.e., aI ∈ CI ((aI , bI) ∈ sI , (aI , bI) /∈ sI) for all asser-
tionsC(a) (s(a, b), ¬s(a, b)) in A. If ϕ is an assertion, then
we writeI |= ϕ to indicate thatI satisfiesϕ.

Various reasoning problems are considered for DLs. For
the purpose of this paper, it suffices to introduce concept sat-
isfiability and ABox consistency: the conceptC is satisfiable
w.r.t. the TBoxT iff there exists a modelI of T such that
CI 6= ∅; the ABoxA is consistentw.r.t. the TBoxT iff there
exists an interpretationI that is a model of bothT andA.

Describing actions
We introduce syntax and semantics of our action formal-
ism. As we will argue later, this formalism can be viewed
in a straightforward way as a fragment of the SitCalc. How-
ever, unlike in the SitCalc we are not working with a first-
order syntax: since first-order translations of DL formulas
are rather awkward, we prefer to describe actions using
DL statements inside a STRIPS-like formalism. An acyclic
TBox is used to define the background information, i.e., the
meaning of concept names.

Definition 1 (Action). LetT be an acyclic TBox. Anatomic
actionα = (pre, occ, post) for T consists of

• a finite setpre of ABox assertions, thepre-conditions;
• a finite setocc of occlusionsof the formA(a) or s(a, b),

withA primitive concept inT , s role name, anda, b ∈ NI;
• a finite setpost of conditional post-conditionsof the form
ϕ/ψ, whereϕ is an ABox assertion andψ is aprimitive
literal for T , i.e., an ABox assertionA(a),¬A(a), s(a, b),
or¬s(a, b) with A a primitive concept name inT ands a
role name.

A composite actionfor T is a finite sequenceα1, . . . , αk of
atomic actions forT .

Intuitively, the pre-conditions specify under which condi-
tions the action is applicable. The conditional post-condition
ϕ/ψ says that, ifϕ is true before executing the action,
then ψ should be true afterwards. By the law of inertia,
only those facts that are forced to change by the post-
conditions should be changed by applying the action. How-
ever, it is well-known that enforcing this minimization of
change strictly is sometimes too restrictive (Lifschitz 1990;
Sandewall 1994). The rôle of occlusions is to indicate those
primitive literals that can change arbitrarily.

To illustrate the definition of actions, consider the actions
of opening a bank account and applying for child benefit in
the UK. Suppose the pre-condition of opening a bank ac-
count is that the customera is eligible for a bank account
in the UK and holds a proof of address. Moreover, suppose

1Disallowing inverse roles in ABox assertions is not a restric-
tion sinces−(a, b) can be expressed bys(b, a).



that, if a letter from the employer is available, then the bank
account comes with a credit card, otherwise not. This can be
formalised by the following actionα1, for which the set of
occlusions is empty:

pre : {Eligible bank(a),∃holds.Proof address(a)}
post : {>(a)/holds(a, b),

∃holds.Letter(a)/B acc credit(b),
¬∃holds.Letter(a)/B acc no credit(b)}

Suppose that one can apply for child benefit in the UK if
one has a child and a bank account. The actionα2 that offers
this application then looks as follows, where again the set of
occlusions is empty:

pre : {parent of(a, c),∃holds.B acc(a)}
post : {>(a)/receives c benef for(a, c)}

The meaning of the concepts used inα1 andα2 are defined
in the following acyclic TBoxT :

Eligible bank ≡ ∃permanent resident.{UK}
Proof address ≡ Electricity contract

B acc ≡ B acc credit t B acc no credit

When defining the semantics of actions, we assume that
states of the world correspond to interpretations. Thus, the
semantics of actions can be defined by means of a transition
relation on interpretations. LetT be an acyclic TBox,α =
(pre, occ, post) an action forT , andI an interpretation. For
each primitive concept nameA and role names, set:

A+ := {bI | ϕ/A(b) ∈ post ∧ I |= ϕ}
A− := {bI | ϕ/¬A(b) ∈ post ∧ I |= ϕ}
IA := (∆I \ {bI | A(b) ∈ occ}) ∪ (A+ ∪A−)
s+ := {(aI , bI) | ϕ/s(a, b) ∈ post ∧ I |= ϕ}
s− := {(aI , bI) | ϕ/¬s(a, b) ∈ post ∧ I |= ϕ}
Is := ((∆I ×∆I) \ {(aI , bI) | s(a, b) ∈ occ}) ∪

(s+ ∪ s−)
The transition relation on interpretations should ensure that
A+ ⊆ AJ andA− ∩ AJ = ∅ if J is the result of applying
α in I. It should also ensure that nothing else changes, with
the possible exception of the occluded literals. Intuitively,
IA andIs describe those parts of the model that arenot ex-
empted from this restriction by the presence of an occlusion.
Since we restrict our attention to acyclic TBoxes, for which
the interpretation of defined concepts is uniquely determined
by the interpretation of primitive concepts and role names, it
is not necessary to consider defined concepts when defining
the transition relation.
Definition 2. Let T be an acyclic TBox, α =
(pre, occ, post) an action forT , andI, I ′ models ofT shar-
ing the same domain and interpretation of all individual
names. We say thatα may transformI to I ′ (I ⇒Tα I ′)
iff, for each primitive conceptA and role names, we have

A+ ∩A− = ∅ and s+ ∩ s− = ∅
AI
′ ∩ IA = ((AI ∪A+) \A−) ∩ IA

sI
′ ∩ Is = ((sI ∪ s+) \ s−) ∩ Is.

The composite actionα1, . . . , αk may transformI to I ′
(I ⇒Tα1,...,αk

I ′) iff there are modelsI0, . . . , Ik of T with
I = I0, I ′ = Ik, andIi−1 ⇒Tαi Ii for 1 ≤ i ≤ k.

Note that this definition does not check whether the action
is indeed executable, i.e., whether the pre-conditions are sat-
isfied. It just says what the result of applying the action is,
irrespective of whether it is executable or not.

Due to the fact that we are working with acyclic TBoxes,
for actions with empty occlusions there cannot exist more
than oneI ′ such thatI ⇒Tα I ′. Thus, such actions are deter-
ministic. If there are post-conditionsϕ1/ψ, ϕ2/¬ψ ∈ post
such that bothϕ1 andϕ2 are satisfied inI, then there is no
successor modelI ′. In this case, we say that the action is
inconsistent withI .

Reasoning about actions
Assume that we want to apply a composite action
α1, . . . , αk for the acyclic TBoxT . Usually, we do not have
complete information about the world, i.e., the modelI of T
is not known completely. All we know are some facts about
this world: we have an ABoxA, and all models ofA to-
gether withT are considered to be possible states of the
world. In the following, we always assume thatA is con-
sistent w.r.t.T .

Before trying to apply the action, we want to know
whether it is indeed executable, i.e., whether all pre-
conditions are satisfied in the states of the world consid-
ered possible. If the action is executable, we want to know
whether applying it achieves the desired effect, i.e., whether
an assertion that we want to make true really holds after exe-
cuting the action. These two problems are called executabil-
ity and projection (Reiter 2001).
Definition 3 (Reasoning problems).Let T be an acyclic
TBox, α1, . . . , αk a composite action forT with αi =
(prei, occi, posti), andA an ABox.
• Executability:. The composite actionα1, . . . , αk is exe-

cutable inA w.r.t. T iff the following conditions are true
for all modelsI of A andT :
– I |= pre1

– for all i with 1 ≤ i < k and all interpretationsI ′ with
I ⇒Tα1,...,αi I

′, we haveI ′ |= prei+1.
• Projection:The assertionϕ is aconsequence of applying
α1, . . . , αk inA w.r.t.T iff, for all modelsI ofA andT ,
and allI ′ with I ⇒Tα1,...,αk

I ′, we haveI ′ |= ϕ.
Note that executability alone does not guarantee that we can-
not get stuck while executing a composite action: it may be
that the action to be applied is inconsistent with the current
interpretation. This cannot happen if we additionally know
that all actionsαi are consistent withT in the following
sense:αi is not inconsistent with any modelI of T . Given
the definition of consistencywith a model, it is not difficult
to see that this is the case iff{ϕ1/ψ, ϕ2/¬ψ} ⊆ posti im-
plies that the ABox{ϕ1, ϕ2} is inconsistent w.r.t.T . Thus,
consistency of an action w.r.t.T can be reduced to standard
DL reasoning.

In our example, both actions are consistent withT . Given
an ABoxA that says that customera is a permanent res-
ident of the UK and has an electricity contract as well as
a child c, the composite actionα1, α2 is executable, and
receives c benef for(a, c) is a consequence of applying
α1, α2 in A. The presence of the TBox is crucial here.



Note that our action formalism is restricted to ground ac-
tions, i.e., actions where the input parameters have already
been instantiated by individual names. Parametric actions,
which contain variables in place of individual names, should
be viewed as a compact representation of all its ground in-
stances, i.e., all the ground actions obtained by replacing
variables with individual names. It is outside the scope of
this paper to consider parametric actions in detail. In fact, the
reasoning tasks executability and projection are only mean-
ingful for ground actions

Relationship with the situation calculus
The situation calculus is an established and widely used for-
malism to represent actions (Reiter 2001). It can be seen as
a sorted first-order logic framework that provides a method-
ology to axiomatise the effects of actions, and defines its
semantics using second-order axioms. We can show that,
for actions without occlusions, our approach can be seen as
an instance of Reiter’s action formalism. For actions with
occlusions, related formalisms can be found in (Shanahan
1997).

Suppose an ABoxA, an acyclic TBoxT , and a composite
actionα1, . . . , αk are given. First, we can get rid of the TBox
by expanding it (i.e., recursively replacing defined concepts
with their definitions) and then replacing inA and the ac-
tionsα1, . . . , αk the defined concepts with their definitions.2

Next, we can use the standard translation ofALCQIO into
first-order logic (Baaderet al. 2003) to express the seman-
tics of actions, as given in Definition 2, usingaction pre-
conditionsandsuccessor state axiomsin the sense of (Reiter
2001). In this setting, primitive concepts and role names are
regarded as fluents. Moreover, by taking as the description of
the initial state the first-order translation ofA, we can show
that our notions of executability and projection are instances
of Reiter’s definitions (see (Baaderet al.2005) for details).

Note that the existence of this translation into SitCalc
does not mean that the inference problems introduced above
can be solved using an implemented system for reasoning
about action, such as GOLOG (Levesqueet al. 1997). In
fact, in Reiter’s approach,regression(Reiter 2001) is used
to solve the executability and the projection problem. How-
ever, when applied to (the translation of) our actions, regres-
sion yields a standard first-order theory, which is not in the
scope of what GOLOG can handle without calling a general
first-order theorem prover. Thus, the translation into SitCalc
does not directly provide us with decidability or complexity
results for our reasoning problems.

Deciding executability and projection
In this section, we determine the exact complexity of ex-
ecutability and projection for composite actions expressed
in various sublanguages ofALCQIO. In these results, we
assume unary coding of numbers in number restrictions.
Throughout this section, we assume that all actions are con-
sistent with their TBox. The following is shown in (Baader
et al.2005).

2Alternatively, we could handle the TBox as state constraints.

Lemma 4. Executability and projection can be reduced to
each other in polynomial time.

Thus, we can restrict the attention to the projection prob-
lem. Basically, we solve this problem by an approach that
is similar to the regression operation used in the situation
calculus approach (Reiter 2001). However, we take care that
the theory we obtain can again be expressed by a description
logic TBox and ABox. This way, projection is reduced to a
standard reasoning problem in DL, from which we obtain
our decidability results and upper complexity bounds. Inter-
estingly, we cannot always stay within the DL we started
with since we need to introduce nominals. Given a DLL,
we useLO to denote its extension with nominals.

Theorem 5. Let L ∈ {ALC,ALCI,ALCO,ALCIO,
ALCQ,ALCQO,ALCQI,ALCQIO}. Then projection
of composite actions formulated inL can be reduced in poly-
nomial time to non-consistency inLO of an ABox relative to
an acyclic TBox.

For lack of space, we only give a brief sketch of the proof
for the case of an atomic action without occlusions (see
(Baaderet al.2005) for details). We reduce the complement
of projection inL to the consistency problem for ABoxes
in LO (and thus projection inL to non-consistency inLO),
whereL is one of the languages from Theorem 5.

Given an ABoxA, an acyclic TBoxT , an actionα =
(pre, ∅, post), and an ABox assertionϕ (all formulated in
L), we construct a new TBoxTr, a new ABoxAr, and a new
assertionϕr (all formulated inLO) such that the following
are equivalent:

1. There exist modelsI, I ′ of T such thatI satisfiesA, I ′
satisfies¬ϕ andI ⇒Tα I ′.

2. Ar ∪ {¬ϕr} is consistent w.r.t.Tr.
Obviously, 1. means thatϕ is nota consequence of applying
α in A w.r.t. T .

We now describe the general idea underlying the con-
struction ofTr andAr. The goal is to simulate transforma-
tions I ⇒Tα I ′ with I |= A andI ′ 6|= ϕ within a single
interpretationJ , which is a model ofTr andAr ∪ {¬ϕr}.
Thus,J needs to encodetwo interpretationsI andI ′. To
this end, for every concept nameA and role namer we
introduce new primed versionsA′ and r′. Then, theJ -
interpretation of the unprimed concept and role names corre-
sponds toI, and theJ -interpretation of the primed concept
and role names corresponds toI ′. Let T ′, ϕ′ be the version
of T , ϕ obtained by replacing concept and role names with
their primed counterparts. We constructTr such that it con-
tainsT and (a modification of)T ′: before and after the exe-
cution of the action, the TBox should be satisfied. Also,ϕr
is simplyϕ′, andAr contains (the non-primed)A: before
execution ofα,A should be satisfied.

Additional effort is required to describe how the interpre-
tation of the primed versions of concepts and roles is ob-
tained from the interpretation of the unprimed ones. Intu-
itively, this task is split into two parts: (i) describe the evo-
lution of thenamed elements, i.e., elementsx ∈ ∆I such
thataI = x for some individual namea; and (ii) describe
the evolution of the unnamed elements. Roughly, (i) can be



achieved by adding additional statements toAr that can be
derived straightforwardly from Definition 2. To achieve (ii),
the TBoxT ′ is contained inTr in a strongly modified form.
In this modified version ofT ′, we distinguish named ele-
ments from unnamed ones. This, in turn, can be achieved
by making intense use of nominals. All this can be achieved
using only constructors fromT ,A, andALCO.

Theorem 6. Projection and executability of composite ac-
tions is

• PSPACE-complete forALC,ALCO,ALCQ,ALCQO;

• EXPTIME-complete forALCI,ALCIO;

• co-NEXPTIME-complete forALCQI,ALCQIO.

The complexityupper-boundsfollow from Theorem 5 to-
gether with either known results for ABox consistency w.r.t.
an acyclic TBox or results shown in the long version of this
paper (Baaderet al.2005):

• ABox consistency inALCO andALCQO w.r.t. acyclic
TBoxes is PSPACE-complete (Baaderet al.2005).

• ABox consistency inALCIO w.r.t. acyclic TBoxes is
EXPTIME-complete (Areces, Blackburn, & Marx 1999);

• ABox consistency inALCQIO w.r.t. acyclic TBoxes is
NEXPTIME-complete (Tobies 2000).

It is easy to obtain matchinglower-boundsfor those DLsL
where the complexity of ABox consistency w.r.t. an acyclic
TBox is the same inL and inLO. In fact, it suffices to note
that we can easily reduce ABox non-consistency inL to pro-
jection inL: A is inconsistent w.r.t.T iff ¬>(a) is a conse-
quence of applying the empty action(∅, ∅, ∅) in A w.r.t. T .

This argument does not provide matching lower bounds
for ALCI andALCQI since, for these DLs, adding nomi-
nals increases the complexity of the ABox consistency prob-
lem. However, forL ∈ {ALCI,ALCQI}, we may estab-
lish such bounds by reducing unsatisfiability ofLO concepts
(w.r.t. the empty TBox) to projection inL. Intuitively, this
result shows that the additional complexity caused by the
introduction of nominals in the reduction of projection to
ABox inconsistency cannot be avoided.

Theorem 7. There exists an ABoxA and an atomic action
α formulated inALCI (ALCQI) such that the following
tasks areEXPTIME-hard (co-NEXPTIME-hard): given an
ABox assertionϕ,

• decide whetherϕ is a consequence of applyingα in A;

• decide whetherα, ({ϕ}, ∅, ∅) is executable inA.

The complexity of the satisfiability problem inALCIO
(ALCQIO) is already EXPTIME-hard (NEXPTIME-hard)
if only a single nominal is available and the TBox is empty
(Areces, Blackburn, & Marx 1999; Tobies 2000), Thus, it is
enough to show that unsatisfiability of anALCIO-concept
(ALCQIO-concept)C that contains only a single nomi-
nal{n} can be reduced to the projection/executability prob-
lem inALCI (ALCQI) as stated in the theorem. For the
reduction, we reserve a concept nameO and a role name
u that do not occur inC. Let rol(C) := {r, r− | r ∈

NR used inC} and letC[O/{n}] denote the result of replac-
ing the nominal{n} in C with the concept nameO. We de-
fine an ABoxAC , an atomic actionα = (∅, ∅, postα), and a
conceptDC as follows:

AC := {(¬O u ∀u.¬O u ∀u. u
r∈rol(C)

∀r.∃u−.¬O)(a)}

postα := {>(a)/O(a)}

DC := ∃u.C[O/{n}] u (∀u. u
r∈rol(C)

∀r.∀u−.O)

Theorem 7 immediately follows from the next lemma.

Lemma 8. The following statements are equivalent:

1. C is satisfiable.
2. ¬DC(a) is not a consequence of applyingα in AC .
3. the composite actionα, ({¬DC(a)}, ∅, ∅) is not exe-

cutable inAC .

A detailed proof of this lemma can be found in (Baaderet
al. 2005). Here, we only sketch the underlying intuitions for
why Point 2 implies Point 1. LetI andI ′ be models wit-
nessing that¬DC(a) is not a consequence of applyingα,
i.e.,I |= AC , I ⇒∅α I ′, andI ′ |= DC(a). Then the follow-
ing holds:

• By the first conjunct of (the concept in)AC and the post-
condition ofα, the only difference betweenI andI ′ is
thataI = aI

′ ∈ OI′ \OI .

• Using the first and third conjunct ofAC together with the
post-condition and the second conjunct ofDC , it can be
shown that(aI , x) ∈ uI = uI

′
for eachx from the rele-

vant partrel of ∆I , whererel is defined as the smallest set
that contains alluI-successors ofaI and is closed under
taking successors for the roles fromrol(C).
• Thus, the second conjunct ofAC ensures that

OI
′ ∩ (rel ∪ {aI}) = {aI}.

• Due to the first conjunct ofDC , C[O/{n}] is satisfied in
the restriction ofI ′ to rel ∪ {aI}. By the previous item,
the concept nameO behaves like a nominal there.

Problematic extensions
The purpose of this section is to provide a justification for
the restrictions that we have adopted in our formalism for
describing actions:

1. we only allow for acyclic TBoxes rather than arbitrary
(also cyclic) ones, or even so-called general concept in-
clusions (GCIs);

2. in post-conditionsϕ/C(a), we requireC to be a primi-
tive concept or its negation, rather than admitting arbitrary
concepts.

Removing the first restriction leads tosemantic problems.
In fact, if the TBox is cyclic, then it is no longer the case
that the interpretation of the primitive concepts and the role
names uniquely determines the interpretation of the defined
concepts. This can lead to very unintuitive results. For ex-
ample, consider the following ABox and TBox:

A := {Dog(a)} and T := {Dog ≡ ∃parent.Dog}



Then,Dog(a) is not a consequence of applying the action
α = (∅, ∅, {>(b)/Cat(b)}) in A w.r.t. T . The reason is that
the transition relation⇒Tα only restricts the interpretation
of primitive concepts and role names. The conceptDog is
defined, and interpreting it as the empty set yields a model
of T (see (Baaderet al.2005) for more details regarding this
kind of problems).

One could try to modify Definition 2 such that it also deals
with defined concepts. However, a naive attempt to do this
would lead to problems well-known in the reasoning about
actions community (Lifschitz 1990). A more promising ap-
proach could be to adopt a fixpoint semantics for cyclic
TBoxes (Nebel 1991). Under such a semantics, the interpre-
tation of the defined concept names is still uniquely deter-
mined by the interpretation of the primitive concept names
and role names.

Semantic problemsare also encountered when removing
the second restriction. In particular, admitting arbitrary con-
cepts in post-conditions means that we can no longer give
a straightforward semantics as in Definition 2. One pos-
sible way to obtain a semantics for actions with complex
post-conditons is to adopt the possible models approach
(PMA) initially proposed in (Winslett 1988). The formal
definition of such a semantics can be found in (Baaderet
al. 2005). Unfortunately, adopting the PMA semantics re-
sults in two problems. The first problem is again of ase-
mantic nature: using complex concepts in post-conditions
under PMA results in massive non-determinism. Such non-
determinism requires special mechanisms to be used mean-
ingfully, e.g. based on notions of causality (Thielscher 2000;
Lin 1996). It seems unlikely that a suitable mechanism
can be found for the case ofarbitrary concepts as post-
conditions.

Second, we now also havealgorithmic problems: the ba-
sic reasoning tasks are not decidable anymore. Let agener-
alizedaction be an action where post-conditions are of the
formϕ/ψ for arbitrary ABox assertionsϕ andψ.
Theorem 9. Executability and projection are undecidable
for generalized actions inALCQI under PMA semantics.
This result is proved in (Baaderet al. 2005) by showing
that there exist a fixed generalized actionα formulated in
ALCQI 3 and a fixed ABoxA such that, given a conceptC,
it is undecidable whetherC(a) is a consequence of applying
α in A w.r.t. the empty TBox. The proof is by a non-trivial
reduction of the domino problem.

Conclusion
In this paper, we have presented a first proposal for integrat-
ing DLs and action formalisms into a decidable hybrid for-
malism. In particular, our framework allows the use of DL
concepts for describing the state of the world, and the pre-
and post-conditions of actions. Our main technical result is
that the computational complexity of the projection and the
executability problem in this formalism coincides with the
complexity of the ABox inconsistency problem in the un-
derlying DL extended with nominals.

3Even in its fragmentALCFI where only the numbers zero
and one may be used inside number restrictions.

This initial proposal can be extended in several direc-
tions. First, it is clearly desirable to identify a semantics that
overcomes the problems caused by cyclic TBoxes and GCIs
sketched in the previous section. Second, one may try to ex-
tend the expressive power of post-conditions while avoid-
ing the problems caused by admittingarbitrary concepts as
post-conditions. Third, instead of using an approach simi-
lar to regression to decide the projection problem, one could
also try to applyprogression, i.e., to calculate a successor
ABox that has as its models all the successors of the models
of the original ABox.
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