
Resolution and Logic Programming in Algebraic
Domains: Negation and Defaults

Pascal Hitzler

Artificial Intelligence Institute, Department of Computer Science
Dresden University of Technology, Dresden, Germany

phitzler@inf.tu-dresden.de, www.wv.inf.tu-dresden.de/∼pascal/

Technical Report WV–02–05

Abstract

W.C. Rounds and G.-Q. Zhang have recently proposed to study a form of disjunctive
logic programming generalized to algebraic domains [RZ01]. This system allows reasoning
with information which is hierarchically structured and forms a (suitable) domain. We extend
this framework to include reasoning with negative information, i.e. the implicit or explicit
absence of bits of information. These investigations will naturally lead to a form of default
reasoning which is strongly related to logic programming with answer sets or stable models,
which has recently created much interest amongst artificial intelligence researchers concerned
with knowledge representation and reasoning.

Contents

1 Introduction 2

2 Preliminaries: Clausal Logic in Algebraic Domains 3

3 Resolution in Algebraic Domains 4
3.1 Atomic Domains . 7
3.2 Domains with Negation . 9

4 Logic Programming in Algebraic Domains 11
4.1 Inference of Negative Information . 12
4.2 Implicit and Explicit Knowledge . 16

5 Conclusions and Further Work 17

1

1 Introduction

In [RZ01], Rounds and Zhang propose to study a form of clausal logic generalized to algebraic
domains. In essence, they propose to interpret finite sets of compact elements as clauses,
and develop a theory which links corresponding logical notions to topological notions on the
domain. Amongst other things, they establish a sound and complete resolution rule and a form
of disjunctive logic programming in domains, based on material implication. A corresponding
semantic operator turns out to be Scott-continuous.

In this technical report, we will extend this paradigm to include reasoning with negation.
We are motivated by the gain in expressiveness through the use of negation in artificial
intelligence paradigms related to knowledge representation and nonmonotonic reasoning. We
will in fact follow two approaches to negation, the first coming from classical logic, and the
second from default logic. In classical (propositional) logic, negation can be understood as an
involution on propositional variables. From the domain-theoretic point of view which we will
adopt later, this corresponds to restrictions on the domains, i.e. we will allow only domains
which provide an involution which can be understood as a negation. The second approach,
using ideas from default logic, treats negation as a meta-logical supplement: The negation
of an item is believed if there is no reason to believe the item itself. In the theory of logic
programming, this point of view is strongly related to the treatment of negation as failure,
and research in the theory of logic programming and nonmonotonic reasoning has lately led
to the development of applications in the form of nonmonotonic reasoning systems known as
answer set programming (cf. [Lif99, MT99] for accounts of this).

The paper is structured as follows. In Section 2 we review the most fundamental definitions
for Rounds’ and Zhang’s clausal logic in algebraic domains, as laid out in [RZ01]. In Section 3
we will study a form of resolution for this framework as proposed in [RZ01]. In particular, we
will provide a system consisting of three rules which is sound and complete with respect to
resolution, but is simpler and easier to work with. The remainder of Section 3 will be devoted
to establishing sufficient conditions which allow to carry over a main result on resolution from
classical logic to algebraic domains: T |= X if and only if T ∪ {¬X} ` ∅, cf. Theorem 3.12. It
turns out that we need to impose severe restrictions on the domain in order to establish this,
namely (1) a way of providing normal forms for clauses, and therefore for proofs (studied in
Section 3.1), and (2) an involution which can be understood as “classical” negation (studied
in Section 3.2). In Section 4, we move on to study logic programming in algebraic domains
as proposed in [RZ01]. While the negation studied in Section 3 is implicitly given by the
domain, we proceed in this chapter to adjoin a form of default negation to this programming
paradigm. The exposition will naturally lead to establishing a form of well-founded semantics
for these programs, as well as a notion of stable models, both very strongly related to their
counterparts in the classical logic programming paradigm.

The emphasis of this technical report is to propose definitions and constructions, not to
present deep results, although we have taken care to include just enough examples and results
as to justify the constructions.

Acknowledgements. I would like to thank William C. Rounds, Anthony K. Seda, Pawel
Waszkiewicz, and Guo-Qiang Zhang for helpful discussions on the general subject matter.

2

2 Preliminaries: Clausal Logic in Algebraic Domains

A partially ordered set is a pair (D,v), where D is a nonempty set and v is a relexive,
antisymmetric, and transitive relation on D. A subset X of a partially ordered set is directed
if for all x, y ∈ X there is z ∈ X with x, y v z. An ideal is a directed and downward closed
set. A complete partial order, cpo for short, is a partially ordered set (D,v) with a least
element ⊥, called the bottom element of (D,v), and such that every directed set in D has a
least upper bound, or supremum,

⊔
D. An element c ∈ D is said to be compact or finite if

whenever c v
⊔

L with L directed, then there exists e ∈ L with c v e. The set of all compact
elements of a cpo D is written as K(D). An algebraic cpo is a cpo such that every e ∈ D is
the directed supremum of all compact elements below it.

A set U ⊆ D is said to be Scott open, or just open, if it is upward closed and for any
directed L ⊆ D we have

⊔
L ∈ U if and only if U ∩ L 6= 0. The Scott topology on D is

the topology whose open sets are all Scott open sets. An open set is compact open if it is
compact in the Scott topology. A coherent algebraic cpo is an algebraic cpo such that the
intersection of any two compact open sets is compact open. We will not make use of many
topological notions in the sequel. So let us just note that coherency of an algebraic cpo implies
that the set of all minimal upper bounds of a finite number of compact elements is finite, i.e.
if c1, . . . , cn are compact elements, then the set mub{c1, . . . , cn} of minimal upper bounds of
these elements is finite. Note that mub ∅ = {⊥}, where ⊥ is the least element of D.

In the following, (D,v) will always be assumed to be a coherent algeraic cpo. We will also
call these spaces domains.

Following [Joh82], an element a ∈ D is called an atom, or an atomic element, if whenever
x v a we have x = a or x = ⊥. The set of all atoms of a domain is denoted by A(D).

2.1 Definition Let D be a coherent algebraic cpo with set K(D) of compact elements. A
clause is a finite subset of K(D). We denote the set of all clauses ove D by C(D). If X is a
clause and w ∈ D, we write w |= X if there exists x ∈ X with x v w, i.e. X contains an
element below w.

A theory is a set of clauses, which may be empty. An element w ∈ D is a model of a theory
T , written w |= T , if w |= X for all X ∈ T or, equivalently, if every clause X ∈ T contains an
element below w.

A clause X is called a logical consequence of a theory T , written T |= X, if w |= T implies
w |= X. If T = {E}, then we write E |= X for {E} |= X. Note that this holds if and only if
for every w ∈ E there is x ∈ X with x v w.

For two theories T and S, we say that T |= S if T |= X for all X ∈ S. We say that T and
S are (logically) equivalent, written T ∼ S, if T |= S and S |= T . In order to avoid confusion,
we will throughout denote the empty clause by {}, and the empty theory by ∅. A theory T
is closed if T |= X implies X ∈ T for all clauses X. It is called consistent if T 6|= {} or,
equivalently, if there is w with w |= T .

A main technical result from [RZ01] shows that the set of all consistent closed theories
over D, ordered by inclusion, is isomorphic to the collection of all non-empty Scott-compact
saturated subsets of D, ordered by reverse inclusion. This result rests on the Hofmann-Mislove
theorem, and we refer the reader to [RZ01] for details. It follows as a corollary that a theory

3

is logically closed if and only if it is an ideal,1 and also that a clause is a logical consequence
of a theory T if and only if it is a logical consequence of a finite subset of T . The latter is a
compactness theorem for clausal logic in algebraic domains.

2.2 Example In [RZ01], the following running example was given. Consider Kleene’s strong
three-valued logic in the propositional case2, with the usual (knowledge)-ordering on the set
T = {f ,u, t} of truth values given by u ≤ f and u ≤ t. This induces a pointwise ordering on
the space TV of all interpretations (or partial truth assignments), where V is the (countably
infinite) set of all propositional variables in the language under consideration. The partially
ordered set TV is a coherent algebraic cpo3. Compact elements in TV are those interpretations
which map all but a finite number of propositional variables to u. We denote compact elements
by strings such as pqr, which indicates that p and q are mapped to t and r is mapped to f .

We note that {e | e |= φ} is upward-closed for any formula φ. A clause in TV is a formula
in disjunctive normal form, e.g. {pqr, pq, r} translates to (p ∧ q ∧ ¬r) ∨ (¬p ∧ q) ∨ r.

We also note that every compact element in TV can be uniquely expressed as the supremum
of a finite number of atomic elements, and the set of all atomic elements is A

(
TV

)
= V ∪ {v |

v ∈ V}. Furthermore, there exists a bijective function : A
(
TV

)
→ A

(
TV

)
: p → p which

extends naturally to a Scott-continuous involution onto all of TV via p1 . . . pn = p1 . . . pn. In
the following, a clause over a domain D will be called an atomic clause if it is a finite subset
of A(D). Atomic clauses on TV correspond to propositional clauses in the usual sense. Note
that p 6↑ p for p ∈ A

(
TV

)
and in general for all c ∈ K

(
TV

)
we have c 6↑ c.

3 Resolution in Algebraic Domains

In [RZ01], a sound and complete resolution rule, called clausal hyperresolution, was given as
follows, where {X1, . . . , Xn} is a clause set and Y a clause, and mub{a1, . . . , an} denotes the
set of all minimal upper bounds of all the ai’s, which is a finite set of compact elements by
algebraic coherence, i.e. a clause.

X1 X2 . . . Xn; ai ∈ Xi for 1 ≤ i ≤ n; mub{a1, . . . , an} |= Y

Y ∪
⋃n

i=1 (Xi \ {ai})
(hr)

This rule is sound in the following sense: Whenever w |= Xi for all i, then for any admissible
choice of the ai and Y in the antecedent, we have w |= Y ∪

⋃n
i=1 (Xi \ {ai}).

For completeness, it is necessary to adjoin to the above clausal hyperresolution rule a
special rule which allows the inference of any clause from the empty clause. We indicate this
rule as follows.

{}; Y ∈ C(D)

Y
(spec)

1An ideal with respect to the Smyth preorder v], where X v] Y if and only if for every y ∈ Y there exists
some x ∈ X with x v y.

2Cf. [Fit85] for a discussion of this in the context of logic programming semantics and [Plo78] for a domain-
theoretic context.

3In fact it is also consistently complete.

4

With this addition, given a theory T and a clause X with T |= X, we have that T `∗ X, where
`∗ stands for a finite number of applications of the clausal hyperresolution rule together with
the special rule4.

Furthermore, [RZ01, Remark 4.6] shows that binary hyperresolution, together with (spec),
is already complete, i.e. the system consisting of the binary clausal hyperresolution rule

X1 X2; a1 ∈ X1 a2 ∈ X2; mub{a1, a2} |= Y

Y ∪ (X1 \ {a1}) ∪ (X2 \ {a2})
(bhr)

together with the special rule is sound and complete.
If the set {a1, . . . , an} is inconsistent, then mub{a1, . . . , an} = {}. Since {} |= {}, clausal

hyperresolution generalizes the usual notion of resolution, given by the following rule.

X1 X2; a1 ∈ X1 a2 ∈ X2; a1 6↑ a2

(X1 \ {a1}) ∪ (X2 \ {a2})
(r)

We note that the special rule (spec) can be understood as an instance of (ext) (see Footnote 4).
Note that resolution (r) together with (ext) and (red) (see again Footnote 4) is not complete.
In order to see this, we refer again to Example 2.2. Let T = {{p}, {q}} and X = {pq}. Then
T |= X but there is no way to produce X from T using (r), (ext) and (red) alone. Indeed, it
is easy to show by induction that any X which can be derived from T by using only (r), (ext)
and (red), contains either p or q, which suffices.

It is our desire, however, to give a sound and complete system which is as simple as
possible. Consider the following rule, which we call simplified hyperresolution. It is easy to see
that it is an instance of (hr) and more general than (r).

X1 X2; a1 ∈ X1 a2 ∈ X2

mub{a1, a2} ∪ (X1 \ {a1}) ∪ (X2 \ {a2})
(shr)

3.1 Theorem The system consisting of (shr), (ext) and (red) is complete.

Proof: In order to show completeness, we derive (bhr) from (shr), (ext) and (red). Let X1,
X2 be given with a1 ∈ X1 and a2 ∈ X2 with a1 ↑ a2. Furthermore, let Y be a clause with
mub{a1, a2} |= Y . Let mub{a1, a2} = {b1, . . . , bn}. Then for every bi there exists yi ∈ Y with
yi v bi. Using (shr), from X1 and X2 we can derive X3 = mub{a1, a2}∪(X1\{a1})∪(X2\{a2}),

4There seems to be a slight technical problem in the proof of [RZ01, Lemma 4.4], which states that E |= X
implies E `∗ X for non-empty clause E and clause X. With notation from there, and working with the
three-valued propositional setting from Example 2.2, we note that E = {pq} |= {p} = X, and pq ∈ E \X, but
pq 6v p. The result, however, holds. First note that two special instances of the clausal hyperresolution rule
are as follows, called the reduction rule and the extension rule.

X; {a, y} ⊆ X; y v a

X \ {a}
(red),

X; y ∈ K(D)
{y} ∪X

(ext)

Indeed, the first rule follows from (hr) since a ∈ X and {a} |= {y}, while the latter rule follows since
{a} |= {a, y} for all y ∈ K(D). Now suppose E is a non-empty clause, and X a clause with E |= X. Then for
all f ∈ E there is x ∈ X with x v f . Using the second rule above, we can first extend E to E ∪X and obtain
E `∗ E ∪ X. Then, using the first rule, we can remove all f ∈ E \ X from E ∪ X, obtaining E ∪ X `∗ X,
hence E `∗ X.

5

and with repeated application of (ext) and (red) we obtain from this X4 = {y1, . . . , yn}∪(X1\
{a1}) ∪ (X2 \ {a2}). Finally, using (ext) repeatedly, we can add to X4 all remaining elements
from Y . The argumentation for a1 6↑ a2 is similar. This completes the proof. �

We note that a rule with weaker preconditions than (red) suffices, which we call the
weakening rule:

X; a ∈ X; y v a

{y} ∪ (X \ {a})
(w)

Indeed, (red) can be derived from (w) as follows. Let {a, y} ⊆ X with y v a. Then in particular
a ∈ X, i.e. using (w) we can derive {y}∪ (X \{a}) which is equal to X \{a} since y is already
contained in X. On the other hand, (w) can be derived from (red) and (ext) as follows. Let
a ∈ X and y v a. If a = y then there is nothing to show, so assume a 6= y. Then X ` X ∪{y}
by the extension rule, so the reduction rule can be applied, yielding (X∪{y})\{a} as required.

The following technical result is inspired by [CZ00, Theorem 7].

3.2 Proposition For clauses X1, . . . , Xn we have {X1, . . . , Xn} |= X if and only if
{{a1}, . . . , {an}} |= X for all (a1, . . . , an) ∈ X1 × . . .×Xn.

Proof: Assume {X1, . . . , Xn} |= X and let ai ∈ Xi be arbitrarily chosen for i = 1, . . . , n. Then
{ai} Xi for all i = 1, . . . n by (ext) and therefore {{a1}, . . . , {an}} |= {X1, . . . , Xn} |= X.

Conversely, assume that {{a1}, . . . , {an}} |= X for all (a1, . . . , an) ∈ X1 × . . . × Xn and
let w ∈ D with w |= {X1, . . . , Xn}, i.e. w |= Xi for all i = 1, . . . , n. Then for all i = 1, . . . , n
there is ai ∈ Xi with ai v w. So for all i = 1, . . . , n choose ai with ai v w. Then w |=
{{a1}, . . . , {an}} and by assumption we obtain w |= X. �

We call the system consisting of the rules (red), (ext) and (shr) the RAD system, from
Resolution in Algebraic Domains. For two theories T and S, we write T `∗ S if T `∗ A for
each A ∈ S, and for clauses X and Y we write X `∗ Y , respectively X `∗ T , for {X} `∗ Y ,
respectively {X} `∗ T . The symbol ` denotes derivation by a single application of one of the
rules in RAD. With slight abuse of notation, for two theories T and S we allow to write T ` S
if T ` X for some clause X and S ⊆ T ∪ {X}.

We interpret the RAD rules in the setting of Example 2.2. We already know that clauses
correspond to formulas in disjunctive normal form (DNF), and theories to sets of DNF formu-
las. The weakening rule acts on single clauses and replaces a conjunction contained in a DNF
formula by a conjunction which contains a subset of the propositional variables contained
in the original conjunction, e.g. (p ∧ q) ∨ r becomes p ∨ r. The extension rule disjunctively
extends a DNF formula by a further conjunction of propositional variables, e.g. (p ∧ q) ∨ r
becomes (p ∧ q) ∨ r ∨ (s ∧ q). The simplified hyperresolution rule finally takes two DNF for-
mulas, deletes one conjunction from each of them, and forms a disjunction from the resulting
formulas together with the conjunction of the deleted items, e.g. (p ∧ q) ∨ r and ¬p ∨ (s ∧ r)
can be resolved to (p ∧ q) ∨ (r ∧ ¬p) ∨ (s ∧ r).

A more abstract interpretation of the RAD system comes from a standard intuition un-
derlying domain theory. Elements of the domain D are interpreted as pieces of information,
and if x v y, this represents that y contains more information than x. Compact elements
are understood as items which are computationally accessible. From this point of view, RAD
gives a calculus for reasoning about disjunctive information in computation, taking a clause,

6

i.e. a finite set of computationally accessible information items as disjunctive knowledge about
these items. The rules from RAD yield a system for deriving further knowledge from the given
disjunctive information. The weakening rule states that we can replace an item by another
one which contains less information. The extension rule states that we can always extend our
knowledge disjunctively with further bits of information. Both rules decrease our knowledge.
The simplified hyperresolution rule states that we can disjunctively merge two collections of
disjunctive information, while strengthening our knowledge by replacing two of the items from
the collections by an item which contains both pieces of information, and deleting the original
items.

3.1 Atomic Domains

We simplify proof search via resolution by requiring stronger conditions on the domain. We
will be guided by Example 2.2.

3.3 Definition An atomic domain is a coherent algebraic cpo D with the following property:
For all c ∈ K(D), the set A(c) = {p ∈ A(D) | p v c} is finite and c =

⊔
A(c).

The domain TV from Example 2.2 is an example of an atomic domain. In the remainder
of this section, D will always be an atomic domain.

We seek to represent a clause X by a finite set A(X) of atomic clauses which is logically
equivalent to X. Given X = {a1, . . . , an}, we define A(X) as follows.

A(X) = {{b1, . . . , bn} | bi ∈ A(ai) for all i = 1, . . . , n}

3.4 Lemma Let X = {a1, . . . , an} be a clause. Let X/a1 = {{b, a2, . . . , an} | b ∈ A(a1)}.
Then X/a1 |= X.

Proof: Since
⊔

A(a1) = a1, and therefore mub A(a1) |= {a1}, we obtain X/a1 `∗ X from (hr),
and the assertion follows from the soundness of RAD. �

3.5 Lemma For any clause X we have A(X) ∼ X.

Proof: Let X = {a1, . . . , an} and let Y = {b1, . . . , bn} ∈ A(X) with bi ∈ A(ai) for all i. Then
bi v ai for all i and hence X `∗ Y by repeated application of the weakening rule.

Conversely, we define for any compact element a and any set T of clauses: T/a = {Z ∈
T | a 6∈ Z} ∪ {{b} ∪ (Z \ {a}) | b ∈ A(a), a ∈ Z ∈ T}. With notation from Lemma 3.4
and for any clause Z and a ∈ Z we have {Z}/a = Z/a. So, from Lemma 3.4 we obtain
that T/a |= T for all sets of clauses T and a ∈ K(D). Now let X = {a1, . . . , an}. Then
(. . . (X/a1)/a2 . . .)/an = A(X) and consequently A(X) |= X. �

3.6 Lemma Let X be a clause and T a theory. Then T |= X if and only if T |= Y for all
Y ∈ A(X).

Proof: Suppose T |= X and let Y ∈ A(X). Then {X} `∗ Y by Lemma 3.5. So T `∗ Y and
T |= Y .

7

Conversely, suppose T |= Y for all Y ∈ A(X), i.e. T `∗ Y for all Y ∈ A(X). But
A(X) `∗ X, so T `∗ X and therefore T |= X. �

3.7 Theorem Let X be a clause and T a theory. Then T |= X if and only if T `∗ Y for all
Y ∈ A(X).

Proof: This follows immediately from Lemma 3.6 and the completeness of RAD. �

In view of Theorem 3.7, it suffices to study T `∗ X for theories T and atomic clauses
X. We can actually obtain a stronger result, as follows, which provides some kind of normal
forms of derivations. For a theory T , define A(T) = {A(X) | X ∈ T}.

3.8 Theorem Let D be an atomic domain, T be a theory, X be a clause and

T ` T1 ` · · · ` TN ` X

be a derivation in RAD. Then there exists a derivation

A(T) `∗ A(T1) `∗ · · · `∗ A(TN) `∗ A(X)

using only the atomic extension rule

X; y ∈ A(D)

{y} ∪X
(axt)

and the multiple atomic shift rule

a1 ∈ X1 . . . an ∈ Xn; mub{a1, . . . , an} = {x1, . . . , xk}, bi ∈ A(xi) for all i

{b1, . . . , bk} ∪
⋃n

i−1(Xi \ {ai})
(mas).

Furthermore, all clauses occuring in the derivation are atomic.

Proof: Let X1, X2, X be clauses. We distinguish three cases, from which the assertion follows
easily by induction on N .

1. X1 ` X using the reduction rule. First note that the following atomic shift rule is a
special instance of the multiple atomic shift rule.

a1 ∈ X1 a2 ∈ X2; a ∈ A(x) for all x ∈ mub{a1, a2}
{a} ∪ (X1 \ {a1}) ∪ (X2 \ {a2})

(ash)

Indeed, (ash) follows from (mas) with n = 2 and a = b1 = . . . = bk. Now let a, y ∈ X1

with y v a and X = X1 \ {a} = {y, x1, . . . , xn}. Let A ∈ A(X), say A = {y′, x′1, . . . , x′n}
with y′ ∈ A(y) and x′i ∈ A(xi) for all i. Without loss of generality we can assume that
A(y) ⊂ A(a), so there is {a′} ∪ A ∈ A(X1) for some a′ ∈ A(a) \ A(y). So we now have
a′, y′ v a and y′ v y, i.e. {y′, a′, x′1, . . . , x′n} ∈ A(X1) and {y′, y′, x′1, . . . , x′n} = A ∈ A(X1).
So a′ ∈ {y′, a′, x′1, . . . , x′n}, y′ ∈ {y′, y′, x′1, . . . , x′n} and since y′ v x for all x ∈ mub{y′, a′} we
can derive {y′}∪ ({y′, a′, x′1, . . . , x′n}\{a′})∪ ({y′, y′, x′1, . . . , x′n}\{y′}) = {y′, x′1, . . . , x′n} = A
using the atomic shift rule.

8

2. X1 ` X using the extension rule, i.e. X = X1 ∪ {y} for some y. Let A ∈ A(X). Then
A = {y′} ∪ Y for some y′ ∈ A(y) and Y ∈ A(X1). Using the atomic extension rule we can
derive Y ` A and therefore A(X1) ` A using the atomic extension rule only, which suffices.

3. {X1, X2} ` X using the simplified hyperresolution rule. Let a1 ∈ X1, a2 ∈ X2 and X =
mub{a1, a2}∪(X1\{a1})∪(X2\{a2}). Furthermore, let M = mub{a1, a2} = {m1, . . . ,mk} and
let A ∈ A(X), i.e. A = {m′1, . . . ,m′k}∪B1∪B2, where m′i ∈ A(mi) for all i, B1 ∈ A(X1 \{a1})
and B2 ∈ A(X2 \ {a2}). Note that for all a′1 ∈ A(a1) we have that B1 ∪ {a′1} ∈ A(X1)
and for all a′2 ∈ A(a2) we have that B2 ∪ {a′2} ∈ A(X2). Let A(a1) = {a′1, . . . , a′k1

} and
A(a2) = {a′k1+1, . . . , a

′
k1+k2

}. For i = 1, . . . , k1 let Yi = B1 ∪ {a′i} ∈ A(X1) and for i =
k1, . . . , k1 + k2 let Yi = B2 ∪ {a′i} ∈ A(X2). Since a1 =

⊔
A(a1) and a2 =

⊔
A(a2) we have

mub (A(a1) ∪ A(a2)) = mub{a1, a2} = {m1, . . . ,mk} = M . From the multiple atomic shift rule
we obtain

ai ∈ Yi (i = 1, . . . , k1 + k2) mub{a′1, . . . , a′k1+k2
} = M, m′j ∈ A(mj) (j = 1, . . . , k)

{m′1, . . . ,m′k} ∪
⋃

(Yi \ {ai})

Since Yi \ {a′i} ⊆ B1 for i = 1, . . . , k1 and Yi \ {a′2} ⊆ B2 for i = k1, . . . , k1 + k2, we obtain
{m′1, . . . ,m′k} ∪

⋃
(Yi \ {ai}) ⊆ A which suffices by the atomic extension rule. �

Note that the atomic extension rule is a special case of the extension rule, and that the
multiple atomic shift rule can be obtained as a subsequent application of first the hyperres-
olution rule (with Y = mub{a1, . . . , an}) and then multiple instances of the reduction rule,
hence both rules are sound.

3.9 Remark We note that Theorem 3.8 does not hold if (mas) is replaced by its binary
version

a1 ∈ X1, a2 ∈ X2; mub{a1, a2} = {x1, . . . , xk}, bi ∈ A(xi) for all i

{b1, . . . , bk} ∪ (X1 \ {a1}) ∪ (X2 \ {a2})
(bas).

In order to see this, consider three atomic elements a1, a2, a3 which are mutually consis-
tent with supremum sup{ai, aj} = aij, but do not have a common upper bound. Then
{{a1}, {a2}, {a3}} |= {}, but the empty clause {} can not be derived from the theory
T = {{a1}, {a2}, {a3}} using (axt) and (bas) alone. Indeed it is easy to show by induction that
every clause which is derived from T using applications of (axt) and (bas) always contains
one of the elements a1, a2 or a3.

3.2 Domains with Negation

We introduce and investigate a notion of negation on domains, motivated by classical negation
as in Example 2.2.

3.10 Definition An atomic domain is called an atomic domain with negation if there exists
an involutive and Scott-continuous negation function : D → D with the following properties:

(i) maps A(D) onto A(D).

(ii) For all p, q ∈ A(D) we have p 6↑ q if and only if q = p.

9

(iii) For every finite subset A ⊆ A(D) such that p ↑ q for all p, q ∈ A, the supremum
⊔

A
esists.

TV from Example 2.2 is an example of an atomic domain with negation.

3.11 Proposition Let D be an atomic domain with negation. Then for all c ∈ K(D) we have
c =

⊔
{a | a ∈ A(c)}.

Proof: Let c ∈ K(D). Then c =
⊔

A(c), hence A(c) is consistent. By (ii) of Definition 3.10, we
obtain that every pair of elements from {a | a ∈ A(c)} is consistent, and by (iii) the supremum
d =

⊔
{a | a ∈ A(c)} exists. From monotonicity of , we obtain first d v c, and then d v c = c.

But, again by monotonicity of , we know that d is an upper bound of A(c), hence c v d, and
consequently c = d and c = d =

⊔
{a | a ∈ A(c)} as required. �

The following result allows one to replace the search for derivations by proof search, as in
the classical form of resolution.

3.12 Theorem Let D be an atomic domain with negation. Let T be a theory and X be an
atomic clause. Then T |= X if and only if T ∪ {{ā} | a ∈ X} `∗ {}.

Proof: Assume T |= X. Then T `∗ X and {X} ∪ {{ā} | a ∈ X} `∗ {} follows easily by
repeated application of the resolution rule (r).

Conversely, assume T ∪ {{a} | a ∈ X} `∗ {}, i.e. T ∪ {{a} | a ∈ X} |= {}. If T |= {} then
T `∗ {} `∗ X. So assume that T 6|= {}, i.e. there exists w ∈ D with w |= T . We have to show
that w |= X for every such w. Since w |= T but w 6|= T ∪ {{a} | a ∈ X}, we have that there
is a ∈ X with a 6↑ w. Hence there exists x ∈ A(w) with x 6↑ a. From the hypothesis we obtain
x = a. Hence a v w and therefore, by the weakening rule, w `∗ X, i.e. w |= X. �

On atomic domains with negation, we can therefore establish the following sound and
complete proof principle.

3.13 Theorem Let T be a theory and X a clause. Consider T ′ = A(T). For every atomic
clause A ∈ A(X) attempt to show T ′ ∪ {{a} | a ∈ A} `∗ {} using (axt) and (mas). If this
succeeds, then T |= X. Conversely, if T |= X then there exists a derivation T ′ ∪ {{a} | a ∈
A} `∗ {} for each A ∈ A(X) using only the above mentioned rules.

Proof: If T ′ ∪ {{a} | a ∈ A} `∗ {}, then by Theorem 3.8 the derivation can be carried out
using only the mentioned rules and we obtain T ′ ∪ {{a} | a ∈ A} |= {}. By Theorem 3.12 we
obtain T ′ |= A, so T ′ |= A for all A ∈ A(X). By Lemma 3.6 this yields T ′ |= X and finally we
obtain T |= X by application of Lemma 3.5, noting that T ′ = A(T) ∼ T .

Conversely, if T |= X then we have T ′ |= A for all A ∈ A(X), again by Lemmata 3.5 and
3.6. Theorem 3.12 then yields T ′ ∪ {{a} | a ∈ A} `∗ {} for all A ∈ A(X), and finally from
Theorem 3.8 we obtain that this derivation can be done using only the designated rules. �

10

4 Logic Programming in Algebraic Domains

Following the lead from [RZ01], we now move on to study disjunctive logic programming in
algebraic domains. Our aim is to extend this paradigm with a kind of default negation.

4.1 Definition A disjunctive logic program over D is a set P of rules of the form Y ← X,
where X, Y are clauses over D. An element e ∈ D is said to be a model of P if for every rule
Y ← X in P , if e |= X, then e |= Y . A clause Y is a logical consequence of P if every model
of P satisfies Y . We write cons(P) for the set of all clauses which are logical consequences of
P . If T is a theory, we write cons(T) for the set of all clauses which are logical consequences
of T . Note that the notions of logical consequence are substantially different for theories and
programs.

The following propagation5 rule, denoted by CP(P), for given program P , was studied in
[RZ01].

X1 . . . Xn; ai ∈ Xi (i = 1, . . . , n); Y ← Z ∈ P ; mub{a1, . . . , an} |= Z

Y ∪
⋃n

i=1(Xi \ {ai})

Applying this rule, we say that Y ∪
⋃n

i=1(Xi \ {ai}) is a CP(P)-consequence of a theory T
if X1, . . . , Xn ∈ T . The following operator is based on the notion of CP(P)-consequence and
acts on logically closed theories. Let T be a logically closed theory over D and let P be a
program and define

TP (T) = cons ({Y | Y is a CP(P)-consequence of T}) .

In [RZ01], it was shown that TP is a Scott-continuous function on the space of all logically
closed theories, i.e. has a least fixed point fix(TP). It was also shown that fix(TP) = cons(P),
and that a simpler operator suffices: the unary program-resolution operator UP on theories is
defined as

UP (T) = cons({Y ∪ (X \ {a}) | X ∈ T, Y ← Z ∈ P, a ∈ min(X), a |= Z}),

where min(X) denotes the set of all minimal elements of X.
We obtain from [RZ01, Section 6], that UP and TP have the same least fixed points, namely

cons(P).
The following technical result will make investigations concerning propagation easier.

4.2 Proposition Let P be a disjunctive logic program. Let Q be the set of all rules Y ← {d}
for which there is a rule Y ← Z in P with d ∈ Z. Then UP ≡ UQ, and in particular
cons(P) = cons(Q).

Proof: The assertion follows immediately from the observation, that a |= Z if and only if
there exists d ∈ Z with a |= {d}. �

5This rule was called the hyperresolution rule determined by P in [RZ01]. We prefer the notion propagation
since in our opinion resolution, when talking about programs, is better thought of as a process which yields
the antecedent from a given consequent.

11

We shortly investigate the propagation rule for atomic domains with negation. If D is
such a domain and Y ← X is a rule over D, then let clausal(Y ← X) denote the set of
clauses {Y ∪ {x} | x ∈ X}. If P is a program over D then let clausal(P) denote the union⋃

Y←X in P clausal(Y ← X). We call clausal(Y ← X), respectively, clausal(P) the clausal form
of Y ← X, respectively, P .

4.3 Proposition Let D be an atomic domain with negation. Then cons(P) ⊆
cons(clausal(P)).

Proof: Let W be a logical consequence of P and let w ∈ D with w |= clausal(P). We have
to show that w |= W . For this it suffices to show that w is a model of P . So let Y ← X be
a clause in P . Since w |= clausal(P) we have w |= clausal(Y ← X), i.e. w |= Y ∪ {x} for all
x ∈ X. Now assume w |= X. Then there is x ∈ X with x v w, so x 6v w. Since w |= Y ∪ {x}
there must be y ∈ Y with y v w, hence w |= Y . Since Y ← X was chosen arbitrarily from P
we have that w is a model of P as required. �

We note that in the notation of Example 2.2 the program P = {r ← pq} has model p,
but p is not a model of clausal(P) = {{r, pq}}. So in general, a program and its clausal form
do not share the same models. Furthermore, {r, pq} is a logical consequence of clausal(P),
but not of P , so in general, a program and its clausal form do not share the same logical
consequences. Another example for this is given by the program P = {{p ← q}, {p ← q}}.
In this case, we have p ∈ cons(clausal(P)), but p 6∈ cons(P). We see that even in the case of
atomic domains with negation, propagation along ← differs from implication.

4.1 Inference of Negative Information

Using the notation of Example 2.2, consider the program P consisting of the following rules.
This program is in fact a propositional version of the well-known even numbers program,
which can be found e.g. in [Fit94] or [HS0x].

{p0} ← {⊥}
{pn+1} ← {pn} for all n ∈ N.

Recall that cons(∅) = cons({{⊥}}), so we obtain cons(P) = fix(TP) = cons({{p0}}). If we
understand P as a logic program in the classical sense, however, then all major approaches
to declarative semantics, e.g. the Clark completion semantics [Cla78] (also known as the sup-
ported model semantics), the Fitting semantics [Fit85] (also called Kripke-Kleene semantics),
the perfect model semantics [Prz88], the stable model semantics [GL88] (also called answer
set semantics, which is motivated by default logic), and the well-founded semantics [GRS91],
agree on M = {{pn, pn+1} | n ∈ N} as the intended model. We refer to [Sub99] for a very
good and concise survey of these issues.

One way of justifying the latter model as the intended one would be the following: Since
we obtain {p0} as a consequence (in some natural, naive sense) of the program, we are inclined
to dismiss the possibility that {p0} could hold, since it is inconsistent with the knowledge of
{p0}. So we infer “not {p0}”, meaning that {p0} can be dismissed as possible consequence. It
follows that there is no way to justify {p1} as a consequence of the program. Common practice

12

in nonmonotonic reasoning semantics is to therefore conclude “not {p1}”, and to identify this
with {p1}, allowing to conclude {p2}, and so on.

We attempt to lift this line of reasoning to the general setting of logic programs in algebraic
domains. In place of the notion of negation, which is not available in the general setting, we can
try to use inconsistency. From this perspective, and refering again to the above even numbers
program, we can indeed dismiss {p0} as a possible consequence from the observation that
{p0} can be derived. Again we conclude that there is no way to justify {p1} as a consequence
of the program, hence we obtain “not {p1}”, i.e. the absence of {p1} as a possible conclusion.
In general algebraic domains, however, without a notion of negation, there may be many
compact elements inconsistent with p1. While in the case of the domain TV we can justify to
derive p1 from the absence of provability of p1, i.e. taking p1 as a kind of default, it is unclear,
in the general case, which of the elements inconsistent with p1 should be taken.

In the absence of an involutive notion of negation, we therefore should distinguish between
two kinds of “negation”, as follows. Assume that we believe in some items, i.e. compact
elements of a domain, and that the collection of these items is consistent. We then say (1)
that a compact element is refuted by contradiction if if is inconsistent with a compact element
which belongs to our believe and (2) that a compact element is refuted by default if it is not
believed, and not refuted by contradiction. Let us finally call a compact element refuted, if it
is refuted by contradiction or refuted by default.

Let us again review the above even numbers program. We refuted p0 by contradiction,
while we refuted p1 by default, leading us to assuming p1, i.e. p1 was interpreted as the
statement “p1 is refuted”. It relies entirely on the existence of an involutive negation, that
we are able to identify “p1 is refuted” with p1. For algebraic domains, we should be able to
abstract from an involutive negation, and this is facilitated by the following definition.

4.4 Definition Let D be a coherent algebraic domain. An extended clause is a finite set
{(c1, N1), . . . , (cn, Nn)} where for all i ∈ {1, . . . , n} we have that Ni is a clause in D and
ci ∈ K(D). We call (c, N) = (c, {d1, . . . , dn}) an extended precondition and abreviate it by
(c; d1, . . . , dn), or by c¬d1 . . .¬dn. In the latter notation, we omit c if c = ⊥ and N 6= ∅. If
N = ∅ we abreviate (c, N) by c. Note that (⊥, ∅) can be abbreviated to ⊥, in which case ⊥
may not be omitted. An extended clause {(c1, N1), . . . , (cn, Nn)} with Ni = ∅ for all i is called
a trivially extended clause. A (trivially) extended rule is of the form Y ← X, where Y is a
clause and X is a (trivially) extended clause. An (extended disjunctive) program consists of a
set of extended rules.

We note that an extended disjunctive program which consists of trivially extended rules
only, can be identified with a (non-extended) disjunctive logic program.

4.5 Example The following extended program P is a more suitable representation of the
even numbers program above. We use again the notation from Example 2.2.

{p0} ← {(⊥, ∅)}
{pn+1} ← {(⊥, {pn})} for all n ∈ N

13

In abbreviated form, this program may be written as

{p0} ← {⊥}
{pn+1} ← {¬pn} for all n ∈ N.

We now seek a reasonable notion of logical consequence of this extended program. Consider
some candidate theory T which forms our belief. We next remove from the program all ¬pn

for which pn is not a logical consequence of T , i.e. we consider these pn to be refuted by default.
Then we remove all extended preconditions (c, N) for which there is p ∈ N with T |= {p}.
The remaining program is no longer extended, and we call it P/T . From P/T we can obtain
its set of logical consequences, e.g. as T ′ = fix

(
TP/T

)
. However, since T ′ is in general different

from T , the set of elements which are refuted by default using T ′ is different from the set of
elements refuted by default using T . But this means, that we are rather searching for a theory
S with S = fix

(
TP/S

)
, or in other words, if we define the operator DP on theories (i.e. sets of

clauses) by DP (A) = fix
(
TP/A

)
, then we are searching for fixed points of the operator DP . It

is in fact easy to see that the desired theory cons({{p2n} | n ∈ N}) is a fixed point of DP . It
is indeed its unique fixed point, as we will see later, which is rather satisfactory.

The reader familiar with the stable model semantics for logic programming [GL88] may
recognize the constructions made in Example 4.5: It is the original approach to stable models.
This can be carried over to logic programs with disjunctions as consequents of their rules
and containing two kinds of negation, namely classical negation and default negation. Such
programs are called extended disjunctive logic programs, and we refer to [GL91] for the stable
model semantics for these programs, which we will now lift to logic programming on coherent
algebraic domains.

4.6 Definition Let D be a coherent algebraic domain, let P be an extended disjunctive
program, and let T be a theory. We define P/T to be the (non-extended) program obtained
by applying the following two transformations: (1) Delete from P all ¬d for which d is not a
logical consequence of T . (2) Delete all extended preconditions (c, N) for which there is d ∈ N
with T |= {d}. We define the Gelfond-Lifschitz operator or default operator DP as a function
on theories as DP (T) = fix

(
TP/T

)
. A stable model of P is a fixed point of DP , i.e. a theory T

such that DP (T) = fix
(
TP/T

)
= T .

We obtain immediately from the definition that stable models are logically closed. Indeed,
DP maps logically closed theories to logically closed theories.

In order to justify our terminology, we have to explain what a model of an extended
disjunctive program is.

4.7 Definition Consider a pair (T, S) of theories, which we call an interpretation, and let
(c, N) be an extended precondition. We write (T, S) |= (c, N) if T |= {c} and for all d ∈ N we
have S 6|= {d}. If X is an extended clause, then we write (T, S) |= X if (T, S) |= C for some
extended precondition C in X. The pair (T, S) is called a model of P if for every extended
rule Y ← X we have that (T, S) |= X implies T |= Y . An interpretation (T, S) is called
consistent if cons(T) ⊆ cons(S). It is called ideal if T = cons(T) = cons(S).

14

We can now identify every theory T with the ideal interpretation (cons(T), cons(T)). From
this point of view, fixed points of the default operator are indeed models, as is easily verified.

The following technical result is analogous to Proposition 4.2.

4.8 Proposition Let P be an extended disjunctive program. Let Q be the set of all rules
Y ← {(d,N)} for which there is a rule Y ← Z in P with (d,N) ∈ Z. Then P and Q have the
same stable models.

Proof: Let T be a theory. By Proposition 4.2, the programs P/T and Q/T have the same set
of logical consequences, which suffices. �

Proposition 4.8 shows that it suffices to consider progams consisting of rules with single
extended preconditions in the antecedent. For convenience, we will call such programs singular.

4.9 Proposition Let T and S be logically closed theories and S ⊆ T . Then DP (T) ⊆ DP (S),
i.e. DP (T) is antitonic. In particular, D2

P is monotonic with respect to set-inclusion on the set
of all logically closed theories.

Proof: By Proposition 4.8, we can assume without loss of generality that P is singular. From
Definition 4.6 we immediately obtain that P/T ⊆ P/S, and therefore that UP/T (R) ⊆ UP/S(R)
for all theories R. Consequently, cons(P/T) ⊆ cons(P/S), i.e. DP (T) ⊆ DP (S). �

4.10 Remark The operator D2
P is not in general Scott-continuous: Consider the program P

consisting of the following rules, using the notation from Example 4.5.

{p0} ← {⊥}
{pn+1} ← {¬pn} for all n ∈ N
{q} ← {¬pn¬pn+1} for all n ∈ N
{r} ← {¬q}

We can now calculate

G0 = DP (cons({⊥})) = cons({{q}, {r}, {pn} | n ∈ N})
L1 = DP (G0) = cons({{p0}})
G1 = DP (L1) = cons({{q}, {r}, {pn} | n ∈ N \ {1}})
L2 = DP (G1) = cons({{p0}, {p2}})

...

Gn = DP (Ln) = cons({{q}, {r}, {pk} | k ∈ N \ {1, . . . , 2n− 1}})
Ln+1 = D2

P (Ln) = DP (Gn) = cons({{p0}, . . . , {p2n}}),
and we obtain

Lω =
⋃
n∈N

Ln = cons({{p2n} | n ∈ N})

DP (Lω) = cons({{r}, {p2n} | n ∈ N})
D2

P (Lω) = cons({{r}, {p2n} | n ∈ N}) 6= Lω,

which shows that D2
P is not Scott-continuous.

15

Although in general D2
P fails to be Scott-continuous, we can make use of Proposition 4.9,

which shows that it is monotonic, and that DP is antitonic. So by the well-known Tarski
fixed-point theorem, we obtain that D2

P has a least fixed point, LP = lfp (D2
P), and a greatest

fixed point, GP = gfp (D2
P).

4.11 Lemma LP = DP (GP) and GP = DP (LP).

Proof: We obtain D2
P (DP (LP)) = DP (D2

P (LP)) = DP (LP), i.e. DP (LP) is a fixed point of
D2

P , hence LP ⊆ DP (LP) ⊆ GP . Similarly, LP ⊆ DP (GP) ⊆ GP . Since LP ⊆ GP we get from
Proposition 4.9 that LP ⊆ DP (GP) ⊆ DP (LP) ⊆ GP . Similarly, since DP (LP) ⊆ GP we obtain
DP (GP) ⊆ D2

P (LP) = LP ⊆ DP (GP), so DP (GP) = LP , and GP = D2
P (GP) = DP (LP). �

4.12 Proposition (LP , GP) is a consistent model of P .

Proof: Consistency follows from LP ⊆ GP . It remains to show that (LP , GP) = (LP ,DP (LP))
is a model of P . Assume without loss of generality that P is singular, and assume that Y ←
{(c, N)} is an extended rule in P with (LP , GP) |= (c, N). Then Y ← {c} is a rule in P/GP ,
and LP |= {c}, hence fix

(
TP/GP

)
= DP (GP) |= {c} and LP = fix

(
TP/GP

)
= DP (GP) |= Y as

required. �

We call (LP , GP) the well-founded model of P , borrowing terminology from nonmonotonic
reasoning [Sub99].

4.13 Theorem For every stable model S we have LP ⊆ S ⊆ DP (LP). Furthermore, if
LP = DP (LP) for some program P , i.e. if the well-founded model is ideal, then P has unique
stable model LP .

Proof: S is a fixed point of DP , hence a fixed point of D2
P which suffices using Lemma 4.11.

�

Considering again the program P from Remark 4.10, we notice that D2
P (Lω) = DP (Lω)

is the least fixed point of D2
P , and from Theorem 4.13 we obtain that DP (Lω) is the unique

stable model of P . Similar considerations hold for the even numbers program from Example
4.5.

4.2 Implicit and Explicit Knowledge

Extended disjunctive logic programming in algebraic domains enables us to represent knowl-
edge in a variety of ways. Causal dependence may be encoded in the structure of the domain,
i.e. implicitly, or explicitly by rules consituting a logic program. Likewise, negative informa-
tion may be encoded implicitly in the domain, by facilitating inconsistency, or explicitly by
using default negation. We give an example for this using a new representation of a classical
problem.

4.14 Example We want to represent the following knowledge: (1) Tweety is a penguin. (2)
Bob is a bird. (3) Birds fly or are penguins. (4) Birds always fly, unless the opposite can be
shown. (5) Pengunins don’t fly. (6) Penguins are birds.

16

We choose to represent (5) and (6) implicitly using the domain, and the remaining
statements by a program. We first describe the domain D. Consider the set of items
A = {p(T), p(B), b(T), b(B), f(T), f(B), n(T), n(B)}, where T stands for “Tweety”, B stands
for “Bob”, p(X) stands for “X is a penguin”, b(X) for “X is a bird”, f(X) for “X can fly”,
n(X) for “X cannot fly”. Now define D to be the set of all subsets c of A which satisfy the
following conditions for all X ∈ {B, T}: (i) c does not contain both f(X) and n(X). (ii) c
does not contain both b(X) and p(X). (iii) c does not contain both p(X) and n(X). (iv) c
does not contain both p(X) and f(X).

For c, d ∈ D let c ≤ d if and only if one of the following holds: (i) c ⊆ d, (ii) c =
(d \ p(X)) ∪ b(X) for some X ∈ {B, T}, (iii) c = (d \ p(X)) ∪ n(X). We consider the domain
(D,v), where v is the reflexive and transitive closure of ≤.

We note that in D, for all X ∈ {B, T}, sets containing both n(X) and f(X) are incon-
sistent, as are sets containing both p(X) and f(X). Now consider the following extended
disjunctive program P

{p(T)} ← {⊥}
{b(B)} ← {⊥}

{f(X), p(X)} ← {b(X)} for all X ∈ {B, T}
{f(X)} ← {b(X)¬n(X)} for all X ∈ {B, T}

and the interpretation S = cons({p(T), b(T), n(T), b(B), f(B)}). The reader will easily verify
that S is a stable model of P . In particular, we notice that in this model Tweety does not fly,
but Bob does.

Let us now analyse how knowledge is represented in Example 4.14. The sentences (1) to
(4) are certainly being represented by the clauses of the program P , while (5) and (6) are
satisfactorily represented by the structure of the underlying domain. We can regard (5) and (6)
as background knowledge, and thus obtain a conceptually clean way of distinguishing between
background or domain knowledge, and the explicit knowledge given by the program rules.
Likewise, negative knowledge is treated. “Flying” and “not flying” are opposite properties,
and can not hold of a single object at the same time. This knowledge is encoded in the
structure of the domain, by making them inconsistent. We had no need to endow the domain
with an explicit negation function as in Section 3.2, which would provide an alternative, but
in our opinion less concise way of treating Example 4.14. Default negation, however, was used
explicitly in the program, and in the tradition of default logic was used to represent rules
which “normally” hold, i.e. to which there may be exceptions.

5 Conclusions and Further Work

We introduced reasoning with negation to domain theory, in the form of logic programming
in coherent algebraic domains. Many possible lines of investigation open up from our first
observations, and we want to name just a few.

(1) Logic of domains. In the recent past, it became apparent that extended disjunctive
logic programming, and its appropriate semantics, provides a very powerful tool for knowledge
representation and reasoning, see eg. [Lif99, MT99]. It is therefore reasonable to expect that

17

the well-established research area concerned with the relationships and the interplay between
logic and domain theory could profit from extensions along these lines. Generalized approaches
to the well-founded and the stable semantics, as in [DMT00], could lead the way. For the
approach presented here it would be fortunate if the restriction to algebraic domains could
be disposed of, mainly because the interval domain fails to be algebraic.

(2) Domain-theory based logic programming. In classical logic programming, as imple-
mented for example in Prolog, the use of negation is still unsatisfactory from a theoretical
point of view, and it will probably remain so, since it can be argued that negation, as gener-
ally implemented in these systems, is not a clean declarative concept. Investigations on logic
programming in algebraic domains may at some stage lead to a clean programming paradigm,
including negation, which may be as powerful and applicable as modern Prolog systems. How
this can be achieved is yet unclear, but first steps along these lines have already been per-
formed, e.g. in [KRZ98]. Yet another line of research may be concerned with the machine
learning paradigm known as inductive logic programming (ILP), see [MdR94], which still
lacks a broad theoretical foundation. How this paradigm could be connected to domain the-
ory proper is unclear, in particular since the subsumption lattice, which features prominently
in ILP [NCdW97], fails to be a domain. As we have seen in Example 4.14 above, however,
logic programming in algebraic domains provides a very natural way for a conceptually clean
distinction between background knowledge and programs. For a domain-theory-based ILP
paradigm one would attempt to encode the background knowledge in the domain and learn
program rules.

(3) Theoretical foundations of answer set programming and deductive databases. Although
there is a broad base of theoretical work on answer set programming ([Lif99, MT99]) and
deductive databases ([Min97]), domain-theoretic foundations have, to our knowledge, not yet
been studied for these paradigms — apart from some investigations concerning fixed-point
semantics, e.g. [KKM93, HS99, DMT00, Hit01]. Extended disjunctive logic programming as
presented in this report may provide an important link.

References

[Cla78] K.L. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic and
Data Bases, pages 293–322. Plenum Press, New York, 1978.

[CZ00] T. Coquand and G.-Q. Zhang. Sequents, frames, and completeness. In 14th Inter-
national Workshop on Computer Science Logic, Fischbachau, Germany, August
2000, volume 1862 of Lecture Notes in Computer Science, pages 277–291. Springer,
2000.

[DMT00] M. Denecker, V.W. Marek, and M. Truszynski. Approximating operators, stable
operators, well-founded fixpoints and applications in non-monotonic reasoning.
In J. Minker, editor, Logic-based Artificial Intelligence, chapter 6, pages 127–144.
Kluwer Academic Publishers, Boston, 2000.

[Fit85] M. Fitting. A Kripke-Kleene-semantics for general logic programs. Journal of
Logic Programming, 2:295–312, 1985.

18

[Fit94] M. Fitting. Metric methods: Three examples and a theorem. Journal of Logic
Programming, 21(3):113–127, 1994.

[GL88] M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.
In R.A. Kowalski and K.A. Bowen, editors, Logic Programming. Proceedings of
the 5th International Conference and Symposium on Logic Programming, pages
1070–1080. MIT Press, 1988.

[GL91] M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive
databases. New Generation Computing, 9:365–385, 1991.

[GRS91] A. Van Gelder, K.A. Ross, and J.S. Schlipf. The well-founded semantics for general
logic programs. Journal of the ACM, 38(3):620–650, 1991.

[Hit01] P. Hitzler. Generalized Metrics and Topology in Logic Programming Semantics.
PhD thesis, Department of Mathematics, National University of Ireland, Univer-
sity College Cork, 2001.

[HS99] P. Hitzler and A.K. Seda. Some issues concerning fixed points in computational
logic: Quasi-metrics, multivalued mappings and the Knaster-Tarski theorem. In
Proceedings of the 14th Summer Conference on Topology and its Applications: Spe-
cial Session on Topology in Computer Science, New York, volume 24 of Topology
Proceedings, pages 223–250, 1999.

[HS0x] P. Hitzler and A.K. Seda. Generalized metrics and uniquely determined logic
programs. Theoretical Computer Science, 200x. To appear.

[Joh82] P. T. Johnstone. Stone Spaces. Number 3 in Cambridge studies in advanced
mathematics. Cambridge University Press, 1982.

[KKM93] M.A. Khamsi, V. Kreinovich, and D. Misane. A new method of proving the exis-
tence of answer sets for disjunctive logic programs: A metric fixed-point theorem
for multivalued mappings. In C. Baral and M. Gelfond, editors, Proceedings of the
Workshop on Logic Programming with Incomplete Information, Vancouver, B.C.,
Canada, pages 58–73, 1993.

[KRZ98] E. Klavins, W. Rounds, and G.-Q. Zhang. Experimenting with power default rea-
soning. In Proceedings of the AAAI National Conference on Artificial Intelligence,
1998.

[Lif99] V. Lifschitz. Answer set planning. In D. De Schreye, editor, Logic Programming.
Proceedings of the 1999 International Conference on Logic Programming, pages
23–37, Cambridge, Massachusetts, 1999. MIT Press.

[MdR94] S. Muggleton and L. de Raedt. Inductive logic programming: Theory and appli-
cations. Journal of Logic Programming, 19–20:629–679, 1994.

[Min97] J. Minker. Logic and databases: Past, present, and future. AI Magazine, 18(3):21–
47, 1997.

19

[MT99] V.M. Marek and M. Truszczyński. Stable models and an alternative logic pro-
gramming paradigm. In K.R. Apt, V.W. Marek, M. Truszczyński, and D.S. War-
ren, editors, The Logic Programming Paradigm: A 25 Year Persepective, pages
375–398. Springer, Berlin, 1999.

[NCdW97] S.-H. Nienhuys-Cheng and R. de Wolf. Foundations of Inductive Logic Program-
ming, volume 1228 of Lecture Notes in Artificial Intelligence. Springer, Berlin,
1997.

[Plo78] G. Plotkin. Tω as a universal domain. Journal of Computer and System Sciences,
17:209–236, 1978.

[Prz88] T.C. Przymusinski. On the declarative semantics of deductive databases and
logic programs. In J. Minker, editor, Foundations of Deductive Databases and
Logic Programming, pages 193–216. Morgan Kaufmann, Los Altos, CA, 1988.

[RZ01] W.C. Rounds and G.-Q. Zhang. Clausal logic and logic programming in algebraic
domains. Information and Computation, 171(2):156–182, 2001.

[Sub99] V.S. Subrahmanian. Nonmonotonic logic programming. IEEE Transactions on
Knowledge and Data Engineering, 11(1):143–152, January/February 1999.

20

