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Review: Datalog

A rule-based query language

• Syntax: Rules based on first-order atoms based on terms (constants or variables)
and predicate symbols

• Semantics: Logical semantics based on first-order logic entailment from a
database viewed as a set of facts; therefore set-based

Example: Recursively finding all ancestors of Alice:

Parent(x, y) :− father(x, y)

Parent(x, y) :− mother(x, y)

Ancestor(x, y) :− Parent(x, y)

Ancestor(x, z) :− Parent(x, y), Ancestor(y, z)

Result(y) :− Ancestor(alice, y)
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Negation

Negation enables us to ask for the absence of some data or inference.

Example 9.1: SPARQL supports negation in the form of the NOT EXISTS filter:

SELECT ?person WHERE {
?person wdt:P19 wd:Q1731 . # born in Dresden

FILTER NOT EXISTS { ?person wdt:P570 ?date } # no date of death
}

To achieve such expressivity in Datalog, we can add a form of logical negation.

Example 9.2: Using negation, a query for living people born in Dresden could be
expressed as follows:

HasDied(x) :− triple(x, wdt:P570, y)

Result(x) :− triple(x, wdt:P19, wd:Q1731),¬HasDied(x)
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Semantics of negation

A negated ground atom ¬A is true over a database D if A < D. So we can define:

TP(I) = {Hσ | H :− B1, . . . , Bn,¬A1, . . . ,¬Am ∈ P,

B1σ, . . . , Bnσ ∈ I, and A1σ, . . . , Amσ < I

for some ground substitution σ}

We could then use this step-wise consequence operator to compute conclusions as
before . . .

. . . but there are some problems with that.
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Semantics of negation: Unsafe variables

What is the meaning of the following rule?

Result(x) :− triple(x, wdt:P19, wd:Q1731),¬triple(x, wdt:P570, y)

According to our definition of TP: “Find all x, such that x is born in Dresden and there
is a date y, such that x did not die on y.” (All variables, including y, are universally
quantified over the whole rule.)

Many systems do not allow this at all: they require that all variables in negated atoms
are safe, i.e., occur in non-negated atoms as well.

Some systems allow unsafe variables but assume that their universal quantifier is
below the negation: “Find all x, such that x is born in Dresden and for all dates y, we
find that x did not die on y.” (example systems: Clingo, Nemo)

Definition 9.3: A rule is safe if all of its variables occur in non-negated atoms in
its body.

Requiring all rules to be safe does not restrict expressivity (exercise).

Markus Krötzsch, 9 Jan 2025 Knowledge Graphs slide 6 of 23



Semantics of negation: Unsafe variables

What is the meaning of the following rule?

Result(x) :− triple(x, wdt:P19, wd:Q1731),¬triple(x, wdt:P570, y)

According to our definition of TP: “Find all x, such that x is born in Dresden and there
is a date y, such that x did not die on y.” (All variables, including y, are universally
quantified over the whole rule.)

Many systems do not allow this at all: they require that all variables in negated atoms
are safe, i.e., occur in non-negated atoms as well.

Some systems allow unsafe variables but assume that their universal quantifier is
below the negation: “Find all x, such that x is born in Dresden and for all dates y, we
find that x did not die on y.” (example systems: Clingo, Nemo)

Definition 9.3: A rule is safe if all of its variables occur in non-negated atoms in
its body.

Requiring all rules to be safe does not restrict expressivity (exercise).

Markus Krötzsch, 9 Jan 2025 Knowledge Graphs slide 6 of 23



Semantics of negation: Unsafe variables

What is the meaning of the following rule?

Result(x) :− triple(x, wdt:P19, wd:Q1731),¬triple(x, wdt:P570, y)

According to our definition of TP: “Find all x, such that x is born in Dresden and there
is a date y, such that x did not die on y.” (All variables, including y, are universally
quantified over the whole rule.)

Many systems do not allow this at all: they require that all variables in negated atoms
are safe, i.e., occur in non-negated atoms as well.

Some systems allow unsafe variables but assume that their universal quantifier is
below the negation: “Find all x, such that x is born in Dresden and for all dates y, we
find that x did not die on y.” (example systems: Clingo, Nemo)

Definition 9.3: A rule is safe if all of its variables occur in non-negated atoms in
its body.

Requiring all rules to be safe does not restrict expressivity (exercise).

Markus Krötzsch, 9 Jan 2025 Knowledge Graphs slide 6 of 23



Semantics of negation: Unsafe variables

What is the meaning of the following rule?

Result(x) :− triple(x, wdt:P19, wd:Q1731),¬triple(x, wdt:P570, y)

According to our definition of TP: “Find all x, such that x is born in Dresden and there
is a date y, such that x did not die on y.” (All variables, including y, are universally
quantified over the whole rule.)

Many systems do not allow this at all: they require that all variables in negated atoms
are safe, i.e., occur in non-negated atoms as well.

Some systems allow unsafe variables but assume that their universal quantifier is
below the negation: “Find all x, such that x is born in Dresden and for all dates y, we
find that x did not die on y.” (example systems: Clingo, Nemo)

Definition 9.3: A rule is safe if all of its variables occur in non-negated atoms in
its body.

Requiring all rules to be safe does not restrict expressivity (exercise).

Markus Krötzsch, 9 Jan 2025 Knowledge Graphs slide 6 of 23



Semantics of negation: Unsafe variables

What is the meaning of the following rule?

Result(x) :− triple(x, wdt:P19, wd:Q1731),¬triple(x, wdt:P570, y)

According to our definition of TP: “Find all x, such that x is born in Dresden and there
is a date y, such that x did not die on y.” (All variables, including y, are universally
quantified over the whole rule.)

Many systems do not allow this at all: they require that all variables in negated atoms
are safe, i.e., occur in non-negated atoms as well.

Some systems allow unsafe variables but assume that their universal quantifier is
below the negation: “Find all x, such that x is born in Dresden and for all dates y, we
find that x did not die on y.” (example systems: Clingo, Nemo)

Definition 9.3: A rule is safe if all of its variables occur in non-negated atoms in
its body.

Requiring all rules to be safe does not restrict expressivity (exercise).
Markus Krötzsch, 9 Jan 2025 Knowledge Graphs slide 6 of 23



Semantics of negation: Recursion
Even if rules are safe, the unrestricted use of negation in recursive queries leads to
semantic problems:

Example 9.4: Consider the following facts and query:

human(greta)

Adult(x) :− human(x),¬Child(x)

Child(x) :− human(x),¬Adult(x)

What should be the result if Child were the query predicate?

If we define the sequence Di
P as before, we obtain:

• D1
P = D = {human(greta))}

• D2
P = D ∪ TP(D1

P) = D ∪ {Adult(greta), Child(greta)}
• D3

P = D ∪ TP(D2
P) = D1

P
• D4

P = D ∪ TP(D3
P) = D2

P = D∞P
{ non-monotonic behaviour leads to unfounded conclusions
(e.g., that all humans are both adults and children)
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Stratified negation

Observation: Iterative evaluation of rules fails if negation is freely used in recursion

• Initially, when no facts were derived, many negated atoms are true

• However, these initially true atoms can become false when more inferences are
computed

To avoid recursion through negation, one can try to organise rules in “layers” or “strata”:

Definition 9.5: Let P be a set of rules with negation. A function ℓ that assigns a
natural number ℓ(p) to every predicate p is a stratification of P if the following are
true for every rule h(t) :− p1(s1), . . . , pn(sn),¬q1(r1), . . . ,¬qm(rm) ∈ P:

1. ℓ(h) ≥ ℓ(pi) for all i ∈ {1, . . . , n}

2. ℓ(h) > ℓ(qi) for all i ∈ {1, . . . , m}

Intuition: The function s defines the “level” of the rule. By applying rules exhaustively
level-by-level, we can avoid non-monotonic behaviour.
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Evaluating stratified rules

Evaluation of stratified programs: Let D be a database and let P be a program
with stratification ℓ, with values of ℓ ranging from 1 to h (without loss of generality).

• For i ∈ {1, . . . , h}, we define sub-programs for each stratum:
Pi = {h(t) :− p1(s1), . . . , pn(sn),¬q1(r1), . . . ,¬qm(rm) ∈ P | ℓ(h) = i}

• Define D∞0 = D
• Now for i = 1, . . . , h, we define:

– D1
i = D∞i−1

– Dj+1
i = D∞i−1 ∪ TPi (D

j
i)

– D∞i =
⋃

j≥1 Dj
i is the limit of this process

• The evaluation of P over D is D∞h .

Observations:
• For every i, the sequence D1

i ⊆ D2
i ⊆ . . . is increasing, since facts relevant for

negated body literals are not produced in any Dj
i (due to stratification)

• Such increasing sequences must be finite (since the set of all possible facts is finite)
{ The limits D∞i are computed after finitely many steps
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The perfect model

Summary: The stratified evaluation of rules terminates after finitely many steps
(bounded by the number of possible facts)

What is the set of facts that we obtain from this procedure?

Fact 9.6: For a database D and stratified program P, the set of facts M that is
obtained by the stratified evaluation procedure is the least set of facts with the
property that

M = D ∪ TP(M).

In particular, M does not depend on the stratification that was chosen.

M is called perfect model or unique stable model in logic programming.

Intuition: The stratified evaluation is the smallest set of self-supporting true facts that
can be derived

• This is not the set of inferences under classical logical semantics! (exercise)

• But it is a good extension of negation in queries to the recursive setting.
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Obtaining a stratification

To find a stratification, the following algorithm can be used:

Input: program P

• Construct a directed graph with two types of edges,
+
→ and

−
→:

– The vertices are the predicate symbols in P
– p

+
→ q if there is a rule with p in its non-negated body and q in the head

– p
−
→ q if there is a rule with p in its negated body and q in the head

• Then P is stratified if and only if the graph contains no directed cycle that
involves an edge

−
→

• In this case, we can obtain a stratification as follows:
(1) produce a topological order of the strongly connected components of

this directed graph (without distinguishing edge types), e.g., using
Tarjan’s algorithm

(2) assign numerical strata bottom-up to all predicates in each component
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Outlook: Beyond stratified negation

Stratified negation is usually sufficient for query answering.
Non-stratified negation is relevant in optimisation and constraint solving.

Handling non-stratified negation:

• Recursion through negation gives rise to multiple alternative interpretations

• Semantics can be defined in many ways, e.g., stable models (answer set
programming), well-founded semantics, and classical semantics

• See various other courses (e.g., “Advanced Problem Solving and Search”)

Stratified negation allows us to express non-monotonic queries.
However, not all polynomial-time queries are expressible.

Capturing PTime:

• To express all polytime queries, in addition to stratified negation, Datalog needs a
total order on the domain (defined by special predicates)

• See course “Database Theory” for details
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Datalog in Practice
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Datalog vs. SPARQL: Supported features
Datalog with stratified negation captures and extends important parts of SPARQL:

• Basic Graph Patterns: are simply conjunctions of triple-atoms
• Path expressions: Datalog does not support paths syntactically, but they can be

captured in Datalog
• Union: disjunction can be expressed in Datalog using several rules (exercise)
• Minus and Not Exists: can be expressed with stratified negation in Datalog
• Values: can be declared by Datalog facts

Recall: Datalog always assumes set semantics (Distinct in SPARQL)

Example 9.7: The following rules are an alternative to express the property path
pattern eg:JSBach (ˆeg:hasFather|ˆeg:hasMother)+ ?x:

Result(x) :− triple(x, eg:hasFather, eg:JSBach)

Result(x) :− triple(x, eg:hasMother, eg:JSBach)

Result(x) :− Result(y), triple(x, eg:hasFather, y)

Result(x) :− Result(y), triple(x, eg:hasMother, y)
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Datalog vs. SPARQL: Missing features

Many other SPARQL features are not part of plain Datalog:

• Filters: filter conditions (and datatypes) are not part of the pure logical definition of
Datalog

• Bind: computed functions are not part of plain Datalog

• Optional: Datalog (and logic in general) does not have a direct way to handle
partial result mappings, and there is no equivalent to Optional

• Aggregates: Datalog does not support aggregates, as they introduce
non-monotonic behaviour in general

• Subqueries: Datalog cannot express nested limit/offset/order by

{ practical implementations often add such features
(leading to many custom extensions of Datalog)
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Implementations of Datalog

Many implementations of Datalog exist:

• In-Memory systems for query answering and
data analysis: Graal, Nemo, RDFox, Soufflé, Vadalog, Rulewerk/VLog, . . .

• Answer set programming engines: Clingo, DLV(2), . . .

• Logic programming engines: Prolog implementations

• Data management frameworks: Datomix, Google Logica, . . .

• “Business Rule” engines with database backend support

{ many use cases; many different implementation approaches

Compatibility with knowledge graph formats:

• Rules can support RDF and related technologies (IRI, datatypes)

• Most common for in-memory systems: Graal, Nemo, RDFox, and Rulewerk
support RDF

• Nemo and RDFox also support SPARQL filters and aggregates
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Rules in Nemo
Nemo is a free rule engine that supports extensions of Datalog:
• Download, documentation, and source code online:
https://github.com/knowsys/nemo

• Command-line client, programming APIs (Rust, Python, JavaScript), and as
browser-based application: https://tools.iccl.inf.tu-dresden.de/nemo/

• Support for evaluating Datalog queries over RDF files and SPARQL query results
• Stratified negation and many additional features

Example 9.8: Nemo uses a textual syntax for rules, which is slightly different from
the one we used so far. Variables are marked by ?, negation is written as ~, and
rules end with a full stop:

Parent(?x,?y) :- father(?x,?y) .

Parent(?x,?y) :- mother(?x,?y) .

Ancestor(?x,?y) :- Parent(?x,?y) .

Ancestor(?x,?z) :- Parent(?x,?y), Ancestor(?y,?z) .

Result(?y) :- Ancestor(alice,?y), ~profession(?y,composer) .
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Filters and value assignments in Nemo

Nemo supports many SPARQL filters and functions as built-in predicates and built-in
functions.

Example 9.9: Many expressions use the same names as in SPARQL. Common
operators like + can also be written as usual. Instead of BIND, equality = can be
used in rule bodies (logically, there is no distinction between assignment and com-
parison, so there is no ==).

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

label(?s,STR(?label)) :- triple(?s, rdfs:label, ?o), LANG(?o)="en" .

shortLabel(?s,?l) :- label(?s,?l), STRLEN(?l) < 3 .

hasArea(?x,?A) :- rectangle(?x), width(?x,?W), length(?x,?L),

?A = ?W * ?L .
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Aggregates in Nemo
Nemo supports aggregate functions such as COUNT. Aggregates are used in rule
heads and marked by a leading #.

Example 9.10: Aggregates are grouped by all variables that appear in the rule
head outside of aggregate functions.

label(?givenName,#count(?id)) :- person(?id,?givenName,?familyName) .

This would correspond to the SPARQL query:

SELECT ?givenName (COUNT(DISTINCT ?id) AS ?count)
WHERE {
?id <http://example.org/givenName> ?givenName .

?id <http://example.org/familyName> ?familyName .

}

GROUP BY ?givenName
DISTINCT is implied by the set semantics of Datalog. Expressions like #count(?id,?familyName) provide control over what is
projected away before building the set.

Other supported aggregates in Nemo include #min, #max, and #sum.
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Aggregates require stratification

Like negation, aggregates can capture non-monotonic conditions.

Example 9.11: Counting can be directly used to express negation:

countDDate(?person,#count(?date)) :- dateOfDeath(?person,?date) .

alive(?person) :- countDDate(?person, 0) .

To prevent related issues, Nemo requires aggregation to be stratified:

• Strata can be assigned to predicates as before (based on the dependency graph)

• Rules with aggregates in heads must only use body predicates from lower strata

Most datalog tools likewise require stratification of aggregates (e.g., Soufflé).

Answer set programming tools allow for unstratified aggregates (under somewhat
different semantics).
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RDF and SPARQL in Nemo

Facts in Nemo can be loaded from RDF files or from CSV files returns from SPARQL
services.

Example 9.12: The following lines load data into two predicates:

@import triple :- rdf{resource="file.nt"} .

@import awards :- tsv{ resource=f"{?endpoint}?query={URIENCODE(?q)}",

ignore_headers=true},

?endpoint = "https://query.wikidata.org/sparql",

?q = """

SELECT ?award ?awardLabel WHERE {

wd:Q42 wdt:P166 ?award .

?award rdfs:label ?awardLabel FILTER(LANG(?awardLabel) = "en")

}

""" .

Note: The query works without prefix declarations since the Wikidata endpoint has default prefixes.
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Full documentation is avaiable online:
https://knowsys.github.io/nemo-doc/
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Summary

Stratified negation is a simple way of adding negation to recursive queries

Datalog can capture and extend many basic features of SPARQL, and can be extended
to include many datatypes, aggregates, and filters

SPARQL features that are uncommon in Datalog are optional, ordering, and multiset
semantics

Nemo is a free RDF-compatible rule engine

What’s next?

• Further KG query languages

• Knowledge Graph quality

• Schemas for knowledge graphs
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