
COMPLEXITY THEORY
Lecture 26: Interactive Proof Systems

Stephan Mennicke

Knowledge-Based Systems

TU Dresden, 20 Jan 2026

More recent versions of this slide deck might be available.
For the most current version of this course, see
https://iccl.inf.tu-dresden.de/web/Complexity_Theory/en

https://iccl.inf.tu-dresden.de/web/Complexity_Theory_(WS2025)
https://iccl.inf.tu-dresden.de/web/Complexity_Theory/en

Believing without proof?

“Real mathematicians should only believe in mathematical statements that they
can prove themselves!”

Is this a sensible statement?

In other words: Could a rational mathematician be convinced of a formal claim without
having the slightest idea of how to prove it?

Stephan Mennicke; 20 Jan 2026 Complexity Theory slide 2 of 31

Believing without proof?

“Real mathematicians should only believe in mathematical statements that they
can prove themselves!”

Is this a sensible statement?

In other words: Could a rational mathematician be convinced of a formal claim without
having the slightest idea of how to prove it?

Stephan Mennicke; 20 Jan 2026 Complexity Theory slide 2 of 31

Motivation: Provers and Verifiers

Recall: languages in NP admit short, easy-to-check membership certificates

NP membership checking as an interaction of two parties:

• The Prover produces a certificate (proof of membership) that they claim to be valid

• The Verifier validates the certificate to decide upon acceptance

Can we generalise this idea?

• A (untrusted) Prover tries to convince the Verifier of membership

• Verifier sceptically checks the Prover’s arguments before making a decision

• The interaction might involve several rounds of communication

• The Prover might have unbounded computational power,
but the Verifier should operate in P

For which languages can such a polytime Verifier ensure that it can be convinced of
membership exactly for the words that really are in the language?

Stephan Mennicke; 20 Jan 2026 Complexity Theory slide 3 of 31

Motivation: Provers and Verifiers

Recall: languages in NP admit short, easy-to-check membership certificates

NP membership checking as an interaction of two parties:

• The Prover produces a certificate (proof of membership) that they claim to be valid

• The Verifier validates the certificate to decide upon acceptance

Can we generalise this idea?

• A (untrusted) Prover tries to convince the Verifier of membership

• Verifier sceptically checks the Prover’s arguments before making a decision

• The interaction might involve several rounds of communication

• The Prover might have unbounded computational power,
but the Verifier should operate in P

For which languages can such a polytime Verifier ensure that it can be convinced of
membership exactly for the words that really are in the language?

Stephan Mennicke; 20 Jan 2026 Complexity Theory slide 3 of 31

Motivation: Provers and Verifiers

Recall: languages in NP admit short, easy-to-check membership certificates

NP membership checking as an interaction of two parties:

• The Prover produces a certificate (proof of membership) that they claim to be valid

• The Verifier validates the certificate to decide upon acceptance

Can we generalise this idea?

• A (untrusted) Prover tries to convince the Verifier of membership

• Verifier sceptically checks the Prover’s arguments before making a decision

• The interaction might involve several rounds of communication

• The Prover might have unbounded computational power,
but the Verifier should operate in P

For which languages can such a polytime Verifier ensure that it can be convinced of
membership exactly for the words that really are in the language?

Stephan Mennicke; 20 Jan 2026 Complexity Theory slide 3 of 31

Example: Graph Isomorphism

We consider (undirected) graphs over a set of numbered vertices 1, 2, . . . , n.

Two graphs are isomorphic if one can be obtained from the other by a bijective renaming
(permutation) of vertices.

Graph Isomorphism

Input: Two graphs G1 and G2.

Problem: Is G1 isomorphic to G2?

Observations:

• Graph Isomorphism is in NP (certificate: renaming)

• There are n! many potential permutations, so exhaustive checking requires
exponential time

However, Graph Isomorphism is not known (or believed) to be NP-hard

Stephan Mennicke; 20 Jan 2026 Complexity Theory slide 4 of 31

Example: Graph Isomorphism

We consider (undirected) graphs over a set of numbered vertices 1, 2, . . . , n.

Two graphs are isomorphic if one can be obtained from the other by a bijective renaming
(permutation) of vertices.

Graph Isomorphism

Input: Two graphs G1 and G2.

Problem: Is G1 isomorphic to G2?

Observations:

• Graph Isomorphism is in NP (certificate: renaming)

• There are n! many potential permutations, so exhaustive checking requires
exponential time

However, Graph Isomorphism is not known (or believed) to be NP-hard

Stephan Mennicke; 20 Jan 2026 Complexity Theory slide 4 of 31

Example: Graph Isomorphism

We consider (undirected) graphs over a set of numbered vertices 1, 2, . . . , n.

Two graphs are isomorphic if one can be obtained from the other by a bijective renaming
(permutation) of vertices.

Graph Isomorphism

Input: Two graphs G1 and G2.

Problem: Is G1 isomorphic to G2?

Observations:

• Graph Isomorphism is in NP (certificate: renaming)

• There are n! many potential permutations, so exhaustive checking requires
exponential time

However, Graph Isomorphism is not known (or believed) to be NP-hard

Stephan Mennicke; 20 Jan 2026 Complexity Theory slide 4 of 31

Graph Non-Isomorphism

Graph Non-Isomorphism

Input: Two graphs G1 and G2.

Problem: Is G1 not isomorphic to G2?

There does not seem to be a short certificate for this, but there is an interactive protocol:

Protocol: given non-isomorphic graphs G1 and G2

• Verifier: randomly select i ∈ {1, 2}; randomly permute vertices of Gi to obtain
a new graph H; send H to the Prover

• Prover: determine which Gj (j ∈ {1, 2}) the graph H is isomorphic to; send j

• Verifier: accept if i = j, else reject

Analysis: The Prover can ensure acceptance for non-isomorphic graphs, but for
isomorphic graphs it can only achieve acceptance with probability 0.5 (which can be
reduced further by repeating the interaction several times) □

Stephan Mennicke; 20 Jan 2026 Complexity Theory slide 5 of 31

Graph Non-Isomorphism

Graph Non-Isomorphism

Input: Two graphs G1 and G2.

Problem: Is G1 not isomorphic to G2?

There does not seem to be a short certificate for this, but there is an interactive protocol:

Protocol: given non-isomorphic graphs G1 and G2

• Verifier: randomly select i ∈ {1, 2}; randomly permute vertices of Gi to obtain
a new graph H; send H to the Prover

• Prover: determine which Gj (j ∈ {1, 2}) the graph H is isomorphic to; send j

• Verifier: accept if i = j, else reject

Analysis: The Prover can ensure acceptance for non-isomorphic graphs, but for
isomorphic graphs it can only achieve acceptance with probability 0.5 (which can be
reduced further by repeating the interaction several times) □

Stephan Mennicke; 20 Jan 2026 Complexity Theory slide 5 of 31

Graph Non-Isomorphism

Graph Non-Isomorphism

Input: Two graphs G1 and G2.

Problem: Is G1 not isomorphic to G2?

There does not seem to be a short certificate for this, but there is an interactive protocol:

Protocol: given non-isomorphic graphs G1 and G2

• Verifier: randomly select i ∈ {1, 2}; randomly permute vertices of Gi to obtain
a new graph H; send H to the Prover

• Prover: determine which Gj (j ∈ {1, 2}) the graph H is isomorphic to; send j

• Verifier: accept if i = j, else reject

Analysis: The Prover can ensure acceptance for non-isomorphic graphs, but for
isomorphic graphs it can only achieve acceptance with probability 0.5 (which can be
reduced further by repeating the interaction several times) □

Stephan Mennicke; 20 Jan 2026 Complexity Theory slide 5 of 31

Zero-Knowledge Proofs

Running the previous protocol is interestingly uninformative:

• The Verifier can be convinced that ⟨G1, G2⟩ ∈ Graph Non-Isomorphism

• But the Verifier learns nothing about the reasons

• In particular, the Verifier would not be able to prove this to anybody else

This is called a zero-knowledge proof.

Note: The mathematical property that characterises such proofs formally is that the Verifier could have produced the whole interaction all by itself,

without the assistance of a Prover. This would not convince the Verifier, of course, but would not be distinguishable otherwise.

Stephan Mennicke; 20 Jan 2026 Complexity Theory slide 6 of 31

Making interactive proofs formal (1)

The interaction can be viewed as a sequence of messages m1, m2, . . . , mk, followed by
the Verifier declaring “accept” or “reject”.

The Verifier may consider the following:

• The input string w

• A string r of random bits (certificate-style view of random computation)

• A (partial) message history m1#m2# · · · #mi of messages exchanged so far
(odd-index messages are sent by Verifier, even-index messages by Prover)

{ Verifier can be described by a function V : Σ∗ × Σ∗ × Σ∗ → Σ∗ ∪ {accept, reject}

The Prover may consider the following:

• The input string w

• A (partial) message history m1#m2# · · · #mi of messages exchanged so far

{ Prover can be described by a function P : Σ∗ × Σ∗ → Σ∗

Stephan Mennicke; 20 Jan 2026 Complexity Theory slide 7 of 31

Making interactive proofs formal (2)

Definition 26.1: A word w is accepted by V and P with random string r if there is
a sequence of messages m1#m2# · · · #mk such that

• for all even i ≥ 0 we have mi+1 = V(w, r, m1# · · · #mi)
• for all odd i ≥ 0 we have mi+1 = P(w, m1# · · · #mi)
• mk = accept (and in particular k is odd)

In this case, we write (V ↔ P)(w, r) = accept.

Definition 26.2: A polynomial verifier V with bound p is a verifier function that
ensures that, for all inputs w, random strings r, and provers P, at most p(|w|) com-
putation steps are performed overall (across all interactions).

Note: Polynomial verifiers could, for example, use messages to store the number of
available steps that remain, and reject when this is used up.

Definition 26.3: A polynomial verifier V with bound p and a prover P accept a
word w with probability Pr [V ↔ P accepts w] = Prr∈{0,1}p(|w|) [(V ↔ P)(w, r) = accept].

Stephan Mennicke; 20 Jan 2026 Complexity Theory slide 8 of 31

Making interactive proofs formal (2)

Definition 26.1: A word w is accepted by V and P with random string r if there is
a sequence of messages m1#m2# · · · #mk such that

• for all even i ≥ 0 we have mi+1 = V(w, r, m1# · · · #mi)
• for all odd i ≥ 0 we have mi+1 = P(w, m1# · · · #mi)
• mk = accept (and in particular k is odd)

In this case, we write (V ↔ P)(w, r) = accept.

Definition 26.2: A polynomial verifier V with bound p is a verifier function that
ensures that, for all inputs w, random strings r, and provers P, at most p(|w|) com-
putation steps are performed overall (across all interactions).

Note: Polynomial verifiers could, for example, use messages to store the number of
available steps that remain, and reject when this is used up.

Definition 26.3: A polynomial verifier V with bound p and a prover P accept a
word w with probability Pr [V ↔ P accepts w] = Prr∈{0,1}p(|w|) [(V ↔ P)(w, r) = accept].

Stephan Mennicke; 20 Jan 2026 Complexity Theory slide 8 of 31

Making interactive proofs formal (2)

Definition 26.1: A word w is accepted by V and P with random string r if there is
a sequence of messages m1#m2# · · · #mk such that

• for all even i ≥ 0 we have mi+1 = V(w, r, m1# · · · #mi)
• for all odd i ≥ 0 we have mi+1 = P(w, m1# · · · #mi)
• mk = accept (and in particular k is odd)

In this case, we write (V ↔ P)(w, r) = accept.

Definition 26.2: A polynomial verifier V with bound p is a verifier function that
ensures that, for all inputs w, random strings r, and provers P, at most p(|w|) com-
putation steps are performed overall (across all interactions).

Note: Polynomial verifiers could, for example, use messages to store the number of
available steps that remain, and reject when this is used up.

Definition 26.3: A polynomial verifier V with bound p and a prover P accept a
word w with probability Pr [V ↔ P accepts w] = Prr∈{0,1}p(|w|) [(V ↔ P)(w, r) = accept].

Stephan Mennicke; 20 Jan 2026 Complexity Theory slide 8 of 31

The class IP

We can now formally define a class of languages that are accepted by polytime Verifiers
using interactive proofs:

Definition 26.4: A language L is in IP if there is a polynomial verifier V such that,
for every word w:

(1) if w ∈ L then there is a prover P with Pr [V ↔ P accepts w] ≥ 2
3 ,

(2) if w < L then for all provers P̃ we have Pr
[
V ↔ P̃ accepts w

]
≤ 1

3 .

In words:

• there is a “good” prover P that can convince V to accept w ∈ L with high probability
(note that the existence of one good prover for each w ∈ L implies that there is one globally good prover)

• not even a “bad” prover P̃ can convince V to accept words w < L with more than a
low probability

Stephan Mennicke; 20 Jan 2026 Complexity Theory slide 9 of 31

Probabilistic interactions

The definition of IP uses probabilistic computations

• The Verifier is a polynomially time-bounded probabilistic TM

• The Prover does not use randomness (and including it would not change IP)

• As discussed for BPP, we can amplify probabilities; in particular, the bounds 2
3 and

1
3 are not essential to the definition

The use of randomness in the Verifier is important for expressive power:

Theorem 26.5: Let IPd be the restriction of IP that is obtained when requiring V
to be deterministic (ignoring the random bits). Then IPd = NP.

The proof is not hard (exercise; or see Arora & Barak, Lemma 8.4)

Stephan Mennicke; 20 Jan 2026 Complexity Theory slide 10 of 31

Probabilistic interactions

The definition of IP uses probabilistic computations

• The Verifier is a polynomially time-bounded probabilistic TM

• The Prover does not use randomness (and including it would not change IP)

• As discussed for BPP, we can amplify probabilities; in particular, the bounds 2
3 and

1
3 are not essential to the definition

The use of randomness in the Verifier is important for expressive power:

Theorem 26.5: Let IPd be the restriction of IP that is obtained when requiring V
to be deterministic (ignoring the random bits). Then IPd = NP.

The proof is not hard (exercise; or see Arora & Barak, Lemma 8.4)

Stephan Mennicke; 20 Jan 2026 Complexity Theory slide 10 of 31

Obvious sub-classes of IP

Some observations are straightforward:

Theorem 26.6: NP ⊆ IP.

Proof: Use definition of NP via polynomial-time verifiers. □

Theorem 26.7: BPP ⊆ IP.

Proof: Verifier can solve BPP problems without talking to Prover. □

Stephan Mennicke; 20 Jan 2026 Complexity Theory slide 11 of 31

A superclass of IP

Interestingly, we can use another well-known class to capture IP from above:

Theorem 26.8: IP ⊆ PSpace.

Proof: Consider L ∈ IP with polynomial verifier V. For any word w, let

Pr [V accepts w] = max
P

Pr [V ↔ P accepts w] .

Then Pr [V accepts w] ≥ 2
3 if w ∈ L and Pr [V accepts w] ≤ 1

3 otherwise.

Goal: Compute the value of Pr [V accepts w] in PSpace.

Notation:
• Let Mj abbreviate a message sequence m1#m2# · · · #mj

• (V ↔ P)(w, r, Mj) = accept if (V ↔ P)(w, r) = accept for a message sequence
m1#m2# · · · #mk that extends Mj (in particular: Mj is possible with r, V and P)

• Pr
[
(V ↔ P) accepts w starting from Mj

]
= Prr∈{0,1}p(|w|) [(V ↔ P)(w, r, Mj) = accept]

• Pr
[
V accepts w starting from Mj

]
= maxP Pr

[
(V ↔ P) accepts w starting from Mj

]

Stephan Mennicke; 20 Jan 2026 Complexity Theory slide 12 of 31

A superclass of IP

Interestingly, we can use another well-known class to capture IP from above:

Theorem 26.8: IP ⊆ PSpace.

Proof: Consider L ∈ IP with polynomial verifier V. For any word w, let

Pr [V accepts w] = max
P

Pr [V ↔ P accepts w] .

Then Pr [V accepts w] ≥ 2
3 if w ∈ L and Pr [V accepts w] ≤ 1

3 otherwise.

Goal: Compute the value of Pr [V accepts w] in PSpace.

Notation:
• Let Mj abbreviate a message sequence m1#m2# · · · #mj

• (V ↔ P)(w, r, Mj) = accept if (V ↔ P)(w, r) = accept for a message sequence
m1#m2# · · · #mk that extends Mj (in particular: Mj is possible with r, V and P)

• Pr
[
(V ↔ P) accepts w starting from Mj

]
= Prr∈{0,1}p(|w|) [(V ↔ P)(w, r, Mj) = accept]

• Pr
[
V accepts w starting from Mj

]
= maxP Pr

[
(V ↔ P) accepts w starting from Mj

]

Stephan Mennicke; 20 Jan 2026 Complexity Theory slide 12 of 31

A superclass of IP

Interestingly, we can use another well-known class to capture IP from above:

Theorem 26.8: IP ⊆ PSpace.

Proof: Consider L ∈ IP with polynomial verifier V. For any word w, let

Pr [V accepts w] = max
P

Pr [V ↔ P accepts w] .

Then Pr [V accepts w] ≥ 2
3 if w ∈ L and Pr [V accepts w] ≤ 1

3 otherwise.

Goal: Compute the value of Pr [V accepts w] in PSpace.

Notation:
• Let Mj abbreviate a message sequence m1#m2# · · · #mj

• (V ↔ P)(w, r, Mj) = accept if (V ↔ P)(w, r) = accept for a message sequence
m1#m2# · · · #mk that extends Mj (in particular: Mj is possible with r, V and P)

• Pr
[
(V ↔ P) accepts w starting from Mj

]
= Prr∈{0,1}p(|w|) [(V ↔ P)(w, r, Mj) = accept]

• Pr
[
V accepts w starting from Mj

]
= maxP Pr

[
(V ↔ P) accepts w starting from Mj

]

Stephan Mennicke; 20 Jan 2026 Complexity Theory slide 12 of 31

A superclass of IP

Interestingly, we can use another well-known class to capture IP from above:

Theorem 26.8: IP ⊆ PSpace.

Proof: Consider L ∈ IP with polynomial verifier V. For any word w, let

Pr [V accepts w] = max
P

Pr [V ↔ P accepts w] .

Then Pr [V accepts w] ≥ 2
3 if w ∈ L and Pr [V accepts w] ≤ 1

3 otherwise.

Goal: Compute the value of Pr [V accepts w] in PSpace.

Notation:
• Let Mj abbreviate a message sequence m1#m2# · · · #mj

• (V ↔ P)(w, r, Mj) = accept if (V ↔ P)(w, r) = accept for a message sequence
m1#m2# · · · #mk that extends Mj (in particular: Mj is possible with r, V and P)

• Pr
[
(V ↔ P) accepts w starting from Mj

]
= Prr∈{0,1}p(|w|) [(V ↔ P)(w, r, Mj) = accept]

• Pr
[
V accepts w starting from Mj

]
= maxP Pr

[
(V ↔ P) accepts w starting from Mj

]
Stephan Mennicke; 20 Jan 2026 Complexity Theory slide 12 of 31

IP ⊆ PSpace

Theorem 26.8: IP ⊆ PSpace.

Proof (cont.): What we seek is Pr [V accepts w] = Pr
[
V accepts w starting from M0

]
,

where M0 is the empty message sequence.

We define numbers N[Mj] recursively, with the longest possible sequences as base case:

1. If Mj cannot be produced by V for any r (and P), then N[Mj] = 0.
2. Else, if j is odd and Mj = m1# · · · #mj, then

2.1 If mj = accept then N[Mj] = 1
2.2 If mj = reject then N[Mj] = 0
2.3 If mj < {accept, reject} then N[Mj] = maxmj+1 N[Mj#mj+1]

3. Else, if j is even, then N[Mj] = wt-avgmj+1
N[Mj#mj+1]

where wt-avgmj+1
N[Mj#mj+1] =

∑
mj+1

Prr∈{0,1}p(|w|) [V(w, r, Mj) = mj+1] · N[Mj#mj+1]

In all cases, mj+1 ranges over (a superset of) the messages possible at this step (which
can be assumed to be of polynomial length, and are therefore bounded).

Note 1: Case 2.3 corresponds to best possible answer of any Prover
Note 2: Case 3 corresponds to probability-weighted average for given Verifier

Stephan Mennicke; 20 Jan 2026 Complexity Theory slide 13 of 31

IP ⊆ PSpace

Theorem 26.8: IP ⊆ PSpace.

Proof (cont.): What we seek is Pr [V accepts w] = Pr
[
V accepts w starting from M0

]
,

where M0 is the empty message sequence.

We define numbers N[Mj] recursively, with the longest possible sequences as base case:

1. If Mj cannot be produced by V for any r (and P), then N[Mj] = 0.
2. Else, if j is odd and Mj = m1# · · · #mj, then

2.1 If mj = accept then N[Mj] = 1
2.2 If mj = reject then N[Mj] = 0
2.3 If mj < {accept, reject} then N[Mj] = maxmj+1 N[Mj#mj+1]

3. Else, if j is even, then N[Mj] = wt-avgmj+1
N[Mj#mj+1]

where wt-avgmj+1
N[Mj#mj+1] =

∑
mj+1

Prr∈{0,1}p(|w|) [V(w, r, Mj) = mj+1] · N[Mj#mj+1]

In all cases, mj+1 ranges over (a superset of) the messages possible at this step (which
can be assumed to be of polynomial length, and are therefore bounded).

Note 1: Case 2.3 corresponds to best possible answer of any Prover
Note 2: Case 3 corresponds to probability-weighted average for given Verifier

Stephan Mennicke; 20 Jan 2026 Complexity Theory slide 13 of 31

IP ⊆ PSpace

Theorem 26.8: IP ⊆ PSpace.

Proof (cont.): What we seek is Pr [V accepts w] = Pr
[
V accepts w starting from M0

]
,

where M0 is the empty message sequence.

We define numbers N[Mj] recursively, with the longest possible sequences as base case:

1. If Mj cannot be produced by V for any r (and P), then N[Mj] = 0.
2. Else, if j is odd and Mj = m1# · · · #mj, then

2.1 If mj = accept then N[Mj] = 1
2.2 If mj = reject then N[Mj] = 0
2.3 If mj < {accept, reject} then N[Mj] = maxmj+1 N[Mj#mj+1]

3. Else, if j is even, then N[Mj] = wt-avgmj+1
N[Mj#mj+1]

where wt-avgmj+1
N[Mj#mj+1] =

∑
mj+1

Prr∈{0,1}p(|w|) [V(w, r, Mj) = mj+1] · N[Mj#mj+1]

In all cases, mj+1 ranges over (a superset of) the messages possible at this step (which
can be assumed to be of polynomial length, and are therefore bounded).

Note 1: Case 2.3 corresponds to best possible answer of any Prover
Note 2: Case 3 corresponds to probability-weighted average for given Verifier
Stephan Mennicke; 20 Jan 2026 Complexity Theory slide 13 of 31

IP ⊆ PSpace

Theorem 26.8: IP ⊆ PSpace.

Proof (cont.): We need to show two claims:

• Claim 1: N[Mj] = Pr
[
V accepts w starting from Mj

]
• Claim 2: N[Mj] can be computed in polynomial space

Together, this would show that N[M0] = Pr [V accepts w] can be computed in polynomial
space.

Claim 2 is not hard to see:

• The recursive computation of N[Mj] is of polynomially bounded depth (longer
message sequences are never consistent with a polynomial verifier V)

• Checking consistency with some r ∈ {0, 1}p(|w|) can be done by iterating over these r

• Computing maxmj+1 N[Mj#mj+1] is similar by iterating over all mj+1

• Computing wt-avgmj+1
N[Mj#mj+1] is also similar, using two iterations (over mj+1 and

over all r)

Stephan Mennicke; 20 Jan 2026 Complexity Theory slide 14 of 31

IP ⊆ PSpace

Theorem 26.8: IP ⊆ PSpace.

Proof (cont.): We need to show two claims:

• Claim 1: N[Mj] = Pr
[
V accepts w starting from Mj

]
• Claim 2: N[Mj] can be computed in polynomial space

Together, this would show that N[M0] = Pr [V accepts w] can be computed in polynomial
space.

Claim 2 is not hard to see:

• The recursive computation of N[Mj] is of polynomially bounded depth (longer
message sequences are never consistent with a polynomial verifier V)

• Checking consistency with some r ∈ {0, 1}p(|w|) can be done by iterating over these r

• Computing maxmj+1 N[Mj#mj+1] is similar by iterating over all mj+1

• Computing wt-avgmj+1
N[Mj#mj+1] is also similar, using two iterations (over mj+1 and

over all r)

Stephan Mennicke; 20 Jan 2026 Complexity Theory slide 14 of 31

IP ⊆ PSpace

Theorem 26.8: IP ⊆ PSpace.

Proof (cont.): Claim 1 can be shown by induction.

The base cases are when Mj is not consistent (impossible message sequence), or
already ends in accept or reject. The claim is clear for these cases.

For the induction step, assume the claim holds for all N[Mj+1] (ind. hypothesis, IH)

• For the case N[Mj] = wt-avgmj+1
N[Mj#mj+1], we compute:

N[Mj]
def
=
∑
mj+1

Prr∈{0,1}p(|w|) [V(w, r, Mj) = mj+1] · N[Mj#mj+1]

IH
=
∑
mj+1

Prr∈{0,1}p(|w|) [V(w, r, Mj) = mj+1] · Pr
[
V accepts w starting from Mj#mj+1

]
= Pr
[
V accepts w starting from Mj

]
(def. of acceptance probability for steps of V)

Stephan Mennicke; 20 Jan 2026 Complexity Theory slide 15 of 31

IP ⊆ PSpace

Theorem 26.8: IP ⊆ PSpace.

Proof (cont.): Claim 1 can be shown by induction.

The base cases are when Mj is not consistent (impossible message sequence), or
already ends in accept or reject. The claim is clear for these cases.

For the induction step, assume the claim holds for all N[Mj+1] (ind. hypothesis, IH)

• For the case N[Mj] = wt-avgmj+1
N[Mj#mj+1], we compute:

N[Mj]
def
=
∑
mj+1

Prr∈{0,1}p(|w|) [V(w, r, Mj) = mj+1] · N[Mj#mj+1]

IH
=
∑
mj+1

Prr∈{0,1}p(|w|) [V(w, r, Mj) = mj+1] · Pr
[
V accepts w starting from Mj#mj+1

]
= Pr
[
V accepts w starting from Mj

]
(def. of acceptance probability for steps of V)

Stephan Mennicke; 20 Jan 2026 Complexity Theory slide 15 of 31

IP ⊆ PSpace

Theorem 26.8: IP ⊆ PSpace.

Proof (cont.): Claim 1 can be shown by induction.

The base cases are when Mj is not consistent (impossible message sequence), or
already ends in accept or reject. The claim is clear for these cases.

For the induction step, assume the claim holds for all N[Mj+1] (ind. hypothesis, IH)

• For the case N[Mj] = maxmj+1 N[Mj#mj+1], we compute:

N[Mj]
IH
= max

mj+1
Pr
[
V accepts w starting from Mj#mj+1

]
= Pr
[
V accepts w starting from Mj

]
The second equality follows since this probability can be achieved by a Prover that
sends the message mj+1 that maximises N[M + j], and no higher probability can be
achieved by any other message.

This finishes the proof of the theorem. □

Stephan Mennicke; 20 Jan 2026 Complexity Theory slide 16 of 31

IP ⊆ PSpace

Theorem 26.8: IP ⊆ PSpace.

Proof (cont.): Claim 1 can be shown by induction.

The base cases are when Mj is not consistent (impossible message sequence), or
already ends in accept or reject. The claim is clear for these cases.

For the induction step, assume the claim holds for all N[Mj+1] (ind. hypothesis, IH)

• For the case N[Mj] = maxmj+1 N[Mj#mj+1], we compute:

N[Mj]
IH
= max

mj+1
Pr
[
V accepts w starting from Mj#mj+1

]
= Pr
[
V accepts w starting from Mj

]
The second equality follows since this probability can be achieved by a Prover that
sends the message mj+1 that maximises N[M + j], and no higher probability can be
achieved by any other message.

This finishes the proof of the theorem. □

Stephan Mennicke; 20 Jan 2026 Complexity Theory slide 16 of 31

IP ⊆ PSpace

Theorem 26.8: IP ⊆ PSpace.

Proof (cont.): Claim 1 can be shown by induction.

The base cases are when Mj is not consistent (impossible message sequence), or
already ends in accept or reject. The claim is clear for these cases.

For the induction step, assume the claim holds for all N[Mj+1] (ind. hypothesis, IH)

• For the case N[Mj] = maxmj+1 N[Mj#mj+1], we compute:

N[Mj]
IH
= max

mj+1
Pr
[
V accepts w starting from Mj#mj+1

]
= Pr
[
V accepts w starting from Mj

]
The second equality follows since this probability can be achieved by a Prover that
sends the message mj+1 that maximises N[M + j], and no higher probability can be
achieved by any other message.

This finishes the proof of the theorem. □
Stephan Mennicke; 20 Jan 2026 Complexity Theory slide 16 of 31

The power of the prover

Our definition of IP allows Prover to have unlimited computational power (possibly even
uncomputable behaviour).

However, our proof of IP ⊆ PSpace showed that the optimal Prover output for any given
Verifier can be computed in polynomial space, so we get:

Corollary 26.9: The class IP remains the same if the Prover is required to com-
pute its responses in polynomial space.

Stephan Mennicke; 20 Jan 2026 Complexity Theory slide 17 of 31

The power of IP

So far, we know that IP contains NP, BPP, but also Graph Non-Isomorphism, which is not
known to be in either class.

As we will see, IP can do much more. We start with the following problem:

#SAT

Input: A propositional logic formula φ.

Problem: The number of satisfying assign-
ments of φ

Note:

• #SAT is not a decision problem. Let #SATD = {⟨φ, k⟩ | k is the solution of #SAT on φ}
be the corresponding decision problem

• Computing #SAT solves propositional satisfiability as well as unsatisfiability.

• Indeed, it is complete for the powerful class #P

Stephan Mennicke; 20 Jan 2026 Complexity Theory slide 18 of 31

The power of IP

So far, we know that IP contains NP, BPP, but also Graph Non-Isomorphism, which is not
known to be in either class.

As we will see, IP can do much more. We start with the following problem:

#SAT

Input: A propositional logic formula φ.

Problem: The number of satisfying assign-
ments of φ

Note:

• #SAT is not a decision problem. Let #SATD = {⟨φ, k⟩ | k is the solution of #SAT on φ}
be the corresponding decision problem

• Computing #SAT solves propositional satisfiability as well as unsatisfiability.

• Indeed, it is complete for the powerful class #P

Stephan Mennicke; 20 Jan 2026 Complexity Theory slide 18 of 31

Solving #SATD in IP

Theorem 26.10: #SATD ∈ IP

We consider a formula φ of size n and with m propositional variables x1, . . . , xm.

For 1 ≤ i ≤ m, let fi : {0, 1}i → N be the function that maps ⟨a1, . . . , ai⟩ to the number of
satisfying assignments of φ with x1 = a1, . . . , xi = ai.

• Then f0() is the solution to #SAT

• We find fi(a1, . . . , ai) = fi+1(a1, . . . , ai, 0) + fi+1(a1, . . . , ai, 1)

Stephan Mennicke; 20 Jan 2026 Complexity Theory slide 19 of 31

#SATD ∈ IP: first attempt

Protocol: to check if ⟨φ, k⟩ ∈ #SATD

• P: send f0() to V

• V: check if f0() = k and reject if this fails
• For i = 1, . . . , m:

– P: send fi(a1, . . . , ai) to V for all ⟨a1, . . . , ai⟩ ∈ {0, 1}i

– V: check, for all a⃗ ∈ {0, 1}i−1, if fi−1(a⃗) = fi(a⃗, 0) + fi(a⃗, 1), reject if not

• V: check if, for all ⟨a1, . . . , am⟩ ∈ {0, 1}m, fm(a1, . . . , am) = 1 if and only if
{x1 7→ a1, . . . , xm 7→ am} is a satisfying assignment for φ; accept iff

This protocol does not show #SATD ∈ IP:
• it requires exponential time to perform exponentially many checks.

However, the protocol is otherwise correct:
• if k is the correct result, a truthful Prover can convince the Verifier
• if k is not correct, not even a mischievous Prover can convince the verifier

(exercise: why?)

Stephan Mennicke; 20 Jan 2026 Complexity Theory slide 20 of 31

#SATD ∈ IP: first attempt

Protocol: to check if ⟨φ, k⟩ ∈ #SATD

• P: send f0() to V

• V: check if f0() = k and reject if this fails
• For i = 1, . . . , m:

– P: send fi(a1, . . . , ai) to V for all ⟨a1, . . . , ai⟩ ∈ {0, 1}i

– V: check, for all a⃗ ∈ {0, 1}i−1, if fi−1(a⃗) = fi(a⃗, 0) + fi(a⃗, 1), reject if not

• V: check if, for all ⟨a1, . . . , am⟩ ∈ {0, 1}m, fm(a1, . . . , am) = 1 if and only if
{x1 7→ a1, . . . , xm 7→ am} is a satisfying assignment for φ; accept iff

This protocol does not show #SATD ∈ IP:
• it requires exponential time to perform exponentially many checks.

However, the protocol is otherwise correct:
• if k is the correct result, a truthful Prover can convince the Verifier
• if k is not correct, not even a mischievous Prover can convince the verifier

(exercise: why?)

Stephan Mennicke; 20 Jan 2026 Complexity Theory slide 20 of 31

#SATD ∈ IP: first attempt

Protocol: to check if ⟨φ, k⟩ ∈ #SATD

• P: send f0() to V

• V: check if f0() = k and reject if this fails
• For i = 1, . . . , m:

– P: send fi(a1, . . . , ai) to V for all ⟨a1, . . . , ai⟩ ∈ {0, 1}i

– V: check, for all a⃗ ∈ {0, 1}i−1, if fi−1(a⃗) = fi(a⃗, 0) + fi(a⃗, 1), reject if not

• V: check if, for all ⟨a1, . . . , am⟩ ∈ {0, 1}m, fm(a1, . . . , am) = 1 if and only if
{x1 7→ a1, . . . , xm 7→ am} is a satisfying assignment for φ; accept iff

This protocol does not show #SATD ∈ IP:
• it requires exponential time to perform exponentially many checks.

However, the protocol is otherwise correct:
• if k is the correct result, a truthful Prover can convince the Verifier
• if k is not correct, not even a mischievous Prover can convince the verifier

(exercise: why?)
Stephan Mennicke; 20 Jan 2026 Complexity Theory slide 20 of 31

Arithmetisation
To reduce the number of messages and checks, we use arithmetisation.

φ is transformed into an arithmetic expression Φ by replacing subexpressions:

• α ∧ β becomes αβ

• ¬α becomes (1 − α)
• α ∨ β becomes α ∗ β = 1 − (1 − α)(1 − β)

Some observations:
• Φ is a multivariate polynomial function over variables x1, . . . , xm

• The degree of Φ is bounded by the size n of φ
• The value of Φ for inputs xi ∈ {0, 1} is also in {0, 1}, and corresponds to the

valuation of φ on the corresponding truth values
• We can evaluate Φ over an arbitrary field

Example 26.11: For a prime number p, the algebra of natural numbers
{0, 1, . . . , p − 1} and where + and · are addition and multiplication modulo p
is a finite field. This field is denoted GF(p).

Stephan Mennicke; 20 Jan 2026 Complexity Theory slide 21 of 31

Arithmetisation
To reduce the number of messages and checks, we use arithmetisation.

φ is transformed into an arithmetic expression Φ by replacing subexpressions:

• α ∧ β becomes αβ

• ¬α becomes (1 − α)
• α ∨ β becomes α ∗ β = 1 − (1 − α)(1 − β)

Some observations:
• Φ is a multivariate polynomial function over variables x1, . . . , xm

• The degree of Φ is bounded by the size n of φ
• The value of Φ for inputs xi ∈ {0, 1} is also in {0, 1}, and corresponds to the

valuation of φ on the corresponding truth values
• We can evaluate Φ over an arbitrary field

Example 26.11: For a prime number p, the algebra of natural numbers
{0, 1, . . . , p − 1} and where + and · are addition and multiplication modulo p
is a finite field. This field is denoted GF(p).

Stephan Mennicke; 20 Jan 2026 Complexity Theory slide 21 of 31

#SATD ∈ IP

Theorem 26.10: #SATD ∈ IP

Proof: By our prior observation, k is a solution to #SAT exactly if

k =
∑

a1∈{0,1}

. . .
∑

am∈{0,1}

Φ(a1, . . . , am) (1)

The Prover tries to convince the Verifier of this.
We are looking for a protocol to verify this property of a polynomial Φ.

Initialisation:

The Prover sends a prime number p with 2n < p ≤ 22n (n: size of φ). All calculations will
be performed in GF(p).
Note: The right side of (1) is at most 2m ≤ 2n, so the value is unaffected by this
restriction.

The Verifier checks that p is really prime (primality is known to be in P)

Stephan Mennicke; 20 Jan 2026 Complexity Theory slide 22 of 31

#SATD ∈ IP

Theorem 26.10: #SATD ∈ IP

Proof: By our prior observation, k is a solution to #SAT exactly if

k =
∑

a1∈{0,1}

. . .
∑

am∈{0,1}

Φ(a1, . . . , am) (1)

The Prover tries to convince the Verifier of this.
We are looking for a protocol to verify this property of a polynomial Φ.

Initialisation:

The Prover sends a prime number p with 2n < p ≤ 22n (n: size of φ). All calculations will
be performed in GF(p).
Note: The right side of (1) is at most 2m ≤ 2n, so the value is unaffected by this
restriction.

The Verifier checks that p is really prime (primality is known to be in P)

Stephan Mennicke; 20 Jan 2026 Complexity Theory slide 22 of 31

#SATD ∈ IP

Theorem 26.10: #SATD ∈ IP

Proof (cont.): Given a multi-variate polynomial g(x1, . . . , xℓ), let h(x1) denote the
(univariate) polynomial

∑
a2∈{0,1} . . .

∑
am∈{0,1} g(x1, a2, . . . , aℓ).

Protocol: to check K =
∑

a1∈{0,1} . . .
∑

am∈{0,1} g(a1, . . . , am) mod p for multi-variate
polynomial g that has a polynomial-size representation and polynomial degree

• V: if m = 1, verify g(0) + g(1) = K and reject or accept accordingly;
if m ≥ 2, ask P to send a polynomial-size representation of h(x1)

• P: send a polynomial h̃(x1) (if P is truthful, it sends h̃ = h)

• V: check if h̃ is polynomially sized and of degree ≤ n;
check if K = h̃(0) + h̃(1); reject if any of these fail;
pick a random b ∈ GF(p) and send b to P

• Recursively use the same protocol to verify
h̃(b) =

∑
a2∈{0,1} . . .

∑
am∈{0,1} g(b, a2, . . . , am) mod p

Stephan Mennicke; 20 Jan 2026 Complexity Theory slide 23 of 31

#SATD ∈ IP

Theorem 26.10: #SATD ∈ IP

Proof (cont.): It is not hard to verify that the protocol can be implemented by a
polynomial verifier:

• All polynomials are given by polynomial representations and have polynomial
degree

• They can therefore be evaluated in polynomial time (using binary encoding of
numbers)

• The random number b ≤ p ≤ 22n consists of 2n random bits

• There are ≤ m recursive applications of the protocol

Stephan Mennicke; 20 Jan 2026 Complexity Theory slide 24 of 31

#SATD ∈ IP

Theorem 26.10: #SATD ∈ IP

Proof (cont.): If the claim is true, a truthful Prover can ensure that V accepts.

If the claim is false, the probability that V accepts is very small:
• For m = 1, the probability is 0 (V will just check directly)
• For m > 1, P must send some h̃ , h in order to pass the check K = h̃(0) + h̃(1)

If V selects b such that h̃(b) =
∑

a2∈{0,1} . . .
∑

am∈{0,1} g(b, a2, . . . , am) mod p, then P
can continue to play truthfully and V will eventually accept

• Overall, there are m − 1 opportunities for P to be lucky in this sense.
• But if h̃ , h, then the chance of a random b ∈ {0, . . . , p} ⊇ {0, . . . , 2m} to be such that

h̃(b) − h(b) = 0 is ≤ d/2n, where d is the degree of h̃ − h (Schwartz-Zippel Lemma).
• The degree of h and any reasonable h̃ is bounded by the size n of φ (linear), while

2n is exponential, hence the success rate is small for sufficiently large φ.
• The overall chance of P tricking V to accept a wrong claim is ≤ 1 − (1 − n/2n)m−1,

which is ≤ 1/n for n ≥ 10. □

Stephan Mennicke; 20 Jan 2026 Complexity Theory slide 25 of 31

#SATD ∈ IP

Theorem 26.10: #SATD ∈ IP

Proof (cont.): If the claim is true, a truthful Prover can ensure that V accepts.

If the claim is false, the probability that V accepts is very small:
• For m = 1, the probability is 0 (V will just check directly)
• For m > 1, P must send some h̃ , h in order to pass the check K = h̃(0) + h̃(1)

If V selects b such that h̃(b) =
∑

a2∈{0,1} . . .
∑

am∈{0,1} g(b, a2, . . . , am) mod p, then P
can continue to play truthfully and V will eventually accept

• Overall, there are m − 1 opportunities for P to be lucky in this sense.
• But if h̃ , h, then the chance of a random b ∈ {0, . . . , p} ⊇ {0, . . . , 2m} to be such that

h̃(b) − h(b) = 0 is ≤ d/2n, where d is the degree of h̃ − h (Schwartz-Zippel Lemma).
• The degree of h and any reasonable h̃ is bounded by the size n of φ (linear), while

2n is exponential, hence the success rate is small for sufficiently large φ.
• The overall chance of P tricking V to accept a wrong claim is ≤ 1 − (1 − n/2n)m−1,

which is ≤ 1/n for n ≥ 10. □
Stephan Mennicke; 20 Jan 2026 Complexity Theory slide 25 of 31

Main result

The main insight about IP is as follows:

Theorem 26.12: IP = PSpace

Proof: We have already shown IP ⊆ PSpace. For the converse, we adopt our proof of
#SATD ∈ IP to show that TrueQBF ∈ IP. This suffices (why?).

Consider a QBF of the form ψ = ∀x1.∃x2.∀x3. · · · ∃xm.φ[x1, . . . , xm] (this is w.l.o.g. –
why?).

Using the arithmetisation Ψ of φ, we find ψ ∈ TrueQBF iff

∗∑
a1∈{0,1}

∏
a2∈{0,1}

∗∑
a3∈{0,1}

· · ·

∗∑
am∈{0,1}

Φ(a1, . . . , am) = 1 (2)

where
∗∑

a∈{0,1}
P(a) = P(0) ∗ P(1) = 1 − (1 − P(0))(1 − P(1)).

We would like to verify (2) using similar ideas as for #SATD ∈ IP.

Stephan Mennicke; 20 Jan 2026 Complexity Theory slide 26 of 31

Main result

The main insight about IP is as follows:

Theorem 26.12: IP = PSpace

Proof: We have already shown IP ⊆ PSpace. For the converse, we adopt our proof of
#SATD ∈ IP to show that TrueQBF ∈ IP. This suffices (why?).

Consider a QBF of the form ψ = ∀x1.∃x2.∀x3. · · · ∃xm.φ[x1, . . . , xm] (this is w.l.o.g. –
why?).

Using the arithmetisation Ψ of φ, we find ψ ∈ TrueQBF iff

∗∑
a1∈{0,1}

∏
a2∈{0,1}

∗∑
a3∈{0,1}

· · ·

∗∑
am∈{0,1}

Φ(a1, . . . , am) = 1 (2)

where
∗∑

a∈{0,1}
P(a) = P(0) ∗ P(1) = 1 − (1 − P(0))(1 − P(1)).

We would like to verify (2) using similar ideas as for #SATD ∈ IP.
Stephan Mennicke; 20 Jan 2026 Complexity Theory slide 26 of 31

Showing IP = PSpace
We would like to verify (2) using similar ideas as for #SATD ∈ IP.

Problem: The degree of polynomials such as
h(x1) =

∏
a2∈{0,1}

∑∗
a3∈{0,1} · · ·

∑∗
am∈{0,1}Φ(x1, a2, . . . , am) can be as large as 2m

{ no polynomial-size description, no polytime evaluation

Solution: Reduce degrees of all relevant polynomials in a way that preserves truth
values

• Idea: if x ∈ {0, 1}, then xd = x and P(x) = xP(1) + (1 − x)P(0)
• We define an operator R with Rx.P(x) = xP(1) + (1 − x)P(0)
• Then the degree of x in Rx.P(x) is always 1

We redefine the polynomial we want evaluate as follows:

∃x1.Rx1∀x2.Rx1.Rx2.∃x3.Rx1.Rx2.Rx3. · · · ∃xm.Rx1. · · ·Rxm.Φ(x1, . . . , xm)

where ∃x.P(x) = P(0) ∗ P(1) and ∀x.P(x) = P(0) · P(1).
Note: This expression is of quadratic size compared to ψ.

Stephan Mennicke; 20 Jan 2026 Complexity Theory slide 27 of 31

Showing IP = PSpace
We would like to verify (2) using similar ideas as for #SATD ∈ IP.

Problem: The degree of polynomials such as
h(x1) =

∏
a2∈{0,1}

∑∗
a3∈{0,1} · · ·

∑∗
am∈{0,1}Φ(x1, a2, . . . , am) can be as large as 2m

{ no polynomial-size description, no polytime evaluation

Solution: Reduce degrees of all relevant polynomials in a way that preserves truth
values

• Idea: if x ∈ {0, 1}, then xd = x and P(x) = xP(1) + (1 − x)P(0)
• We define an operator R with Rx.P(x) = xP(1) + (1 − x)P(0)
• Then the degree of x in Rx.P(x) is always 1

We redefine the polynomial we want evaluate as follows:

∃x1.Rx1∀x2.Rx1.Rx2.∃x3.Rx1.Rx2.Rx3. · · · ∃xm.Rx1. · · ·Rxm.Φ(x1, . . . , xm)

where ∃x.P(x) = P(0) ∗ P(1) and ∀x.P(x) = P(0) · P(1).
Note: This expression is of quadratic size compared to ψ.

Stephan Mennicke; 20 Jan 2026 Complexity Theory slide 27 of 31

Showing IP = PSpace
We would like to verify (2) using similar ideas as for #SATD ∈ IP.

Problem: The degree of polynomials such as
h(x1) =

∏
a2∈{0,1}

∑∗
a3∈{0,1} · · ·

∑∗
am∈{0,1}Φ(x1, a2, . . . , am) can be as large as 2m

{ no polynomial-size description, no polytime evaluation

Solution: Reduce degrees of all relevant polynomials in a way that preserves truth
values

• Idea: if x ∈ {0, 1}, then xd = x and P(x) = xP(1) + (1 − x)P(0)
• We define an operator R with Rx.P(x) = xP(1) + (1 − x)P(0)
• Then the degree of x in Rx.P(x) is always 1

We redefine the polynomial we want evaluate as follows:

∃x1.Rx1∀x2.Rx1.Rx2.∃x3.Rx1.Rx2.Rx3. · · · ∃xm.Rx1. · · ·Rxm.Φ(x1, . . . , xm)

where ∃x.P(x) = P(0) ∗ P(1) and ∀x.P(x) = P(0) · P(1).
Note: This expression is of quadratic size compared to ψ.

Stephan Mennicke; 20 Jan 2026 Complexity Theory slide 27 of 31

Showing IP = PSpace
We would like to verify (2) using similar ideas as for #SATD ∈ IP.

Problem: The degree of polynomials such as
h(x1) =

∏
a2∈{0,1}

∑∗
a3∈{0,1} · · ·

∑∗
am∈{0,1}Φ(x1, a2, . . . , am) can be as large as 2m

{ no polynomial-size description, no polytime evaluation

Solution: Reduce degrees of all relevant polynomials in a way that preserves truth
values

• Idea: if x ∈ {0, 1}, then xd = x and P(x) = xP(1) + (1 − x)P(0)
• We define an operator R with Rx.P(x) = xP(1) + (1 − x)P(0)
• Then the degree of x in Rx.P(x) is always 1

We redefine the polynomial we want evaluate as follows:

∃x1.Rx1∀x2.Rx1.Rx2.∃x3.Rx1.Rx2.Rx3. · · · ∃xm.Rx1. · · ·Rxm.Φ(x1, . . . , xm)

where ∃x.P(x) = P(0) ∗ P(1) and ∀x.P(x) = P(0) · P(1).
Note: This expression is of quadratic size compared to ψ.
Stephan Mennicke; 20 Jan 2026 Complexity Theory slide 27 of 31

Showing IP = PSpace
We write ∃x1.Rx1∀x2.Rx1.Rx2.∃x3.Rx1.Rx2.Rx3. · · · ∃xm.Rx1. · · ·Rxm.Φ(x1, . . . , xm) as
O1y1.O2y2. · · · .Okyk.Φ(x1, . . . , xm), where Oi ∈ {∃,∀, R} and yi ∈ {x1, . . . , xm}.

Verifier picks a prime p > n4 (for n the size of ψ); we calculate in GF(p).

Protocol: to check K = O1y1.O2y2. · · · .Okyk.g(b1, . . . , bℓ) mod p where
O1y1.O2y2. · · · .Okyk.g is a polynomial in ℓ variables that has a polynomial-size rep-
resentation and polynomial degree

• V: if k = 0, verify g(b1, . . . , bℓ) = K and reject or accept accordingly;
else, ask P for a representation of O2y2. · · · .Okyk.g(b1, . . . , bℓ)[y1 7→ undef]

• P: send a polynomial h̃(y1)
• V: check if h̃ is polynomially sized and of degree ≤ m;

check if K = O1y1.h̃(y1); reject if any of these fail;
pick a random b ∈ GF(p) and send b to P

• Recursively use the same protocol to verify
h̃(b) = O2y2. · · · .Okyk.g(b1, . . . , bℓ)[y1 7→ b] mod p

Stephan Mennicke; 20 Jan 2026 Complexity Theory slide 28 of 31

Showing IP = PSpace
We write ∃x1.Rx1∀x2.Rx1.Rx2.∃x3.Rx1.Rx2.Rx3. · · · ∃xm.Rx1. · · ·Rxm.Φ(x1, . . . , xm) as
O1y1.O2y2. · · · .Okyk.Φ(x1, . . . , xm), where Oi ∈ {∃,∀, R} and yi ∈ {x1, . . . , xm}.

Verifier picks a prime p > n4 (for n the size of ψ); we calculate in GF(p).

Protocol: to check K = O1y1.O2y2. · · · .Okyk.g(b1, . . . , bℓ) mod p where
O1y1.O2y2. · · · .Okyk.g is a polynomial in ℓ variables that has a polynomial-size rep-
resentation and polynomial degree

• V: if k = 0, verify g(b1, . . . , bℓ) = K and reject or accept accordingly;
else, ask P for a representation of O2y2. · · · .Okyk.g(b1, . . . , bℓ)[y1 7→ undef]

• P: send a polynomial h̃(y1)
• V: check if h̃ is polynomially sized and of degree ≤ m;

check if K = O1y1.h̃(y1); reject if any of these fail;
pick a random b ∈ GF(p) and send b to P

• Recursively use the same protocol to verify
h̃(b) = O2y2. · · · .Okyk.g(b1, . . . , bℓ)[y1 7→ b] mod p

Stephan Mennicke; 20 Jan 2026 Complexity Theory slide 28 of 31

Explanations

The following notes may help to understand the protocol.

• The function O1y1. · · · .Okyk.g is a function on variables x1, . . . , xℓ
– Variables xi (i > ℓ) are bound by ∃ or ∀, hence eliminated
– Variables xi (i ≤ ℓ) may still occur in R operators, but they do not remove them

• O2y2. · · · .Okyk.g is a function on variables x1, . . . , xℓ, xℓ+1 if O1 ∈ {∃,∀}
• O2y2. · · · .Okyk.g is a function on variables x1, . . . , xℓ if O1 = R

• O2y2. · · · .Okyk.g(b1, . . . , bℓ)[y1 7→ undef] denotes the function over y1 obtained by
ignoring the binding bi for y1 = xi (only relevant if O1 = R)

• O2y2. · · · .Okyk.g(b1, . . . , bℓ)[y1 7→ b] denotes the function over y1 obtained by
redefining the binding bi for y1 = xi to be b (only relevant if O1 = R)

• The check K = O1y1.h̃(y1) is evaluated as required for O1

Stephan Mennicke; 20 Jan 2026 Complexity Theory slide 29 of 31

Finishing the proof

Theorem 26.12: IP = PSpace

Proof: Summary of approach:

• The problem is arithmetised and extended with degree-reduction operators

• A prime p > n4 is chosen to define a filed GF(p) for calculations

• A protocol is followed to verify the arithmetisation yields 1 =

As in the case of #SATD, the Prover’s chances of fooling the Verifier are small:

• Wrong claims require to send wrong polynomials h̃(y1)
• It is unlikely that V picks a random value b on which h̃(p) agrees with the correct

function’s value (p > n4 suffices here since the degree of the functions are small)

This finishes the proof. □

Stephan Mennicke; 20 Jan 2026 Complexity Theory slide 30 of 31

Summary and Outlook

Interactive proofs enable probabilistic machines to solve problems beyond NP

Graph Non-Isomorphism has an interesting interactive zero-knowledge proof protocol

IP = PSpace

What’s next?

• Approximation Algorithms

• Parameterized Complexity

Stephan Mennicke; 20 Jan 2026 Complexity Theory slide 31 of 31

	Interactive Proof Systems

