Nominal Schemas in Description Logics: Complexities Clarified

Markus Krötzsch

Sebastian Rudolph

Technische Universität Dresden

DL 2014

Markus Krötzsch (TU Dresden) Nominal Schemas in Description Log

Nominal Schemas

- Nominals: concept expressions {*a*} for individual *a*
- Nominal schema: concept expressions {*x*} for variable *x*

Example

Individuals whose parents are married (with each other):

 \exists hasFather. $\{x\} \sqcap \exists$ hasMother. $(\{y\} \sqcap \exists$ married. $\{x\})$

- Denoted by letter V, as in ELV, ALCIV, SROIQV, ...
- Several recent studies and implementations

Open Questions

How complex is reasoning with nominal schemas?

How expressive are DLs with nominal schemas?

Semantics

 Semantics defined via grounding: replace variables by individuals in all possible ways

Example

Grounding with two individuals *a* and *b*:

 $\begin{array}{l} \exists \mathsf{hasFather.}\{a\} \sqcap \exists \mathsf{hasMother.}(\{a\} \sqcap \exists \mathsf{married.}\{a\}) \\ \exists \mathsf{hasFather.}\{a\} \sqcap \exists \mathsf{hasMother.}(\{b\} \sqcap \exists \mathsf{married.}\{a\}) \\ \exists \mathsf{hasFather.}\{b\} \sqcap \exists \mathsf{hasMother.}(\{a\} \sqcap \exists \mathsf{married.}\{b\}) \\ \exists \mathsf{hasFather.}\{b\} \sqcap \exists \mathsf{hasMother.}(\{b\} \sqcap \exists \mathsf{married.}\{b\}) \\ \end{array}$

- Always based on finite set of constants
 - \sim Option 1: finite signature
 - \sim Option 2: restrict to constants in knowledge base

Expressivity of Nominal Schemas (1)

• Nominal schemas capture nominals:

Replace $\{a\}$ by O_a and add axioms

 $O_a(a)$ $\top \sqsubseteq \exists \texttt{somenom.}\{x\}$ $O_a \sqcap \exists \texttt{somenom.}(\{x\} \sqcap O_a) \sqsubseteq \{x\}$

Expressivity of Nominal Schemas (2)

Nominal schemas capture Datalog rules:

Replace $B_1 \land \ldots \land B_\ell \to H$ by $enc(B_1) \sqcap \ldots \sqcap enc(B_\ell) \sqsubseteq enc(H)$ where

 $enc(p(t_1,\ldots,t_n)) = \exists atom.(A_p \sqcap \exists arg_1.\{t_1\} \sqcap \ldots \sqcap \exists arg_n.\{t_n\})$

Expressivity of Nominal Schemas (2)

• Nominal schemas capture Datalog rules:

Replace $B_1 \land \ldots \land B_\ell \to H$ by $enc(B_1) \sqcap \ldots \sqcap enc(B_\ell) \sqsubseteq enc(H)$ where

 $enc(p(t_1,\ldots,t_n)) = \exists atom.(A_p \sqcap \exists arg_1.\{t_1\} \sqcap \ldots \sqcap \exists arg_n.\{t_n\})$

• Nominal schemas capture DL-safe rules:

Encode rules as for Datalog and add axioms like

 $\exists \texttt{atom.}(A_r \sqcap \exists \texttt{arg}_1.\{x\} \sqcap \exists \texttt{arg}_2.\{y\}) \sqsubseteq \exists \texttt{aux.}(\{x\} \sqcap \exists r.\{y\})$

Complexity of Reasoning with Nominal Schemas

What we know so far:

- SROIQV is N2EXPTIME-complete, like SROIQ [WWW 2011]
- Datalog encoding
 - $\rightsquigarrow \mathsf{ExpTime}$ lower bound for DLs above \mathcal{ELV}
- Grounding: exponential overall, polynomial in data
 - $\stackrel{\sim}{\rightarrow} \text{upper bound for } \mathcal{LV} \text{ exponentially higher than } \mathcal{LO} \\ \stackrel{\sim}{\rightarrow} \text{upper bound data complexity of } \mathcal{LV} \text{: comb. complexity of } \mathcal{LO}$

TBox Internalisation

TBox-to-ABox Internalisation

A TBox is replaced by a small set of "template axioms" with nominal schemas, and the original TBox is expressed with ABox assertions.

Idea:

- represent concept A by ∃type.{c_A}
 → TBox axioms contains only roles and individuals
- use variables for all individuals
- use ABox axioms to force bindings of variables

TBox Internalisation: Results

- Axioms of the same structure require just one TBox template
- DLs *L* with finite number of normal form axioms
 → fixed number of templates

 \sim data complexity \mathcal{LV} = combined complexity \mathcal{L}

Lower bounds

- The data complexity of \mathcal{ELV} is P-hard.
- The data complexity of Horn- \mathcal{ALCV} is EXPTIME-hard.
- The data complexity of \mathcal{ALCIFV} is (co)NExpTIME-hard.

TBox Internalisation: Results

- Axioms of the same structure require just one TBox template
- DLs *L* with finite number of normal form axioms
 → fixed number of templates

 \sim data complexity \mathcal{LV} = combined complexity \mathcal{L}

Lower bounds

- The data complexity of \mathcal{ELV} is P-hard.
- The data complexity of Horn- \mathcal{ALCV} is EXPTIME-hard.
- The data complexity of \mathcal{ALCIFV} is (co)NEXPTIME-hard.

Does not work for (Horn-) \mathcal{SROIQ} : needs unbounded set of roles

Upper bound

• The data complexity of (Horn-)SROIQ is in EXPTIME.

GCI Iterators

GCI Iterators

Templates of GCIs are instantiated by replacing placeholder concepts by concepts from an exponential list of "indexed" concept names.

Example:

$$A[i] \sqsubseteq \exists r.A[i+1] \qquad [i=1,\ldots,s]$$
$$A_1 \sqsubseteq \exists r.A_2$$
$$A_2 \sqsubseteq \exists r.A_3$$
$$\ldots$$
$$A_{n-1} \sqsubseteq \exists r.A_n$$

is short for

GCI Iterators: Results

Lower bounds

- The combined complexity of \mathcal{ALCIFV} is (co)N2ExpTIME-hard.
- The combined complexity of Horn-ALCV is 2EXPTIME-hard.

GCI Iterators: Results

Lower bounds

- The combined complexity of *ALCIFV* is (co)N2ExpTIME-hard.
- The combined complexity of Horn-ALCV is 2EXPTIME-hard.

Does not work for (Horn-) \mathcal{SROIQ} : needs unbounded set of roles

Upper bounds

- The combined complexity of SROIQV is in N2EXPTIME.
- The combined complexity of Horn-SROIQV is in 2EXPTIME.

Nominal Schema Semantics Revisited

Grounding semantics depends on chosen set of constants:

Entailment of axioms with nominal schemas

$$\{a\} \sqsubseteq \{b\} \models \{a\} \sqsubseteq \{x\}$$

holds if there are only two constants a and b (but not otherwise)

Can we use a fixed, infinite set of constants?

Nominal Schema Semantics Revisited

Grounding semantics depends on chosen set of constants:

Entailment of axioms with nominal schemas

$$\{a\} \sqsubseteq \{b\} \models \{a\} \sqsubseteq \{x\}$$

holds if there are only two constants a and b (but not otherwise)

Can we use a fixed, infinite set of constants?

- Grounding no longer works, but
- we get the same entailments (under some mild assumptions)
- and the same complexities

Conclusions

Complexity

- Nominal schemas usually increase complexity exponentially
- Exception 1: *SROIQ* and Horn-*SROIQ* (no increase)
- Exception 2: *ELV* data complexity is still polynomial

Expressiveness

- Nominal schemas subsume nominals, Datalog, and DL-safe rules
- Strictly more expressive than DL with DL-safe rules
- DLs with nominal schemas do not admit a normal form

Combined Complexities Picture

TBox Internalisation: Details

• Template for $C \sqsubseteq D$ with *n* concepts/individuals:

 $\exists \texttt{gci.}(A_{C,D} \sqcap \exists \texttt{symb}_1.\{x_1\} \sqcap \ldots \sqcap \texttt{symb}_n.\{x_n\}) \sqcap C' \sqsubseteq D'$

where C' and D' are obtained from C and D by replacing:

- ► each concept name σ_i by ∃type.{x_i};
- each individual name σ_j by x_j
- Additional axiom $\top \sqsubseteq \exists gci.\{x\}$
- Template instance:

$$\{A_{C,D}(d), \texttt{symb}_1(d, c_1), \dots, \texttt{symb}_n(d, c_n)\}$$

 $(c_1, \ldots, c_n \text{ represent the original } n \text{ concepts/individuals})$

