
cf2 Semantics Revisited 1

Sarah Alice GAGGL and Stefan WOLTRAN
Institute of Information Systems 184, Vienna University of Technology,

A-1040 Vienna, Austria

Abstract. Abstract argumentation frameworks nowadays provide the most popular
formalization of argumentation on a conceptual level. Numerous semantics for this
paradigm have been proposed, whereby cf2 semantics has shown to nicely solve
particular problems concernend with odd-length cycles in such frameworks. In or-
der to compare different semantics not only on a theoretical basis, it is necessary
to provide systems which implement them within a uniform platform. Answer-Set
Programming (ASP) turned out to be a promising direction for this aim, since it not
only allows for a concise representation of concepts inherent to argumentation se-
mantics, but also offers sophisticated off-the-shelves solvers which can be used as
core computation engines. In fact, many argumentation semantics have meanwhile
been encoded within the ASP paradigm, but not all relevant semantics, among them
cf2 semantics, have yet been considered. The contributions of this work are thus
twofold. Due to the particular nature of cf2 semantics, we first provide an alter-
native characterization which, roughly speaking, avoids the recursive computation
of sub-frameworks. Then, we provide the concrete ASP-encodings, which are in-
corporated within the ASPARTIX system, a platform which already implements a
wide range of semantics for abstract argumentation.

Keywords. Abstract Argumentation. Implementation.

1. Introduction

Abstract argumentation frameworks (AFs), introduced by Dung [4], represent the most
popular approach for formalizing and reasoning over argumentation problems on a con-
ceptual level. Dung already introduced different extension-based semantics (preferred,
complete, stable, grounded) for such frameworks. In addition, recent proposals tried to
overcome several shortcomings observed for those original semantics. For instance, the
semi-stable semantics [2] handles the problem of the possible non-existence of stable
extensions, while the ideal semantics [5] is proposed as a unique-status approach (each
AF possesses exactly one extension) less skeptical than the grounded extension.

Another family of semantics, the so-called SCC-recursive semantics [1], has been
introduced in order to solve particular problems arising for AFs with odd-length cycles.
Hereby, a recursive decomposition of the given AF along strongly connected compo-
nents (SCCs) is necessary to obtain the extensions. A particular instance of the SCC-
recursive semantics, the cf2 semantics, satisfies many requirements such as the symmet-
ric treatment of odd- and even-length cycles, and ensures that attacks from self-defeating

1This work was supported by the Vienna Science and Technology Fund (WWTF) under grant ICT08-028.

arguments have no influence on the selection of other arguments to be included in an
extension.

This leads us to the fact that abstract argumentation actually offers an ever growing
number of different semantics, and thus a uniform implementation is necessary to com-
pare them not only on a theoretical level. Answer-Set Programming (ASP, for short) is
a promising approach towards this direction, since this paradigm [9,10] allows a con-
cise representation of concepts as Guess and Check (guess a set of arguments and check
whether this set satisfies the semantics’ properties) and transitive closure (important to
formulate reachability). Moreover, sophisticated ASP-systems such as Smodels, DLV,
Cmodels, Clasp, or ASSAT are able to deal with large problem instances [3]. Finally, the
data complexity of evaluating ASP programs ranges (depending from different syntacti-
cal classes) from complexity classes P, NP, coNP up to ΣP

2 and toΠP
2 . It is thus possible

to provide ASP queries which are on the same complexity level as the encoded argumen-
tation problem (see [6] for such complexity results). Previous work [7,11,13,14] already
addressed this issue and gave ASP-encodings for several argumentation semantics. In
particular, the system ASPARTIX [7] provides queries for the most important types of
extensions including preferred, stable, semi-stable, complete, grounded and ideal.

In this paper, we focus on the theoretical foundations towards an ASP-encoding
for the cf2 semantics, which has been neglected in the literature so far. In particular, it
turns out to be rather cumbersome to represent cf2 semantics directly within ASP. This
is due the fact that the original definition involves a recursive computation of different
subframeworks. Our aim here is, roughly speaking, to shift the need of recursion from
generating subframeworks to the concept of recursively component defeated arguments.
Having computed this set RDF (S) for a given AF F and a set S of arguments, we
construct from F an instance of F with respect toRDF (S) such that the cf2 extensions
of F are given by the sets S which are maximal conflict-free in their instance with respect
to RDF (S). As a second result, we show that the set RDF (S) can be captured via
a fixed-point operator; in other words, this allows to characterize cf2 semantics using
linear recursion only. This novel characterization is then captured by a corresponding
ASP-encoding, where we now are able to directly (i) guess a set S and then (ii) check
whether S is maximal conflict-free in the respective instance of the given AF F . Our
encodings are incorporated to the ASPARTIX system and are available on the web2.

The remainder of the paper is organized as follows. In the next section we recall the
necessary basics of argumentation frameworks and give the definition of cf2 semantics.
In Section 3 we introduce our alternative characterization for cf2 semantics and in Sec-
tion 4 we put this characterization to work and sketch our ASP-encodings for the cf2

semantics. Finally, in Section 5 we conclude with a brief discussion of related and future
work.

2. Preliminaries

We first recall some basic definitions for abstract argumentation frameworks and intro-
duce some further notations which are relevant for the rest of the paper.

2www.dbai.tuwien.ac.at/research/project/argumentation/systempage/

Definition 1 An argumentation framework (AF) is a pair F = (A,R), where A is a
finite set of arguments and R ⊆ A × A. The pair (a, b) ∈ R means that a attacks b. A
set S ⊆ A of arguments defeats b (in F), if there is an a ∈ S, such that (a, b) ∈ R.
An argument a ∈ A is defended by S ⊆ A (in F) iff, for each b ∈ A, it holds that, if
(b, a) ∈ R, then S defeats b (in F).

A minimal criterion for an acceptable set of arguments is to not contain an argument
attacking another argument in the set. Such acceptable sets are called conflict-free, and
maximal (wrt. set-inclusion) such sets will play an important role for cf2 semantics.

Definition 2 Let F = (A,R) be an AF. A set S ⊆ A is said to be conflict-free (in F),
if there are no a, b ∈ S, such that (a, b) ∈ R. We denote the collection of sets which are
conflict-free (in F) by cf (F). S ⊆ A is maximal conflict-free, if S ∈ cf (F) and for
each T ∈ cf (F), S ̸⊂ T . We denote the collection of all maximal conflict-free sets of F
by mcf (F). For the empty AF F0 = (∅, ∅), we set mcf (F0) = {∅}.

For our purposes, we require some further formal machinery. By SCCs(F), we
denote the set of strongly connected components of an AF F = (A,R) which identify
the maximal strongly connected3 subgraphs of F ; SCCs(F) is thus a partition of A.
Moreover, for an argument a ∈ A, we denote by CF (a) the component of F where a
occurs in, i.e. the (unique) set C ∈ SCCs(F), such that a ∈ C. AFs F1 = (A1, R1) and
F2 = (A2, R2) are called disjoint if A1 ∩ A2 = ∅. Moreover, the union between (not
necessarily disjoint) AFs is defined as F1 ∪ F2 = (A1 ∪ A2, R1 ∪ R2).

It turns out to be convenient to use two different concepts to obtain sub-frameworks
of AFs. Let F = (A,R) be an AF and S a set of arguments. Then, F |S = ((A ∩
S), R ∩ (S × S)) is the sub-framework of F wrt S and we also use F − S = F |A\S .
We note the following relation (which we use implicitly later on), for an AF F and sets
S, S′: F |S\S′ = F |S − S′ = (F − S′)|S . In particular, for an AF F , a component
C ∈ SCCs(F) of F and a set S we thus have F |C\S = F |C − S.

We now give the definition of cf2 semantics. Our definition slightly differs from (but
is equivalent to) the original definition in [1].4

Definition 3 Let F = (A,R) be an AF and S ⊆ A. An argument b ∈ A is component-
defeated by S (in F), if there exists an a ∈ S, such that (a, b) ∈ R and a /∈ CF (b). The
set of arguments component-defeated by S in F is denoted by DF (S).

Definition 4 Let F = (A,R) be an argumentation framework and S a set of arguments.
Then, S is a cf2 extension of F , i.e. S ∈ cf2 (F), iff

• in case |SCCs(F)| = 1, then S ∈ mcf (F),
• otherwise, ∀C ∈ SCCs(F), (S ∩ C) ∈ cf2 (F |C − DF (S)).

In words, the recursive definition cf2 (F) is based on a decomposition of the AF F into
its SCCs depending on a given set S of arguments. We illustrate the behavior of this
procedure in the following example.

3A directed graph is called strongly connected if there is a path from each vertex in the graph to every other
vertex of the graph.
4DF (S), as introduced next, replaces the set “DF (S, E)” and F |C − DF (S) replaces “F↓UPF (S,E)”;

moreover, the set of undefeated arguments “UF (S, E)” as used in the general schema from [1], is not required
here, because the base function for cf2 semantics does make use of this set.

a

b

c

d

e f

g

h

i

Figure 1. The argumentation framework F from Example 1.

F

F |{a,b,c} F |{d} F |{e,g,h,i}

F |{e} F |{g} F0 F |{i}

Figure 2. Tree of recursive calls for computing cf2 (F).

Example 1 Consider the AF F = (A,R) with A = {a, b, c, d, e, f, g, h, i} and
R = {(a, b), (b, c), (c, a), (b, d), (b, e), (d, f), (e, f), (f, e), (f, g), (g, h), (h, i), (i, f)}
as illustrated in Figure 1. We want to check whether S = {a, d, e, g, i} is a cf2 extension
of F (the arguments of the set S are highlighted in Figure 1). Following Definition 4, we
first identify the SCCs of F , namely C1 = {a, b, c}, C2 = {d} and C3 = {e, f, g, h, i}.
Moreover, we haveDF (S) = {f}. This leads us to the following checks (see also Figure
2 which shows the involved subframeworks).

1. (S ∩ C1) ∈ cf2 (F |C1
): F |C1

consists of a single SCC; hence, we have to check
whether (S ∩ C1) = {a} ∈ mcf (F |C1

), which indeed holds.
2. (S∩C2) ∈ cf2 (F |C2

): F |C2
consists of a single argument d (and thus of a single

SCC); (S ∩ C2) = {d} ∈ mcf (F |C2
) thus holds.

3. (S ∩ C3) ∈ cf2 (F |C3
− {f}): F |C3

− {f} = F |{e,g,h,i} consists of four SCCs,
namely C4 = {e}, C5 = {g}, C6 = {h} and C7 = {i}. Hence, we need a
second level of recursion for F ′ = F |{e,g,h,i} and S′ = S ∩ C3. Note that we
have DF ′(S′) = {h}. The single-argument AFs F ′|C4

= F |{e}, F ′|C5
= F |{g},

F ′|C7
= F |{i} all satisfy (S′ ∩ Ci) ∈ mcf (F ′|Ci

); while F ′|C6\{h} yields the
empty AF. Therfore, (S′ ∩ C6) = ∅ ∈ cf2 (F |C6\{h}) holds as well.

We thus conclude that S is a cf2 extension of F . Further cf2 extensions of F are
{b, f, h}, {b, g, i} and {c, d, e, g, i}.

3. An Alternative Characterization for the cf2 Semantics

In this section, we provide an alternative characterization for the cf2 semantics. In par-
ticular, our aim is to avoid the recursive computation of sub-frameworks (as, for instance,
depicted in Figure 2) and instead collect the different sets of component-defeated argu-
ments by a recursively defined set of arguments.

To avoid splitting an AF into sub-frameworks, we introduce the following concept.

Definition 5 An AF F = (A,R) is called separated if for each (a, b) ∈ R, CF (a) =
CF (b). We define [[F]] =

⋃
C∈SCCs(F) F |C and call [[F]] the separation of F .

In words, an AF is separated if there are no attacks between different strongly con-
nected components. Thus, the separation of an AF always yields a separated AF. The
following technical lemma will be useful later.

Lemma 1 For any AF F and set S of arguments,
⋃

C∈SCCs(F)[[F |C − S]] = [[F − S]].

Proof. We first note that for disjoint AFs F and G, [[F]] ∪ [[G]] = [[F ∪ G]] holds.
Moreover, for a set S of arguments and arbitrary AFs F and G, (F − S) ∪ (G − S) =
(F ∪ G) − S is clear. Using these observations, we obtain

⋃

C∈SCCs(F)

[[F |C−S]] = [[
⋃

C∈SCCs(F)

(F |C−S)]] = [[(
⋃

C∈SCCs(F)

F |C)−S]] = [[[[F]]−S]].

It remains to show that [[[[F]] − S]] = [[F − S]]. Obviously, both AFs possess the same
arguments A. Thus let R be the attacks of [[[[F]] − S]] and R′ the attacks of [[F − S]].
R ⊆ R′ holds by the fact that each attack in [[F]] is also contained in F . To show
R′ ⊆ R, let (a, b) ∈ R′. Then a, b /∈ S, and CF−S(a) = CF−S(b). From the latter,
CF (a) = CF (b) and thus (a, b) is an attack in [[F]] and also in [[F]] − S. Again using
CF−S(a) = CF−S(b), shows (a, b) ∈ R. !

Next, we define the level of recursiveness a framework shows with respect to a
set S of arguments and then the aforementioned set of recursively component defeated
arguments (by S) in an AF.

Definition 6 For an AF F = (A,R) and a set S of arguments, we recursively define the
level ℓF (S) of F wrt S as follows:

• if |SCCs(F)| = 1 then ℓF (S) = 1;
• otherwise, ℓF (S) = 1 + max ({ℓF |C−DF (S)(S ∩ C) | C ∈ SCCs(F)}).

Definition 7 Let F = (A,R) be an AF and S a set of arguments. We define the set of
arguments recursively component defeated by S (in F) as follows:

• if |SCCs(F)| = 1 thenRDF (S) = ∅;
• otherwise,RDF (S) = DF (S) ∪

⋃
C∈SCCs(F) RDF |C−DF (S)(S ∩ C).

We are now prepared to give our first alternative characterization, which establishes
a cf2 extension S of a given AF F by checking whether S is maximal conflict-free in a
certain separated framework constructed from F using S.

Lemma 2 Let F = (A,R) be an AF and S be a set of arguments. Then,

S ∈ cf2 (F) iff S ∈ mcf ([[F −RDF (S)]]).

Proof.We show the claim by induction over ℓF (S).

Induction base. For ℓF (S) = 1, we have |SCCs(F)| = 1. By definition RDF (S) = ∅
and we have [[F −RDF (S)]] = [[F]] = F . Thus, the assertion states that S ∈ cf2 (F)
iff S ∈ mcf (F) which matches the original definition for the cf2 semantics in case the
AF has a single strongly connected component.

Induction step. Let ℓF (S) = n and assume the assertion holds for all AFs F ′ and sets
S′ with ℓF ′(S′) < n. In particular, we have by definition that, for each C ∈ SCCs(F),
ℓF |C−DF (S)(S ∩ C) < n. By the induction hypothesis, we thus obtain that, for each
C ∈ SCCs(F), the following holds:

(S∩C) ∈ cf2 (F |C − DF (S)) iff (S∩C) ∈ mcf
(
[[(F |C − DF (S))−R′

F,C,S]]
)
(1)

where R′
F,C,S = RDF |C−DF (S)(S ∩ C). Let us fix now a C ∈ SCCs(F). Since for

each further C ′ ∈ SCCs(F) (i.e. C ̸= C ′), no argument from RDF |C ′−DF (S)(S ∩ C ′)
occurs in F |C , we have

(F |C − DF (S)) −R′
F,C,S =

(
(F |C − DF (S)) −R′

F,C,S

)
−

⋃

C′∈SCCs(F);C ̸=C′

RDF |C ′−DF (S)(S ∩ C ′) =

(
F |C − DF (S)

)
−

⋃

C∈SCCs(F)

RDF |C−DF (S)(S ∩ C) =

F |C −
(
DF (S) ∪

⋃

C∈SCCs(F)

RDF |C−DF (S)(S ∩ C)
)

= F |C −RDF (S).

Thus, for any C ∈ SCCs(F), relation (1) amounts to

(S ∩ C) ∈ cf2 (F |C − DF (S)) iff (S ∩ C) ∈ mcf
(
[[F |C −RDF (S)]]

)
. (2)

We now prove the assertion. Let S ∈ cf2 (F). By definition, for each C ∈ SCCs(F),
(S∩C) ∈ cf2 (F |C − DF (S)). Using (2), we get that for eachC ∈ SCCs(F), (S∩C) ∈
mcf ([[F |C − RDF (S)]]). By the definition of components and the semantics of being
maximal conflict-free, the following relation thus follows:

⋃

C∈SCCs(F)

(S ∩ C) ∈ mcf
(⋃

C∈SCCs(F)

[[F |C −RDF (S)]]
)
.

Since S =
⋃

C∈SCCs(F)(S ∩ C) and, by Lemma 1,
⋃

C∈SCCs(F)[[F |C −RDF (S)]] =
[[F −RDF (S)]], we arrive at S ∈ mcf ([[F −RDF (S)]]) as desired. The other direction
is by essentially the same arguments. !

Next, we provide an alternative characterization for RDF (S) via a fixed-point op-
erator. In other words, this yields a linearization in the recursive computation of this set.
To this end, we require a parameterized notion of reachability.

Definition 8 Let F = (A,R) be an AF, B a set of arguments, and a, b ∈ A. We say that
b is reachable in F from amoduloB, in symbols a ⇒B

F b, if there exists a path from a to
b in F |B , i.e. there exists a sequence c1, . . . , cn (n > 1) of arguments such that c1 = a,
cn = b, and (ci, ci+1) ∈ R ∩ (B × B), for all i with 1 ≤ i < n.

Definition 9 For an AF F = (A,R), D ⊆ A, and a set S of arguments,

∆F,S(D) = {a ∈ A | ∃b ∈ S : b ̸= a, (b, a) ∈ R, a ̸⇒A\D
F b}.

The operator is clearly monotonic, i.e. ∆F,S(D) ⊆ ∆F,S(D′) holds for D ⊆ D′.
As usual, we let∆0

F,S = ∆F,S(∅) and, for i > 0,∆i
F,S = ∆(∆i−1

F,S). Furthermore,∆F,S

is used to denote the lfp of ∆F,S(∅), which exists due to the monotonicity. We need two
more lemmata before showing that∆F,S capturesRDF (S).

Lemma 3 For any AF F = (A,R) and any set S ⊆ A, ∆0
F,S = DF (S).

Proof. We have ∆0
F,S = ∆F,S(∅) = {a ∈ A | ∃b ∈ S : b ̸= a, (b, a) ∈ R, a ̸⇒A

F b}.
Hence, a ∈ ∆0

F,S , if there exists a b ∈ S, such that (b, a) ∈ R and a does not reach b in
F , i.e. b ̸∈ CF (a). This meets exactly the definition of DF (S). !

Lemma 4 For any AF F = (A,R) and any set S ∈ cf (F),

∆F,S = DF (S) ∪
⋃

C∈SCCs(F)

∆F |C−DF (S),(S∩C).

Proof. Let F = (A,R). For the ⊆-direction, we show by induction over i ≥ 0 that
∆i

F,S ⊆ DF (S) ∪
⋃

C∈SCCs(F) ∆F |C−DF (S),(S∩C). To ease notation, we write ∆̄F,S,C

as a shorthand for∆F |C−DF (S),(S∩C), where C ∈ SCCs(F).

Induction base. ∆0
F,S ⊆ DF (S) ∪

⋃
C∈SCCs(F) ∆̄F,S,C follows from Lemma 3.

Induction step. Let i > 0 and assume ∆j
F,S ⊆ DF (S) ∪

⋃
C∈SCCs(F) ∆̄F,S,C holds for

all j < i. Let a ∈ ∆i
F,S . Then, there exists a b ∈ S, such that (b, a) ∈ R and a ̸⇒D

F b,
where D = A \ ∆i−1

F,S . If b /∈ CF (a), we have also a ̸⇒A
F b and thus a ∈ DF (S).

Hence, suppose b ∈ CF (a). Then, a /∈ DF (S) and, since S ∈ cf (F) and b ∈ S, also
b /∈ DF (S). Thus, both a and b are contained in the framework F |C − DF (S) (and so
is the attack (b, a)) for C = CF (a). Moreover, b ∈ (S ∩ C). Towards a contradiction,
assume now a /∈ ∆̄F,S,C . This yields that a ⇒D′

F |C−DF (S) b for D′ = A \ ∆̄F,S,C , i.e.
there exist arguments c1, . . . , cn (n > 1) in F |C − DF (S) but not contained in ∆̄F,S,C ,
such that c1 = a, cn = b, and (ci, ci+1) ∈ R, for all i with 1 ≤ i < n. Obviously all the
ci’s are contained in F as well, but since a ̸⇒D

F b (recall that D = A \ ∆i−1
F,S), it must

hold that at least one of the ci’s, say c, has to be contained in ∆i−1
F,S . By the induction

hypothesis, we get c ∈ ∆̄F,S,C , a contradiction.

For the ⊇-direction of the claim we proceed as follows. By Lemma 3, DF (S) = ∆0
F,S

and thus DF (S) ⊆ ∆F,S . It remains to show
⋃

C∈SCCs(F) ∆F |C−DF (S),(S∩C) ⊆

∆F,S . We show by induction over i that ∆i
F |C−DF (S),(S∩C) ⊆ ∆F,S holds for each

C ∈ SCCs(F). Thus, let us fix a C ∈ SCCs(F) and use ∆̄i
F,S,C as a shorthand for

∆i
F |C−DF (S),(S∩C).

Induction base. Let a ∈ ∆̄0
F,S,C . Then, there is a b ∈ (S ∩ C), such that b attacks

a in F ′ = F |C − DF (S) and a ̸⇒A′

F ′ b, where A′ denotes the arguments of F ′, i.e.
A′ = C \DF (S). Since F |C is built from a SCC C of F , it follows that a ̸⇒A\DF (S)

F b.
Since b ∈ S, (b, a) ∈ R, and DF (S) = ∆0

F,S (Lemma 3), we get a ∈ ∆1
F,S ⊆ ∆F,S .

Induction step. Let i > 0 and assume ∆̄j
F,S,C ⊆ ∆F,S for all j < i. Let a ∈ ∆̄i

F,S,C .
Then, there is a b ∈ (S ∩ C), such that b attacks a in F ′ and a ̸⇒D′

F ′ b, where D′ =
A′ \ ∆̄i−1

F,S,C . Towards a contradiction, suppose a /∈ ∆F,S . Since b ∈ S and (b, a) ∈ R,
it follows that there exist arguments c1, . . . , cn (n > 1) in F \ ∆F,S , such that c1 = a,
cn = b, and (ci, ci+1) ∈ R, for all i with 1 ≤ i < n. All these ci’s are thus contained in
the same component as a, and moreover these ci’s cannot be contained in DF (S), since
DF (S) ⊆ ∆F,S . Thus, they are contained in F |C − DF (S), but since a ̸⇒D′

F ′ b, there is
at least one such ci, say c, contained in ∆̄i−1

F,S,C . By the induction hypothesis, c ∈ ∆F,S ,
a contradiction. !

We now are able to obtain the desired relation.

Lemma 5 For any AF F = (A,R) and any set S ∈ cf (F), ∆F,S = RDF (S).

Proof. The proof is by induction over ℓF (S).

Induction base. For ℓF (S) = 1, |SCCs(F)| = 1 by Definition 6. From this and Defi-
nition 7, we obtain RDF (S) = DF (S) = ∅. By Lemma 3, ∆0

F,S = DF (S) = ∅. By
definition, ∆F,S = ∅ follows from ∆0

F,S = ∅.

Induction step. Let ℓF (S) = n and assume the claim holds for all pairs F ′, S′ ∈ cf (F ′),
such that ℓF ′(S′) < n. In particular, this holds for F ′ = F |C − DF (S) and S′ = (S ∩
C), with C ∈ SCCs(F). Note that (S ∩C) is indeed conflict-free in F |C − DF (S). By
definition,RDF (S) = DF (S)∪

⋃
C∈SCCs(F) RDF |C−DF (S)(S ∩C) and by Lemma 4,

∆F,S = DF (S) ∪
⋃

C∈SCCs(F) ∆F |C−DF (S),S∩C . Using the induction hypothesis, i.e.
∆F |C−DF (S),S∩C = RDF |C−DF (S)(S ∩ C), the assertion follows. !

We finally reached our main result in this section, i.e. an alternative characterization
for cf2 semantics, where the need for recursion is delegated to a fixed-point operator.

Theorem 1 For any AF F , cf2 (F) = {S | S ∈ cf(F) ∩ mcf ([[F − ∆F,S]])}.

Proof. The result holds by the following observations. By Lemma 2, S ∈ cf2 (F) iff
S ∈ mcf ([[F − RDF (S)]]). Moreover, from Lemma 5, for any S ∈ cf (F), ∆F,S =
RDF (S). Finally, S ∈ cf2 (F) implies S ∈ cf (F) (see [1], Proposition 47). !

a

b

c

d

e

g

i

Figure 3. Graph of instance [[F − ∆F,S]] of Example 2.

a

b

c f

g

h

i

Figure 4. Graph of instance [[F − ∆F,S′]] of Example 2.

Example 2 To exemplify the behavior of ∆F,S and [[F − ∆F,S]], we consider the AF
F and S = {a, d, e, g, i} from Example 1. In the first iteration of computing the lfp of
∆F,S , we have∆F,S(∅) = {f} because the argument f is the only one which is attacked
by S but its attacker d is not reachable by f in F . In the second iteration, we obtain
∆F,S({f}) = {f, h}, and in the third iteration we reach the lfp with ∆F,S({f, h}) =
{f, h}. Hence, [[F − ∆F,S]] of the AF F wrt S is given by

[[F − ∆F,S]] =
(
{a, b, c, d, e, g, i}, {(a, b), (b, c), (c, a)}

)
.

Figure 3 shows the graph of [[F−∆F,S]]. As is easily checked S ∈ mcf ([[F−∆F,S]]) as
expected, since S ∈ cf2 (F). For comparison, Figure 4 shows the graph of [[F −∆F,S′]]
wrt the cf2 extension S′ = {b, f, h} consisting of two SCCs.

4. ASP-Encodings

In this section, we first give a brief overview of ASP (to be more precise, logic program-
ming under the answer-set semantics [8]). Then, we use our novel characterization to im-
plement the cf2 semantics under this paradigm. To this end, we provide a fixed program
πcf2 which, augmented with an input database representing a given AF F , has its answer
sets in a one-to-one correspondence to the cf2 extensions of F . For more background on
ASP, we refer to [9].

An atom is an expression p(t1, . . . , tn), where p is a predicate of arity n ≥ 0 and
each ti is either a variable or a constant from a domain U . We suppose that a total order
< over the domain elements is available.5 An atom is ground if it is free of variables. By
BU we denote the set of all ground atoms over U . A rule r is of the form

5ASP-solvers as DLV [9], which is underlying our system ASPARTIX, usually provide such an order for the
domain elements of the currently given program.

a :- b1, . . . , bk, not bk+1, . . . , not bm,

with m ≥ k ≥ 0 , and where a, b1, . . . , bm are atoms, and “not ” stands for default
negation. We identify the head of such a rule r as H(r) = a and also use B+(r) =
{b1, . . . , bk} and B−(r) = {bk+1, . . . , bm} to denote the positive, and resp., negative
body of r. A rule r is ground if no variable occurs in r. An (input) database is a set of
ground rules with empty body. A program is a finite set of rules. For a program P and an
input databaseD, we write P(D) instead ofD∪P .Gr(P) is the set of rules rσ obtained
by applying, to each rule r ∈ P , all possible substitutions σ from the variables in P to
the constants in P .

An interpretation I ⊆ BU satisfies a ground rule r iffH(r) ∈ I whenever B+(r) ⊆
I and B−(r)∩ I = ∅. A program P is satisfied by an interpretation I , iff I satisfies each
rule in Gr(P). I ⊆ BU is an answer set of P iff it is a subset-minimal set satisfying

PI = {H(r) :-B+(r) | I ∩ B−(r) = ∅, r ∈ Gr(P)}.

For a program P , we denote the set of its answer sets by AS(P).

We now turn to our encoding πcf2 which computes cf2 extension along the lines
of Theorem 1. For a better understanding, we split πcf2 into several modules which we
explain in an informal manner. These modules implement the following steps, given an
AF F = (A,R):

1. Guess the conflict-free sets S ⊆ A of F .
2. For each S, compute the set∆F,S .
3. For each S, derive the instance [[F − ∆F,S]].
4. Check whether S is maximal conflict-free in [[F − ∆F,S]].

To start with, let us first fix that a given AF F = (A,R) is presented to πcf2 as a database

F̂ = { arg(a) | a ∈ A} ∪ {att(a, b) | (a, b) ∈ R }.

1. The guessing module. The following rules guess, when augmented by F̂ for an AF
F = (A,R), any subset S ⊆ A (to be precise, for an argument a ∈ A, atom in(a)
indicates that a ∈ S; while atom out(a) indicates that a /∈ S) and then check whether
the represented guess S is conflict-free in F :

πcf = { in(X) :-not out(X), arg(X);

out(X) :-not in(X), arg(X);

:- in(X), in(Y), att(X,Y) }.

2. The fixed-point module. Here we use the auxiliary predicates inf(·), succ(·, ·) and
sup(·) which identify an infimum, a successor function and a supremum for arguments
with respect to the previously mentioned order <.6 We exploit this order to iterate over
the operator∆F,S(·). Given F = (A,R), by definition of∆F,S it is sufficient to compute
at most |A| such iterations to reach the fixed-point. Let us now present the module and
then explain its behavior in more detail.

6For more details, we refer to [7], where a module π< is given which defines these predicates.

πreach = { arg_set(N,X) :- arg(X), inf(N); (3)

reach(N,X, Y) :- arg_set(N,X), arg_set(N,Y), att(X,Y); (4)

reach(N,X, Y) :- arg_set(N,X), att(X,Z), reach(N,Z, Y); (5)

d(N,X) :- arg_set(N,Y), arg_set(N,X), in(Y), att(Y,X),

not reach(N,X, Y); (6)

arg_set(M,X) :- arg_set(N,X),not d(N,X), succ(N,M) }. (7)

Rule (3) first copies all arguments into a set indexed by the infimum which initiates the
computation. The remaining rules are applicable to arbitrary indices, whereby rule (7)
copies (a subset of the) arguments from the currently computed set into the “next” set
using the successor function succ(·, ·). This guarantees a step-by-step computation of
arg_set(i, ·) by incrementing the index i. The functioning of rules (4)–(7) is as follows.
Rules (4) and (5) compute a predicate reach(n, x, y) indicating that there is a path from
argument x to argument y in the given framework restricted to the arguments of the
current set n. In rule (6), d(n, x) is obtained for all arguments x which are component-
defeated by S in this restricted framework. In other words, if n is the i-th argument in the
order<, d(n, x) carries exactly those arguments x which are contained in∆i

F,S . Finally,
rule (7) copies arguments from the current set which are not component-defeated to the
successor set.

3. The instance module. As already outlined above, if the supremum m is reached
in πreach, we are guaranteed that the derived atoms arg_set(m,x) characterize exactly
those arguments x from the given AF which are not contained in ∆F,S . It is thus now
relatively easy to obtain the instance [[F − ∆F,S]] which is done below via predicates
arg_new(·) and att_new(·, ·).

πinst = { arg_new(X) :- arg_set(M,X), sup(M);

att_new(X,Y) :- arg_new(X), arg_new(Y), att(X,Y),

reach(M,Y,X), sup(M) }.

4. The checking module. It remains to verify whether the initially guessed set S is a
cf2 extension. To do so, we need to check whether S is maximal conflict-free in the
instance [[F − ∆F,S]]. The following module does this job by checking whether only
those arguments are not contained in S, for which an addition to S would yield a conflict.

πmcf = { conflicting(X) :- att_new(Y,X), out(X), in(Y);

conflicting(X) :- att_new(X,Y), out(X), in(Y);

conflicting(X) :- att_new(X,X);

:-not conflicting(X), out(X), arg_new(X) }.

We now have our entire encoding πcf2 = πcf ∪π< ∪πreach∪πinst ∪πmcf available
(recall that we have not given here the definition of π<; see [7] for the details). The
desired correspondence between answer-sets and cf2 extensions is as follows.

Theorem 2 LetF be an AF. Then, (i) for each S ∈ cf2 (F), there is an I ∈ AS(πcf2 (F̂))

with S = {a | in(a) ∈ I}; (ii) for each I ∈ AS(πcf2 (F̂)), {a | in(a) ∈ I} ∈ cf2 (F).

5. Discussion and Conclusions

In this paper, we introduced an alternative characterization for the cf2 semantics which
is based on a certain fixed-point operator in order to avoid the more involved recursions
from the original definition [1]. This new characterization allowed us to provide a rela-
tively succinct ASP-encoding for computing cf2 extensions which has been incorporated
to the ASP-based argumentation system ASPARTIX. Extending our techniques to other
SCC-recursive semantics [1] is ongoing work.

Previous work [12] has shown that cf2 extensions can be characterized using a dif-
ferent (however, not implemented) semantics for logic programs. In the same paper, com-
plexity results for cf2 semantics have been reported, in particular that the verification
problem (i.e. checking whether a given set is a cf2 extension) can be decided in polyno-
mial time. We note that this result is reflected in our encodings by the fact that (unstrat-
ified) negation is only used for guessing a candidate set, while the verification part does
not contain any costly programming concepts (in particular, we could avoid the use of
disjunction which is necessary to capture more involved semantics; see [7] for details).

References

[1] P. Baroni, M. Giacomin, and G. Guida. SCC-Recursiveness: A General Schema for Argumentation
Semantics. Artif. Intell., 168(1-2):162–210, 2005.

[2] M. Caminada. Semi-Stable Semantics. Proc. COMMA’06, volume 144 of FAIA, pages 121–130. IOS
Press, 2006.

[3] M. Denecker, J. Vennekens, S. Bond, M. Gebser, and M. Truszczynski. The Second Answer Set Pro-
gramming Competition. Proc. LPNMR’09, volume 5753 of LNCS, pages 637–654. Springer, 2009.

[4] P. M. Dung. On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Reasoning,
Logic Programming and n-Person Games. Artif. Intell., 77(2):321–358, 1995.

[5] P. M. Dung, P. Mancarella, and F. Toni. Computing Ideal Sceptical Argumentation. Artif. Intell., 171(10-
15):642–674, 2007.

[6] P. E. Dunne and M. Wooldridge. Complexity of Abstract Argumentation. Argumentation in Artificial
Intelligence, pages 85–104. Springer, 2009.

[7] U. Egly, S. A. Gaggl, and S. Woltran. Answer-Set Programming Encodings for Argumentation Frame-
works. Accepted for publication in Argument and Computation. Available as Technical Report DBAI-
TR-2008-62, Technische Universität Wien, 2008.

[8] M. Gelfond and V. Lifschitz. Classical Negation in Logic Programs and Disjunctive Databases. New
Generation Comput., 9(3/4):365–386, 1991.

[9] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, Simona Perri, and Francesco Scarcello. The DLV
System for Knowledge Representation and Reasoning. ACM Trans. Comput. Log., 7(3):499–562, 2006.

[10] I. Niemelä. Logic Programming with Stable Model Semantics as a Constraint Programming Paradigm.
Ann. Math. Artif. Intell., 25(3–4):241–273, 1999.

[11] J. C. Nieves, M. Osorio, and U. Cortés. Preferred Extensions as Stable Models. Theory and Practice of
Logic Programming, 8(4):527–543, 2008.

[12] J. C. Nieves, M. Osorio, and C. Zepeda. Expressing Extension-Based Semantics Based on Stratified
Minimal Models. Proc. WoLLIC’09, volume 5514 of LNCS, pages 305–319. Springer, 2009.

[13] M. Osorio, C. Zepeda, J. C. Nieves, and U. Cortés. Inferring Acceptable Arguments with Answer Set
Programming. Proc. ENC’05, pages 198–205. IEEE Computer Society, 2005.

[14] T. Wakaki and K. Nitta. Computing Argumentation Semantics in Answer Set Programming. Proc.
JSAI’08, volume 5447 of LNCS, pages 254–269. Springer, 2008.

