Review: The Relational Calculus

What we have learned so far:

- There are many ways to describe databases:
 - named perspective, unnamed perspective, interpretations, ground facts, (hyper)graphs
- There are many ways to describe query languages:
 - relational algebra, domain independent FO queries, safe-range FO queries, active domain FO queries, Codd’s tuple calculus
 - either under named or under unnamed perspective

All of these are largely equivalent: The Relational Calculus

Next question: How hard is it to answer such queries?

How to Measure Complexity of Queries?

- Complexity classes often for decision problems (yes/no answer)
 - database queries return many results (no decision problem)
- The size of a query result can be very large
 - it would not be fair to measure this as “complexity”
- In practice, database instances are much larger than queries
 - can we take this into account?

Query Answering as Decision Problem

We consider the following decision problems:

- **Boolean query entailment**: given a Boolean query \(q \) and a database instance \(I \), does \(I \models q \) hold?
- **Query of tuple problem**: given an \(n \)-ary query \(q \), a database instance \(I \) and a tuple \(\langle c_1, \ldots, c_n \rangle \), does \(\langle c_1, \ldots, c_n \rangle \in M[q](I) \) hold?
- **Query emptiness problem**: given a query \(q \) and a database instance \(I \), does \(M[q](I) \neq \emptyset \) hold?

\(\leadsto \) Computationally equivalent problems (exercise)
The Size of the Input

Combined Complexity
Input: Boolean query q and database instance I
Output: Does $I \models q$ hold?

\~ estimate complexity in terms of overall input size
\~ “2KB query/2TB database” = “2TB query/2KB database”
\~ study worst-case complexity of algorithms for fixed queries:

Data Complexity
Input: database instance I
Output: Does $I \models q$ hold? (for fixed q)

\~ we can also fix the database and vary the query:

Query Complexity
Input: Boolean query q
Output: Does $I \models q$ hold? (for fixed I)

Review: Computation and Complexity Theory

The Turing Machine (1)

Computation is usually modelled with Turing Machines (TMs)
\~ “algorithm” = “something implemented on a TM”

A TM is an automaton with (unlimited) working memory:
- It has a finite set of states Q
- Q includes a start state q_{start} and an accept state q_{acc}
- The memory is a tape with numbered cells $0, 1, 2, \ldots$
- Each tape cell holds one symbol from the set of tape symbols Γ
- There is a special symbol $__$ for empty tape cells
- The TM has a transition relation $\Delta \subseteq (Q \times \Gamma) \times (Q \times \Gamma \times \{l, r, s\})$
- Δ might be a partial function $(Q \times \Gamma) \rightarrow (Q \times \Gamma \times \{l, r, s\})$

\~ deterministic TM (DTM); otherwise nondeterministic TM

There are many different but equivalent ways of defining TMs.

The Turing Machine (2)

TMs operate step-by-step:
- At every moment, the TM is in one state $q \in Q$ with its read/write head at a certain tape position $p \in \mathbb{N}$, and the tape has a certain contents $\sigma_0 \sigma_1 \sigma_2 \cdots$ with all $\sigma_i \in \Gamma$
- \~ current configuration of the TM
- The TM starts in state q_{start} and at tape position 0.
- Transition $(q, \sigma, q', \sigma', d) \in \Delta$ means:
 - if in state q and the tape symbol at its current position is σ
 - then change to state q', write symbol σ' to tape, move head by d (left/right/stay)
- If there is more than one possible transition, the TM picks one nondeterministically
- The TM halts when there is no possible transition for the current configuration (possibly never)

A computation path (or run) of a TM is a sequence of configurations that can be obtained by some choice of transition.
Languages Accepted by TMs
The (nondeterministic) TM accepts an input $\sigma_1 \cdots \sigma_n \in (\Gamma \setminus \{\alpha\})^*$ if, when started on the tape $\sigma_1 \cdots \sigma_n \alpha \cdots$, (1) the TM halts on every computation path and (2) there is at least one computation path that halts in the accepting state $q_{acc} \in Q$.

Solving Computation Problems with TMs
A decision problem is a language L of words over $\Sigma = \Gamma \setminus \{\alpha\}$, leading to the set of all inputs for which the answer is “yes.”

A TM decides a decision problem L if it accepts exactly the words in L.

TMs take time (number of steps) and space (number of cells):
- $\text{Time}(f(n))$: Problems that can be decided by a DTM in $O(f(n))$ steps, where f is a function of the input length n.
- $\text{Space}(f(n))$: Problems that can be decided by a DTM using $O(f(n))$ tape cells, where f is a function of the input length n.
- $\text{NTime}(f(n))$: Problems that can be decided by a TM in at most $O(f(n))$ steps on any of its computation paths.
- $\text{NSpace}(f(n))$: Problems that can be decided by a TM using at most $O(f(n))$ tape cells on any of its computation paths.

Some Common Complexity Classes

$$
\begin{align*}
\text{P} &= \text{PTime} = \bigcup_{k \geq 1} \text{Time}(n^k) \\
\text{Exp} &= \text{ExpTime} = \bigcup_{k \geq 1} \text{Time}(2^{n^k}) \\
2\text{Exp} &= 2\text{ExpTime} = \bigcup_{k \geq 1} \text{Time}(2^{2^{n^k}}) \\
\text{ETime} &= \bigcup_{k \geq 1} \text{Time}(2^{n^k}) \\
\text{L} &= \text{LogSpace} = \text{Space}(\log n) \\
\text{PSpace} &= \bigcup_{k \geq 1} \text{Space}(n^k) \\
\text{ExpSpace} &= \bigcup_{k \geq 1} \text{Space}(2^{n^k}) \\
\text{NP} &= \bigcup_{k \geq 1} \text{NTime}(n^k) \\
\text{NEExp} &= \text{NExpTime} = \bigcup_{k \geq 1} \text{NTime}(2^{n^k}) \\
\text{N2Exp} &= \text{N2ExpTime} = \bigcup_{k \geq 1} \text{NTime}(2^{2^{n^k}}) \\
\text{NL} &= \text{NLogSpace} = \text{NSpace}(\log n) \\
\text{PSpace} &= \bigcup_{k \geq 1} \text{Space}(n^k) \\
\text{ExpSpace} &= \bigcup_{k \geq 1} \text{Space}(2^{n^k})
\end{align*}
$$

NP

NP = Problems for which a possible solution can be verified in P:
- for every $w \in L$, there is a certificate $c_w \in \Sigma^*$, such that
- the length of c_w is polynomial in the length of w, and
- the language $\{w \# c_w \mid w \in L\}$ is in P

Equivalent to definition with nondeterministic TMs:
- \implies nondeterministically guess certificate; then run verifier DTM
- \impliedby use accepting polynomial run as certificate; verify TM steps
NP Examples

Examples:
- Sudoku solvability (certificate: filled-out grid)
- Composite (non-prime) number (certificate: factorization)
- Prime number (certificate: see Wikipedia “Primality certificate”)
- Propositional logic satisfiability (certificate: satisfying assignment)
- Graph colourability (certificate: coloured graph)

NP and coNP

Note: Definition of NP is not symmetric
- there does not seem to be any polynomial certificate for Sudoku unsolvability or logic unsatisfiability
- converse of an NP problem is coNP
- similar for NExpTime and N2ExpTime

Other classes are symmetric:
- Deterministic classes (coP = P etc.)
- Space classes mentioned above (esp. coNL = NL)

Reductions

Observation: some problems can be reduced to others

Example: 3-colouring can be reduced to propositional satisfiability

Encoding colours in propositions:
- r_i means “vertex i is red”
- g_i means “vertex i is green”
- b_i means “vertex i is blue”

Colouring conditions on vertices:
\[(r_1 \land \lnot g_1 \land \lnot b_1) \lor \lnot (r_1 \land g_1 \land b_1) \lor \lnot (r_1 \land \lnot g_1 \land \lnot b_1)\]
(and so on for all vertices)

Colouring conditions for edges:
\[\lnot (r_1 \land r_2) \land \lnot (g_1 \land g_2) \land \lnot (b_1 \land b_2)\]
(and so on for all edges)

Satisfying truth assignment ⇔ valid colouring

Defining Reductions

Definition 3.1: Consider languages \(L_1, L_2 \subseteq \Sigma^*\). A computable function \(f : \Sigma^* \rightarrow \Sigma^*\) is a many-one reduction from \(L_1\) to \(L_2\) if:

\[w \in L_1 \iff f(w) \in L_2\]

We can solve problem \(L_1\) by reducing it to problem \(L_2\)
- only useful if the reduction is much easier than solving \(L_1\) directly
- polynomial many-one reductions
The Structure of NP

Idea: polynomial many-one reductions define an order on problems

NP-Hardness und NP-Completeness

Theorem 3.2 (Cook 1971; Levin 1973): All problems in NP can be polynomially many-one reduced to the propositional satisfiability problem (SAT).

- NP has a maximal class that contains a practically relevant problem
- If SAT can be solved in P, all problems in NP can
- Karp discovered 21 further such problems shortly after (1972)
- Thousands such problems have been discovered since . . .

Definition 3.3: A language is
- NP-hard if every language in NP is polynomially many-one reducible to it
- NP-complete if it is NP-hard and in NP

Comparing Complexity Classes

Is any NP-complete problem in P?
- If yes, then $P = NP$
- Nobody knows $P = NP$ (biggest open problem in computer science)
- Similar situations for many complexity classes

Some things that are known:

- $L \subseteq NL \subseteq P \subseteq PSpace \subseteq ExpTime \subseteq NExpTime$
- None of these is known to be strict
- But we know that $P \subseteq ExpTime$ and $NL \subseteq PSpace$
- Moreover $PSpace = NPSpace$ (by Savitch’s Theorem)

(see TU Dresden course complexity theory for many more details)

Comparing Tractable Problems

Polynomial-time many-one reductions work well for (presumably) super-polynomial problems \Rightarrow what to use for P and below?

Definition 3.4: A LogSpace transducer is a deterministic TM with three tapes:
- a read-only input tape
- a read/write working tape of size $O(\log n)$
- a write-only, write-once output tape

Such a TM needs a slightly different form of transitions:
- transition function input: state, input tape symbol, working tape symbol
- transition function output: state, working tape write symbol, input tape move, working tape move, output tape symbol or to not write anything to the output
The Power of LogSpace

LogSpace transducers can still do a few things:
- store a constant number of counters and increment/decrement the counters
- store a constant number of pointers to the input tape, and locate/read items that start at this address from the input tape
- access/process/compare items from the input tape bit by bit

Example 3.5: Adding and subtracting binary numbers, detecting palindromes, comparing lists, searching items in a list, sorting lists, ... can all be done in L.

Joining Two Tables in LogSpace

Input: two relations R and S, represented as a list of tuples
- Use two pointers p_R and p_S pointing to tuples in R and S, respectively
- Outer loop: iterate p_R over all tuples of R
- Inner loop for each position of p_R: iterate p_S over all tuples of S
- For each combination of p_R and p_S, compare the tuples:
 - Use another two loops that iterate over the columns of R and S
 - Compare attribute names bit by bit
 - For matching attribute names, compare the respective tuple values bit by bit
- If all joined columns agree, copy the relevant parts of tuples p_R and p_S to the output (bit by bit)

Output: $R \bowtie S$

~ Fixed number of pointers and counters
(making this fully formal is still a bit of work; e.g., an additional counter is needed to move the input read head to the target of a pointer (seek))

From L to NL

NL: Problems whose solution can be verified in L

Example: Reachability
- Input: a directed graph G and two nodes s and t of G
- Output: accept if there is a directed path from s to t in G

Algorithm sketch:
- Store the id of the current node and a counter for the path length
- Start with s as current node
- In each step, increment the counter and move from the current node to one of its direct successors (nondeterministic)
- When reaching t, accept
- When the step counter is larger than the total number of nodes, reject

LogSpace reductions

LogSpace functions: The output of a LogSpace transducer is the contents of its output tape when it halts \leadsto a partial function $\Sigma^* \rightarrow \Sigma^*$

Note: the composition of two LogSpace functions is LogSpace (exercise)

Definition 3.6: A many-one reduction f from L_1 to L_2 is a LogSpace reduction if it is implemented by some LogSpace transducer.

\leadsto can be used to define hardness for classes P and NL
Beyond Logarithmic Space

Propositional satisfiability can be solved in linear space:

~ iterate over possible truth assignments and check each in turn

More generally: all problems in NP can be solved in PSpace

~ try all conceivable polynomial certificates and verify each in turn

What is a “typical” (that is, hard) problem in PSpace?

~ Simple two-player games, and other uses of alternating quantifiers

Example: Playing “Geography”

A children’s game:

• Two players are taking turns naming cities.
• Each city must start with the last letter of the previous.
• Repetitions are not allowed.
• The first player who cannot name a new city looses.

A mathematicians’ game:

• Two players are marking nodes on a directed graph.
• Each node must be a successor of the previous one.
• Repetitions are not allowed.
• The first player who cannot mark a new node looses.

Question: given a certain graph and start node, can Player 1 enforce a win (i.e., does he have a winning strategy)?

~ PSpace-complete problem

Example: Quantified Boolean Formulae (QBF)

We consider formulae of the following form:

\[Q_1X_1. Q_2X_2. \cdots Q_nX_n. \varphi[X_1, \ldots, X_n] \]

where \(Q \in \{ \exists, \forall \} \) are quantifiers, \(X \) are propositional logic variables, and \(\varphi \) is a propositional logic formula with variables \(X_1, \ldots, X_n \) and constants \(\top \) (true) and \(\bot \) (false)

Semantics:

• Propositional formulae without variables (only constants \(\top \) and \(\bot \)) are evaluated as usual
• \(\exists X_1. \varphi[X_1] \) is true if either \(\varphi[X_1/\top] \) or \(\varphi[X_1/\bot] \) are
• \(\forall X_1. \varphi[X_1] \) is true if both \(\varphi[X_1/\top] \) and \(\varphi[X_1/\bot] \) are

Question: Is a given QBF formula true?

~ PSpace-complete problem

A Note on Space and Time

How many different configurations does a TM have in space \((f(n)) \)?

\[|Q| \cdot (f(n)) \cdot |\Gamma|^{(f(n))} \]

~ No halting run can be longer than this
~ A time-bound TM can explore all configurations in time proportional to this

Applications:

• \(L \subseteq P \)
• \(\text{PSpace} \subseteq \text{ExpTime} \)
Summary and Outlook

The complexity of query languages can be measured in different ways.

Relevant complexity classes are based on restricting space and time:

\[L \subseteq NL \subseteq P \subseteq NP \subseteq \text{PSpace} \subseteq \text{ExpTime} \]

Problems are compared using many-one reductions.

~ see TU Dresden course Complexity Theory for further details and deeper insights.

Open questions:

- Now how hard is it to answer FO queries? (next lecture)
- We saw that joins are in LogSpace – is this tight?
- How can we study the expressiveness of query languages?