

Hannes Strass (based on slides by Michael Thielscher)
Faculty of Computer Science, Institute of Artificial Intelligence, Computational Logic Group

SLD Resolution

Lecture 3, 27th Oct 2025 // Foundations of Logic Programming, WS 2025/26

Previously ...

- A substitution replaces variables by terms, and is applied to terms.
- A unifier is a substitution that equates two terms when applied to them.
- The **Martelli-Montanari Algorithm** decides if a set of pairs of terms has a unifier and even outputs a (most general) unifier if one exists.
- The algorithm is **correct** (i.e., sound and complete) and **terminates**.

Example

Consider $E_0 = \{g(x, f(y)) \doteq g(a, z), f(x) \doteq f(a)\}$. The algorithm yields:

$$E_1 = \{ x \doteq a, f(y) \doteq z, f(x) \doteq f(a) \}$$
 (decompose)

$$E_2 = \{ x \doteq a, z \doteq f(y), f(x) \doteq f(a) \}$$
 (orient)

$$E_3 = \{ x \doteq a, z \doteq f(y), f(a) \doteq f(a) \}$$
 (apply)

$$E_4 = \{ x \doteq a, z \doteq f(y), a \doteq a \}$$
 (decompose)

$$E_5 = \{ x \doteq a, z \doteq f(y) \}$$
 (decompose)

Overview

The Logical Language of Programs

The Computation Mechanism: SLD Derivations

Choices and Their Impact

The Logical Language of Programs

Atoms, Term Bases, and Herbrand Bases

Definition

Let $TU_{F,V}$ be a term universe (V Variables, F function symbols) and Π be a ranked alphabet of **predicate symbols**.

The **term base** $TB_{\Pi,F,V}$ (over Π , F, and V) is the smallest set of **atoms** with

- 1. if $p \in \Pi^{(0)}$ then $p \in TB_{\Pi,F,V}$;
- 2. if $p \in \Pi^{(n)}$ with $n \ge 1$ and $t_1, \ldots, t_n \in TU_{F,V}$, then $p(t_1, \ldots, t_n) \in TB_{\Pi,F,V}$.
- → Usual definition of atoms of first-order predicate logic.

Definition

Let HU_F be a Herbrand universe, Π ranked alphabet of predicate symbols.

The **Herbrand base** $HB_{\Pi,F}$ (over Π and F) is given by $TB_{\Pi,F,\emptyset}$.

→ Herbrand base is the set of all variable-free (ground) atoms.

Queries and Programs

Definition

- A **query** is a finite sequence B_1, \ldots, B_n of atoms (denoted \vec{B}).
- The **empty query** (empty sequence of atoms) is denoted by \Box .
- A (definite) clause is an expression $H \leftarrow \vec{B}$ where

H is an atom (the **head** of the clause) and \vec{B} is a query (the **body** of the clause).

- $H \leftarrow \vec{B}$ unit clause (also called: fact) : $\iff \vec{B}$ is empty (standard notation: $H \leftarrow$)
- Horn clause : ⇔ clause or negated query
- (definite) logic program : ← finite set of (definite) clauses

We will mostly use "program" and take it to mean "definite logic program".

Clauses and Queries: Examples

Example

Let x, y, z be variables. Then the following expressions are examples for ...

an atom:

direct(maui, honolulu)

a query:

direct(frankfurt, x), direct(x, honolulu)

a fact:

 $direct(maui, honolulu) \leftarrow$

a (definite) clause:

 $connection(x, y) \leftarrow direct(x, z), connection(z, y)$

Recall

In predicate logic, a **clause** is a disjunction of literals.

Logical Reading of Clauses and Queries

Clauses

A clause $H \leftarrow B_1, \dots, B_n$ can be understood as the formula

$$\forall x_1, \dots, x_k((B_1 \land \dots \land B_n) \rightarrow H)$$
 (definite clause $\forall x_1, \dots, x_k(\neg B_1 \lor \dots \lor \neg B_n \lor H)$)

where x_1, \ldots, x_k are the variables occurring in $H \leftarrow B_1, \ldots, B_n$.

(Thus a unit clause $H \leftarrow$ encodes $\forall x_1, \dots, x_k H$.)

Queries

A query A_1, \ldots, A_n can be understood as the formula

$$\exists x_1, \dots, x_k (A_1 \land \dots \land A_n)$$
 (or: $\neg \forall x_1, \dots, x_k (\neg A_1 \lor \dots \lor \neg A_n)$)

where x_1, \ldots, x_k are the variables occurring in A_1, \ldots, A_n .

(Thus the empty query \square is equivalent to *true*.)

What is Being Computed?

- ▷ A program P can be interpreted as a set of axioms.
- \triangleright A query Q can be interpreted as the request for finding an instance $Q\theta$ which is a logical consequence of P.
- \triangleright A successful derivation provides such a substitution θ .
- \triangleright In this way, the derivation is a proof of $Q\theta$ from the set of premises P.
- ▶ Thus SLD resolution provides a proof theory for programs.
- → To be continued in Lecture 4 (Correctness of SLD Resolution), where we introduce the corresponding *model theory*.

How Do We Compute?

- ▶ A computation is a sequence of derivation steps.
- ▶ In each step an atom A is selected in the current query and a program clause $H \leftarrow \vec{B}$ is chosen.
- ▶ If A and H are unifiable (in the sense of A = H), then A is replaced by \vec{B} and an mgu of A and H is applied to the resulting query.
- ▶ The computation is successful if it ends with the empty query.
- ightharpoonup The resulting answer substitution θ is obtained by combining the mgus of each step.

Observation

For atoms A and B to be unifiable, they must use the same predicate $p \in \Pi^{(n)}$ and furthermore, for $A = p(s_1, \ldots, s_n)$ and $B = p(t_1, \ldots, t_n)$ the resulting set $E = \{s_1 = t_1, \ldots, s_n = t_n\}$ must have an mgu.

The Computation Mechanism: SLD Derivations

An SLD Derivation Step (No Variables)

Note

SLD = Selection rule driven Linear resolution for Definite clauses

Definition

Consider

- a program P
- a query \vec{A} , \vec{B} , \vec{C}
- a clause $c = B \leftarrow \vec{B} \in P$
- B is the selected atom
- The resulting query \vec{A} , \vec{B} , \vec{C} is called the **SLD resolvent**
- Notation: \vec{A} , \vec{B} , $\vec{C} \xrightarrow{c} \vec{A}$, \vec{B} , \vec{C}

Example Ground Program and Query:

. . .

```
(1) happy :- sun, holidays.
(2) happy :- snow, holidays.
(3) snow :- cold, precipitation.
(4) cold :- winter.
(5) precipitation :- holidays.
(6) winter.
(7) holidays.
| ?- happy.
```


An SLD Derivation Step (General Case)

Definition

Consider

- a program *P*
- a query \vec{A} , \vec{B} , \vec{C}
- a clause c ∈ P
- a variant $H \leftarrow \vec{B}$ of c that is variable disjoint with the query
- an mgu θ of B and H
- **SLD resolvent** of \vec{A} , \vec{B} , \vec{C} and \vec{c} w.r.t. \vec{B} with mgu $\theta :\iff (\vec{A}, \vec{B}, \vec{C})\theta$
- SLD derivation step : $\iff \vec{A}, B, \vec{C} \xrightarrow{\theta} (\vec{A}, \vec{B}, \vec{C})\theta$
- **input clause** : \iff variant $H \leftarrow \vec{B}$ of c

We say: "Clause *c* is **applicable** to atom *B*."

Example Program and Query:

The 4 Steps of Resolving Query and Clause

Selection Select an atom in the query. Renaming Rename the clause (if necessary). Instantiate query and clause by an mgu of the se-Instantiation lected atom and the head of the clause. Replace the instance of the selected atom by the Replacement instance of the body of the clause.

SLD Derivations

Definition

A maximal sequence of SLD derivation steps

$$Q_0 \xrightarrow[c_1]{\theta_1} Q_1 \cdots Q_n \xrightarrow[c_{n+1}]{\theta_{n+1}} Q_{n+1} \cdots$$

is an **SLD derivation of** $P \cup \{Q_0\}$

$$:\Longleftrightarrow$$

- $Q_0, \ldots, Q_{n+1}, \ldots$ are queries, each empty or with one atom selected in it;
- $\theta_1, \ldots, \theta_{n+1}, \ldots$ are substitutions;
- $c_1, \ldots, c_{n+1}, \ldots$ are clauses of P;
- for every SLD derivation step, standardization apart holds.

Standardization Apart

Definition

For a sequence of SLD derivation steps as before, let $Q_{i-1} \xrightarrow{\theta_i} Q_i$ be the *i*-th SLD derivation step for all $i \ge 1$ and c'_i be the input clause used in that step. Then **standardization apart** holds (for the *i*-th step)

$$:\iff Var(c'_i) \cap \left(Var(Q_0) \cup \bigcup_{j=1}^{i-1} \left(Var(\theta_j) \cup Var(c'_j)\right)\right) = \emptyset$$

Intuitively: The input clause is variable disjoint from the initial query and from the substitutions and input clauses used at earlier steps.

Example

Consider program $P = \{p(f(x)) \leftarrow \}$ and query p(x). Without standardizing apart, the query would fail, while the intuitively equivalent query p(y) would succeed.

Result of a Derivation

Definition

Let $\xi = Q_0 \xrightarrow{\theta_1} Q_1 \cdots \xrightarrow{\theta_n} Q_n$ be a finite SLD derivation.

- ξ successful : $\iff Q_n = \square$
- ξ **failed** : \iff $Q_n \neq \square$ and no clause is applicable to the selected atom of Q_n

Definition

Let ξ be successful.

- computed answer substitution (cas) of Q_0 (w.r.t. ξ) := $(\theta_1 \cdots \theta_n)|_{Var(Q_0)}$
- computed instance of $Q_0 := Q_0 \theta_1 \cdots \theta_n$

Choices and Their Impact

Choices

In each SLD derivation step the following four choices are made:

Choice of the renaming 2 Choice of the most general unifier 3 Choice of the selected atom in the guery 4 Choice of the program clause

How do they influence the result?

Choices

1	Choice of the renaming
2	Choice of the most general unifier
3	Choice of the selected atom in the query
4	Choice of the program clause

Resultants: What is proved after a step?

Definition

The **resultant** associated with $Q \xrightarrow{\theta} Q_1$ is the implication $Q\theta \leftarrow Q_1$.

Definition

Consider

- a program P
- a resultant $R = Q \leftarrow \vec{A}, B, \vec{C}$
- a clause c
- a variant $H \leftarrow \vec{B}$ of c that is variable disjoint with R
- an mgu θ of B and H

SLD resolvent of resultant *R* and *c* w.r.t. *B* with mgu $\theta := (Q \leftarrow \vec{A}, \vec{B}, \vec{C})\theta$

SLD resultant step := $Q \leftarrow \vec{A}, B, \vec{C} \xrightarrow{\theta} (Q \leftarrow \vec{A}, \vec{B}, \vec{C})\theta$

Resultants and SLD derivations

Definition

Consider an SLD derivation

$$\xi = Q_0 \xrightarrow[c_{n+1}]{\theta_1} Q_1 \cdots Q_n \xrightarrow[c_{n+1}]{\theta_{n+1}} Q_{n+1} \cdots$$

For $i \geq 0$,

$$R_i := Q_0 \theta_1 \cdots \theta_i \leftarrow Q_i$$

is called the **resultant of level** i of ξ .

The resultant R_i describes what is proved after i derivation steps. In particular:

- $R_0 = Q_0 \leftarrow Q_0$
- $R_n = Q_0 \theta_1 \cdots \theta_n$, if $Q_n = \square$

(because $\square = \text{"true"}$)

Propagation (1)

Definition

The **selected atom** of a resultant $Q \leftarrow Q_i$ is the atom that is selected in Q_i .

Lemma 3.12

Suppose that $R \xrightarrow{\theta} R_1$ and $R' \xrightarrow{\theta'} R'_1$ are two SLD resultant steps where

- R is an instance of R',
- in R and R' atoms in the same positions are selected.

Then R_1 is an instance of R'_1 .

Proof: [Apt97, page 55]

Propagation (2)

Corollary

Suppose that $Q \xrightarrow{\theta} Q_1$ and $Q' \xrightarrow{\theta'} Q'_1$ are two SLD derivation steps where

- Q is an instance of Q',
- in *Q* and *Q'* atoms in the same positions are selected.

Then Q_1 is an instance of Q'_1 .

Similar SLD derivations

Definition

Consider two (initial fragments of) SLD derivations

$$\xi = Q_0 \xrightarrow[c_1]{\theta_1} Q_1 \cdots Q_n \xrightarrow[c_{n+1}]{\theta_{n+1}} Q_{n+1}$$

$$\xi' = Q_0' \xrightarrow{\theta_1'} Q_1' \cdots Q_n' \xrightarrow{\theta_{n+1}'} Q_{n+1}'$$

We say that ξ and ξ' are **similar**

$$:\Longleftrightarrow$$

- length(ξ) = length(ξ'),
- Q_0 and Q'_0 are variants,
- in Q_i and Q_i' atoms in the same positions are selected ($i \in [0, n]$)

A Theorem on Variants

Theorem 3.18

Consider two similar SLD derivations ξ , ξ' . For every $i \geq 0$, the resultants R_i and R_i' of level i of ξ and ξ' , respectively, are variants of each other.

Proof.

By induction on *i*.

Base Case (i=0): $R_0=Q_0\leftarrow Q_0$ and $R_0'=Q_0'\leftarrow Q_0'$ are variants of each other.

Inductive Case ($i \rightsquigarrow i+1$): Consider $R_i \xrightarrow[\epsilon_{i+1}]{\theta_{i+1}} R_{i+1}$ and $R'_i \xrightarrow[\epsilon_{i+1}]{\theta'_{i+1}} R'_{i+1}$.

 R_i variant of R'_i (induction hypothesis)

implies R_i instance of R'_i and vice versa

implies R_{i+1} instance of R'_{i+1} and vice versa (Lemma 3.12)

implies R_{i+1} variant of R'_{i+1}

Answer Substitutions of similar derivations

Corollary

Consider two similar successful SLD derivations of Q_0 with computed answer substitutions θ and η . Then $Q_0\theta$ and $Q_0\eta$ are variants of each other.

Proof.

By Theorem 3.18 applied to the final resultants $Q_0\theta \leftarrow \Box$ and $Q_0\eta \leftarrow \Box$ of these SLD derivations.

This shows that choice 1 (choice of a renaming) and choice 2 (choice of an mgu) have no influence – modulo renaming – on the statement proved by a successful SLD derivation.

Choices

1	Choice of the renaming
2	Choice of the most general unifier
3	Choice of the selected atom in the query
4	Choice of the program clause

Selecting Atoms in Queries

Definition

Let INIT be the set of *all* initial fragments of *all* possible SLD derivations in which the last query is non-empty.

- A **selection rule** is a function which for every $\xi^{<} \in \mathit{INIT}$ yields an occurrence of an atom in the last query of $\xi^{<}$.
- An SLD derivation ξ is **via** a selection rule \Re

:⇔

for every initial fragment $\xi^{<}$ of ξ ending with a non-empty query Q, the selected atom of Q is exactly $\Re(\xi^{<})$.

PROLOG employs the simple selection rule "select the leftmost atom."

Switching Lemma

Lemma 3.32

Consider an SLD derivation

$$\xi = Q_0 \xrightarrow[c_1]{\theta_1} Q_1 \cdots Q_n \xrightarrow[c_{n+1}]{\theta_{n+1}} Q_{n+1} \xrightarrow[c_{n+2}]{\theta_{n+2}} Q_{n+2} \cdots$$

where

- Q_n includes two atoms A_1 and A_2 ,
- A_1 is the selected atom of Q_n ,
- $A_2\theta_{n+1}$ is the selected atom of Q_{n+1} .

Then the SLD derivation

$$\xi' = Q_0 \xrightarrow[c_1]{\theta_1} Q_1 \cdots Q_n \xrightarrow[c_{n+2}]{\theta'_{n+1}} Q'_{n+1} \xrightarrow[c_{n+1}]{\theta'_{n+2}} Q_{n+2} \cdots$$

for some Q'_{n+1} , θ'_{n+1} , and θ'_{n+2} is such that:

- A_2 is the selected atom of Q_n
- $A_1\theta'_{n+1}$ is the selected atom of Q'_{n+1}
- $\theta'_{n+1}\theta'_{n+2}=\theta_{n+1}\theta_{n+2}$.

Proof: [Apt97, page 65]

Independence of Selection Rule

Theorem 3.33

Let ξ be a successful SLD derivation of $P \cup \{Q_0\}$.

Then for every selection rule \mathcal{R} there exists a successful SLD derivation ξ' of $P \cup \{Q_0\}$ via \mathcal{R} such that

- cas of Q_0 (w.r.t. ξ) = cas of Q_0 (w.r.t. ξ'),
- ξ and ξ' are of the same length.

This shows that choice 3 (choice of a selected atom) has no influence in case of successful queries.

Proof Sketch of Theorem 3.33.

Consider an SLD derivation $\xi = Q_0 \xrightarrow[c_1]{\theta_1} \cdots \xrightarrow[c_n]{\theta_n} Q_n = \square$ that is not via \Re .

Then there is a smallest $i \ge 1$ such that:

- ξ is via \Re up to Q_{i-1} .
- \Re selects A in Q_i .
- $A\theta_{i+1}\cdots\theta_{i+j}$ is the selected atom of Q_{i+j} in ξ for some $j\geq 1$ (ξ is successful).

$$\xi = Q_0 \quad \cdots \quad Q_i \quad \cdots \quad Q_{i+j-1} \xrightarrow{\theta_{i+j}} Q_{i+j} \xrightarrow{\theta_{i+j+1}} Q_{i+j+1} \quad \cdots \quad Q_n$$

Apply Switching Lemma once:

$$\xi = Q_0 \quad \cdots \quad Q_i \quad \cdots \quad Q_{i+j-1} \xrightarrow{\theta'_{i+j}} Q'_{i+j} \xrightarrow{\theta'_{i+j}} Q_{i+j+1} \quad \cdots \quad Q_n$$

Apply Switching Lemma further j - 1 times.

Choices

1	Choice of the renaming
2	Choice of the most general unifier
3	Choice of the selected atom in the query
4	Choice of the program clause

SLD Trees visualize Search Space

Definition

SLD Tree for $P \cup \{Q_0\}$ via selection rule \Re :

- the branches are SLD derivations of $P \cup \{Q_0\}$ via \Re ;
- every node Q with selected atom A has exactly one descendant for every clause c of P which is applicable to A. This descendant is a resolvent of Q and c w.r.t. A.

Definition

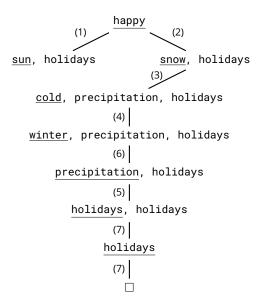
- SLD tree **successful** : \iff tree contains the node \square .
- SLD tree finitely failed :

 tree is finite and not successful.

SLD tree via "leftmost selection rule" corresponds to Prolog's search space.

SLD Trees: Example

```
(1) happy :- sun, holidays.
(2) happy :- snow, holidays.
(3) snow :- cold, precipitation.
(4) cold :- winter.
(5) precipitation :- holidays.
(6) winter.
(7) holidays.
| ?- happy.
```



Variant Independence

Definition

A selection rule \Re is **variant independent**

in all initial fragments of SLD derivations that are similar (cf. slide 27), \Re chooses the atom in the same position in the last query.

Example

- The selection rule "select leftmost atom" is variant independent.
- The selection rule "select leftmost atom if query contains variable x, otherwise select rightmost atom" is variant dependent.

The Branch Theorem

Theorem 3.38

Consider an SLD tree \mathfrak{T} for $P \cup \{Q_0\}$ via a variant independent selection rule \mathfrak{R} . Then every SLD derivation of $P \cup \{Q_0\}$ via \mathfrak{R} is similar to a branch in \mathfrak{T} .

This shows that choice 4 (choice of a program clause) has no influence on the search space as a whole.

Proof Sketch of Theorem 3.38

Let $\xi = Q_0 \longrightarrow Q_1 \longrightarrow Q_2 \longrightarrow \dots$ be an SLD derivation of $P \cup \{Q_0\}$ via \Re .

By induction on $i \ge 0$ "find" branch Q'_0, Q'_1, Q'_2, \ldots in \Im similar to ξ :

- $Q'_0 = Q_0$ (in particular they are variants).
- By definition of \mathfrak{T} : The existence of Q'_i implies the existence of Q'_{i+1} (apply the same clause as to Q_i).
- Now $Q_0 \longrightarrow \dots \longrightarrow Q_i$ and $Q'_0 \longrightarrow \dots \longrightarrow Q'_i$ are similar.
- By variant independence of \Re , in Q_i and Q_i' atoms in the same positions are selected.
- Thus $Q_0 \longrightarrow \dots \longrightarrow Q_{i+1}$ and $Q'_0 \longrightarrow \dots \longrightarrow Q'_{i+1}$ are also similar.

Conclusion

Summary

- A proof theory for (definite) logic programs is given by **SLD resolution**.
- A query is resolved with a (variant of a) program clause to another query.
- There are choices to be made (renaming of clause, mgu of query atom and clause, selected atom in query, program clause) with consequences.
- The search space can be visualized by (selection rule-induced) **SLD trees**.

Suggested action points:

- Clarify the relationship of SLD resolution and "ordinary" FOL resolution.
- Obtain SLD resolutions (with mgus) for the examples on Slide 15.
- Use Prolog's trace predicate to check your results.

