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Review: PP and BPP

Definition 21.4: A language L is in Polynomial Probabilistic Time (PP) if there is
a PTM M such that:

• there is a polynomial function f such that M will always halt after f (|w|) steps
on all input words w,

• if w ∈ L, then Pr [M accepts w] > 1
2 ,

• if w < L, then Pr [M accepts w] ≤ 1
2 .

Definition 21.11: A language L is in Bounded-Error Polynomial Probabilistic Time
(BPP) if there is a PTM M such that:

• there is a polynomial function f such that M will always halt after f (|w|) steps
on all input words w,

• if w ∈ L, then Pr [M accepts w] ≥ 2
3 ,

• if w < L, then Pr [M accepts w] ≤ 1
3 .
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Review: Polynomial Identity Testing in BPP

Algorithm: For a polynomial p(x1, . . . , xm)
• Randomly select a number k ∈ {1, . . . , 22n}

• Randomly select a1, . . . , an ∈ {1, . . . , 10 · 2n} (a total of O(n · m) random bits)

• Evaluate the circuit modulo k to compute p(a1, . . . , am) mod k

• Repeat this experiment for 4n times and accept if and only if the outcome is
0 in all cases

This leads to a constant error probability of < 0.5 for polynomials that are non-zero
(which can be amplified to be ≤ 1

3 ), and an error probability of 0 for polynomials that are.
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BPP and other classes
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The neighbours of BPP

We have already observed that P ⊆ BPP.

Moreover, since PP used less strict conditions on probabilities, we immediately get

BPP ⊆ PP ⊆ PSpace

Another interesting result is the following:

Theorem 23.1 (Adleman’s1 Theorem): BPP ⊆ P/poly

(remember that we also knew that P ⊆ P/poly but not whether NP ⊆ P/poly)

1) Adleman is the A in RSA.
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Proving Adleman’s Theorem

Theorem 23.1 (Adleman’s Theorem): BPP ⊆ P/poly

Proof: By Theorem 21.14, any language in BPP is recognised by a PTMM with error
probability ≤ 1

2n+1 , for an input of size n. Moreover,M uses a polynomial (in n) number m
of random bits r ∈ {0, 1}m (verifier perspective on PTMs).

• r is bad for input w ∈ {0, 1}n ifM returns the wrong answer on w for random bits r;
otherwise r is good for w

• Because of the error probability, there are ≤ 2m

2n+1 bad strings for any w

• In total, for all 2n inputs, there are ≤ 2n 2m

2n+1 =
2m

2 bad strings

• Therefore, there are strings r that are good for all inputs

Take one such universally good string r̂; build a circuit for a deterministic verifier TM of
inputs w#r as in Theorem 19.7; hardwire r̂ as input for the certificate. □
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BPP and the Polynomial Hierarchy

Recall: We have defined the polynomial hierarchy in two ways:

• Polytime ATMs with number of alternations bounded by a constant

• Oracle (N)TMs that use oracles for lower levels of the hierarchy

For example, ΣP
2 = NPNP = NPcoNP, the languages recognised by polytime ATMs that

begin their runs in an existential state and may alternate to a universal state later on

One would not immediately expect that these classes are related to BPP

, yet we have:

Theorem 23.2 (Sipser-Gács-Lautemann Theorem): BPP ⊆ ΣP
2 ∩ Π

P
2

Notes:

• Michael Sipser first showed that BPP ⊆ PH; Peter Gács then showed the theorem;
Clemens Lautemann then gave the readable proof we will show – all in 1983

• The result has been further strengthened since, suggesting that BPP is strictly
smaller, but no relation to any other class we covered so far is known
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Proving Sipser-Gács-Lautemann (1)

Theorem 23.2 (Sipser-Gács-Lautemann Theorem): BPP ⊆ ΣP
2 ∩ Π

P
2

Proof: Overall proof outline:

• We will show that BPP ⊆ ΣP
2 . This implies coBPP ⊆ ΠP

2 , and hence BPP ⊆ ΠP
2

since BPP is closed under complement.
• We will show the inclusion for an arbitrary language L ∈ BPP.
• Then there is a PTMM with the following features:

– M runs in time p(n) for some polynomial p, using p(n) random bits
– M accepts L with error probability ≤ 2−n

(using probability amplification as in Theorem 21.14)
We can view the computation ofM as a deterministic polytime computation over
an input of length n and an additional string of p(n) random bits, as before.

• The key to the proof is the extreme difference between acceptance and rejection:
– either ≥ (1 − 2−n)2p(n) of random vectors r ∈ {0, 1}p(n) lead to acceptance,
– or only ≤ 2−n2p(n) = 2p(n)−n of random vectors r ∈ {0, 1}p(n) lead to acceptance.

{ we want to tell the two situations apart in ΣP
2
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Proving Sipser-Gács-Lautemann (2)

Theorem 23.2 (Sipser-Gács-Lautemann Theorem): BPP ⊆ ΣP
2 ∩ Π

P
2

Proof (continued): Idea for telling apart acceptance and rejection:

• For input w, let Sw ⊆ {0, 1}p(n) be the set of all random vectors such that, ifM
accepts w when using random numbers r, then r ∈ Sw,

• Sw ⊆ {0, 1}p(n) is either almost all of {0, 1}p(n), or a tiny fraction thereof
• We consider “shifted copies” of Sw, created by some uniform bit-flipping Sw vectors:

– If Sw is large, then polynomially many such copies can cover all of {0, 1}p(n)

– If Sw is small, then polynomially many copies are too small to cover {0, 1}p(n)

• Making a “shifted copy”:
for some u ∈ {0, 1}p(n), set Sw ⊕ u = {r ⊕ u | r ∈ Sw}, where ⊕ is XOR (sum mod 2)

• Number of shifted copies: we will use k =
⌈

p(n)
n

⌉
+ 1 copies (a polynomial number)

We will show that k random shifts can cover {0, 1}p(n) if and only if Sw is “large”.
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Proving Sipser-Gács-Lautemann (3)

Theorem 23.2 (Sipser-Gács-Lautemann Theorem): BPP ⊆ ΣP
2 ∩ Π

P
2

Proof (continued):

Claim 1: If |Sw| ≤ 2p(n)−n, then, for every set of k =
⌈

p(n)
n

⌉
+ 1 vectors u1, . . . , uk ∈ {0, 1}p(n),

we have
⋃k

i=1(Sw ⊕ ui) ⊊ {0, 1}p(n).

The result follows from the cardinalities of the involved sets:

Using that |Sw ⊕ ui| = |Sw|, we obtain:∣∣∣∣∣∣∣
k⋃

i=1

(Sw ⊕ ui)

∣∣∣∣∣∣∣ ≤ k|Sw| ≤

(⌈
p(n)

n

⌉
+ 1

)
2p(n)−n =

(⌈
p(n)

n

⌉
+ 1

)
2n 2p(n) = o(2p(n))

Therefore the claim holds for sufficiently large n.
This suffices, since inputs of shorter length can surely be decided in ΣP

2 as well.
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Proving Sipser-Gács-Lautemann (4)

Theorem 23.2 (Sipser-Gács-Lautemann Theorem): BPP ⊆ ΣP
2 ∩ Π

P
2

Proof (continued):

Claim 2: If |Sw| ≥ (1 − 2−n)2p(n), then there is a set of k =
⌈

p(n)
n

⌉
+ 1 vectors

u1, . . . , uk ∈ {0, 1}p(n), such that
⋃k

i=1(Sw ⊕ ui) = {0, 1}p(n).

We argue that, for independently and randomly chosen u1, . . . , uk, we have
Pr

[⋃k
i=1(Sw ⊕ ui) = {0, 1}p(n)

]
> 0. The claim follows from this.

For a particular r ∈ {0, 1}p(n), we compute

Pr
[
r <

⋃k
i=1(Sw ⊕ ui)

] (a)
= Πk

i=1Pr [r < (Sw ⊕ ui)]
(b)
≤ Πk

i=12−n = 2−nk = 2−n
(⌈

p(n)
n

⌉
+1

)
< 2−p(n)

since: (a) ui are selected independently; (b) Pr [r < (Sw ⊕ ui)] = Pr [r ⊕ ui < Sw] ≤ 2−n

Therefore: Pr
[
there is r ∈ {0, 1}p(n) \

⋃k
i=1(Sw ⊕ ui)

]
< 2p(n) · 2−p(n) = 1. In particular, there

is at least one choice of u1, . . . , uk where this event does not occur, i.e., where all r are in⋃k
i=1(Sw ⊕ ui).
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Proving Sipser-Gács-Lautemann (5)

Theorem 23.2 (Sipser-Gács-Lautemann Theorem): BPP ⊆ ΣP
2 ∩ Π

P
2

Proof (continued): In summary, we have shown:

• If Sw is “small,” then there are no vectors u1, . . . , uk such that
⋃k

i=1(Sw ⊕ ui) = {0, 1}p(n)

• If Sw is “large,” then there are vectors u1, . . . , uk such that
⋃k

i=1(Sw ⊕ ui) = {0, 1}p(n)

Hence, we can check the acceptance ofM by computing if the following holds true:

∃u1, . . . , uk.∀r ∈ {0, 1}p(n).r ∈
k⋃

i=1

(Sw ⊕ ui)

Using the DTM version of PTMs, this becomes:

∃u1, . . . , uk.∀r ∈ {0, 1}p(n).
k∨

i=1

M accepts w for random vector r ⊕ ui

This is a ΣP
2 computation. □
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Hierarchy Theorems for BPP

The Time Hierarchy Theorems for deterministic and non-deterministic Turing machines
show that, when given (sufficiently) more time, such TMs can solve more problems. In
particular:

• P , ExpTime

• NP , NExpTime

The proofs were based on diagonalisation arguments that enabled TMs with more time
to deliberately differ from all TMs with less time.

Unfortunately, no such arguments are known for BPP:

• The difficulty of applying diagonalisation arguments is related to the semantic
definition of BPP.

• Currently, we don’t even know if BPP , NExpTime!
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Relationship of BPP and P

We know P ⊆ BPP ⊆ PP ⊆ PSpace but not even if BPP , NExpTime.

However, most experts expect that . . .

BPP is equal to P!

• Many BPP algorithms have been de-randomised successfully

• BPP = P is equivalent to the existence of strong pseudo-random number
generators, which many experts consider likely
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Further probabilistic classes
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Types of errors

We have defined BPP by restricting the probability of error to ≤ 1
3 .

However, there are two types of errors:

• False positives: the PTM accepts a word that is not in the language

• False negatives: the PTM rejects a word that is in the language

Common BPP algorithms can often avoid one of these errors:

Example 23.3: Our previous algorithm for polynomial identity testing aimed to
decide ZeroP. For inputs w ∈ ZeroP, the algorithm accepted with probability 1 (no
false negatives). Uncertainty only occurred for inputs w < ZeroP (false positives
were possible, though unlikely).
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Randomised Polynomial Time
Excluding false positives/negatives from BPP leads to classes with one-sided error:

Definition 23.4: A language L is in Randomised Polynomial Time (RP) if there is
a PTM M such that:

• there is a polynomial function f such that M will always halt after f (|w|) steps
on all input words w,

• if w ∈ L, then Pr [M accepts w] ≥ 2
3 ,

• if w < L, then Pr [M accepts w] = 0.

Definition 23.5: A language L is in coRP if its complement is in RP, i.e., if there
is a polynomially time-bounded PTM M such that:

• if w ∈ L, then Pr [M accepts w] = 1,

• if w < L, then Pr [M accepts w] ≤ 1
3 .

Example 23.6: ZeroP ∈ coRP.
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Probability amplification for RP and coRP

It is clear from the definitions that RP ⊆ BPP and coRP ⊆ BPP.

Hence, we can apply Theorem 21.14 to amplify the output probability.

However, the situation for one-sided error classes is actually much simpler:

Theorem 23.7: Consider a language L and a polynomially time-bounded PTM M
for which there is a constant c > 0 such that, for every word w ∈ Σ∗,

• if w ∈ L then Pr [M accepts w] ≥ |w|−c

• if w < L then Pr [M accepts w] = 0

Then, for every constant d > 0, there is a polynomially time-bounded PTM M′

such that

• if w ∈ L then Pr [M′ accepts w] ≥ 1 − 2−|w|
d

• if w < L then Pr [M′ accepts w] = 0.

Proof: Much simpler than for BPP (exercise). □
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RP and NP

The asymmetric acceptance conditions of RP reminds us of NP, since already “some”
accepting runs are enough to prove acceptance.

Indeed, we get:

Theorem 23.8: RP ⊆ NP

Proof: IfM satisfies the RP acceptance conditions for L, thenM can be considered as
an NTM that accepts L with respect to the usual non-deterministic acceptance
conditions. Indeed,M has an accepting run on input |w| if and only if w ∈ L. □

Similarly, we find coRP ⊆ coNP.

Recall: While RP ⊆ BPP, we do not know whether BPP ⊆ NP.
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Zero-sided error
Instead of admitting a possibly false answer (positive or negative), one can also require
the correct answer while making some concessions on runtime:

Definition 23.9: A PTM M has expected runtime f : N → R if, for any input w,
the expectation E[Tw] of the number Tw of steps taken by M on input w is Tw ≤

f (|w|).

ZPP is the class of all languages for which there is a PTM M that

• returns the correct answer whenever it halts,

• has expected runtime f for some polynomial function f .

ZPP is for zero-error probabilistic polynomial time.

Note: In general, algorithms that produce correct results while giving only prob-
abilistic guarantees on resource usage are called Las Vegas algorithms, as op-
posed to Monte Carlo algorithms, which have guaranteed resource bounds but
probabilistic correctness (as in the case of BPP).
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Zero-sided vs. one-sided error

In spite of the different approaches of expected error vs. expected runtime, we find a
close relation between ZPP, RP, and coRP:

Theorem 23.10: ZPP = RP ∩ coRP

Proof: ZPP ⊆ RP: Given a ZPP algorithmM, construct an RP algorithm by runningM
for three times the expected (polynomial) runtime t. If it stops, return the same answer; if
it times out, reject.

• For any random variable X and c > 0, Markov’s inequality implies:
Pr [X ≥ cE[X]] ≤ E[X]

cE[X] =
1
c

• Hence the probability ofM running for ≥ 3t is ≤ 1
3

• Therefore, the probability of a false negative (due to a timeout) is ≤ 1
3

ZPP ⊆ coRP is dual; we just have to accept after timeout.
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close relation between ZPP, RP, and coRP:

Theorem 23.10: ZPP = RP ∩ coRP

Proof: ZPP ⊆ RP: Given a ZPP algorithmM, construct an RP algorithm by runningM
for three times the expected (polynomial) runtime t. If it stops, return the same answer; if
it times out, reject.
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In spite of the different approaches of expected error vs. expected runtime, we find a
close relation between ZPP, RP, and coRP:

Theorem 23.10: ZPP = RP ∩ coRP

Proof: ZPP ⊇ RP ∩ coRP: Assume we have an RP algorithm A and a coRP algorithm
B for the same language L.

To obtain a ZPP algorithm, we run A and B on input w:

• If A accepts, accept

• If B rejects, reject

• If A rejects and B accepts, repeat the experiment.

Since RP has no false positives and coRP has no false negatives, this can only return
the correct answer.

The probability of repetition is ≤ 1
3 , since it requires one of the algorithms to be in error.

Hence the probability of k repetitions is ≤ 3−k, for an expected runtime of ≤
∑

k≥0
(k+1)p

3k ,
where p is the combined (polynomial) runtime of A and B. This is polynomial. □
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Summary and Outlook

Complexity relationships: see board (or make your own drawing)

Probabilistic classes with ones-sided error – RP and coRP – are common.

ZPP defines random computations with zero-sided error, but probabilistic runtime.

Many experts believe that

P = ZPP = RP = coRP = BPP ⊊ PP

What’s next?

• Quantum computing

• Interactive Proofs

• Examinations
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