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Motivation: Objective
Goal: Define semantics for (rule-based) KR formalisms in the presence of:
Recursion

• transitive closure
• indirect effects of actions

Negation

• shorter and more intuitive descriptions
• defaults and assumptions (e.g. closed world, non-effects of actions)

Recursion Through Negation

• mutually exclusive alternatives
• non-deterministic effects of actions
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Motivation: Basic Idea
Approximation Fixpoint Theory

• Framework for studying semantics of (non-monotonic) KR formalisms
• Due to Denecker, Marek, and Truszczyński [2000, 2003, 2004]
• Based on lattice theory and fixpoint theory:

KB Models
has

Operator

defines

Fixpointshas

correspond

Approximator

defines

Fixpointshas

approximate
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Motivation: History and Context

Approximation Fixpoint Theory

. . . emerged from similarities in the semantics of
• Default Logic [Reiter, 1980]
• Autoepistemic Logic [Moore, 1985]
• Logic Programs, in particular Stable Models [Gelfond and Lifschitz, 1988]
. . . and has since been applied to define/reconstruct semantics of . . .
• Abstract Argumentation Frameworks
• Abstract Dialectical Frameworks
• Active Integrity Constraints
• Recursive SHACL
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Preliminaries
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Partially Ordered Sets
Definition
A partially ordered set is a pair (L,⩽) with
• L a set, and (carrier set)
• ⩽ ⊆ L× L a partial order. (reflexive, antisymmetric, transitive)
A partially ordered set (L,⩽) has a
• bottom element ⊥ ∈ L iff ⊥ ⩽ x for all x ∈ L,
• top element ⊤ ∈ L iff x ⩽ ⊤ for all x ∈ L.

Examples

• (N,≤): natural numbers with “usual” ordering, ⊥ = 0, no ⊤
• (2S,⊆): any powerset with subset relation, ⊥ = ∅, ⊤ = S
• (N, |): natural numbers with divisibility relation, ⊥ = 1, ⊤ = 0
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Minimal, Maximal, Least, Greatest
Definition
Let (L,⩽) be a partially ordered set with S ⊆ L and x ∈ S. We say that:
• x is aminimal element of S iff for each y ∈ S, y ⩽ x implies y = x, dually,
• x is amaximal element of S iff for each y ∈ S, x ⩽ y implies y = x;
• x is the least element of S iff for each y ∈ S, we have x ⩽ y, dually,
• x is the greatest element of S iff for each y ∈ S, we have y ⩽ x.

Example

In (N, |) (natural numbers with divisibility a | b ⇐⇒ (∃k ∈ N)a · k = b), . . .
• the set {2, 3, 6} has minimal elements 2 and 3, greatest element 6,
• the set {2, 4, 6} has least element 2, and maximal elements 4 and 6.

2 3

6

2

4 6
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Least Upper and Greatest Lower Bounds
Definition
Let (L,⩽) be a partially ordered set with S ⊆ L and x ∈ L.
• x is an upper bound of S iff for each s ∈ S, we have s ⩽ x, dually,
• x is a lower bound of S iff for each s ∈ S, we have x ⩽ s.
The set of all upper bounds of S is denoted by Su, its lower bounds by Sℓ .
• If Su has a least element z ∈ S, z is the least upper bound of S, dually,
• if Sℓ has a greatest element z ∈ S, z is the greatest lower bound of S.
We denote the glb of {x, y} by x ∧ y, and the lub of {x, y} by x ∨ y.
We denote the glb of S by

∧
S, and the lub of S by

∨
S.

Examples

• In (2S,⊆), ∧ = ∩ and ∨ = ∪;
• in (N, |), ∧ = gcd and ∨ = lcm, e.g. 4∨ 6 = 12 and 23∧ 42 = 1.
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(Complete) Lattices
Definition
Let (L,⩽) be a partially ordered set.
1. (L,⩽) is a lattice if and only if for all x, y ∈ L, both x ∧ y and x ∨ y exist;
2. (L,⩽) is a complete lattice iff for all S ⊆ L, both

∧
S and

∨
S exist.

In particular, a complete lattice has
∨

∅ =
∧
L = ⊥ and

∧
∅ =

∨
L = ⊤.

Examples

• (2S,⊆) is a complete lattice for every set S.
• (N, |) is a complete lattice.
• ({M ⊆ N | M is finite},⊆) is a lattice.
• Every lattice (L,⩽) with L finite is a complete lattice. (induction on |S|)

Further reading: davey-priestley
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Operators and Their Properties
Definition
Let (L,⩽) be a partially ordered set. An operator O : L → L is
• ⩽-monotone iff for all x, y ∈ L, we find that x ⩽ y implies O(x) ⩽ O(y);
• ⩽-antimonotone iff for all x, y ∈ L, we find that x ⩽ y implies O(y) ⩽ O(x).

Intuition: Operator application preserves/reverses ordering.

Example

Consider (2N,⊆) with operator O : 2N → 2N, M 7→ {
∏
K | K ⊆ M, K finite}.

• O({2, 3}) = {1, 2, 3, 6} and O({2, 3, 5}) = {1, 2, 3, 5, 6, 10, 15, 30}.
• O is ⊆-monotone:

– Let M1 ⊆ M2 ⊆ N and consider k ∈ O(M1).
– Then there is a K ⊆ M1 with k =

∏
K .

– By K ⊆ M1 ⊆ M2, we get k ∈ O(M2).
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Fixpoints of Operators
Definition
Let (L,⩽) be a partially ordered set and O : L → L be an operator.
• x ∈ L is a fixpoint of O iff O(x) = x;
• x ∈ L is a prefixpoint of O iff O(x) ⩽ x;
• x ∈ L is a postfixpoint of O iff x ⩽ O(x).

Theorem (Knaster/Tarski)
Let (L,⩽) be a complete lattice and O : L → L be a monotone operator.
Then the set F of fixpoints of O has a least element and a greatest element.

Order-preserving operators on complete lattices have a fixpoint.
Example (Continued.)

Consider (2N,⊆) with operator O : 2N → 2N, M 7→ {
∏
K | K ⊆ M, K finite}.

O has least and greatest fixpoints: O({1}) = {1} and O(N) = N.
What Can Approximation Fixpoint Theory Do For (Abstract) Argumentation? (Lecture 1)
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Fixpoints of Operators (2)
Theorem (Knaster/Tarski)
Let (L,⩽) be a complete lattice and O : L → L be a monotone operator.
Then the set F of fixpoints of O has a least element and a greatest element.

Proof.
Define A = {x ∈ L | O(x) ⩽ x} and α =

∧
A. (A ̸= ∅ as ⊤ ∈ A.)

• For every x ∈ A, we have α ⩽ x and by monotonicity O(α) ⩽ O(x) ⩽ x.
• Thus O(α) is a lower bound of A.
• Since α is the greatest lower bound of A, we get O(α) ⩽ α, that is, α ∈ A.
• Furthermore, monotonicity yields O(O(α)) ⩽ O(α), whence O(α) ∈ A.
• Since α is a lower bound of A, we get α ⩽ O(α), thus O(α) = α.
• Greatest fixpoint β is obtained dually: B = {x ∈ L | x ⩽ O(x)}, β =

∨
B.

(F ,⩽) is a complete lattice: for G ⊆ F , take ([
∨
G,

∨
L],⩽) and ([

∧
L,

∧
G],⩽).
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Fixpoints of Operators (3)
Nice to know there is one, but how do we get there?
Theorem
Let (L,⩽) be a complete lattice and O : L → L be a ⩽-monotone operator. For
ordinals α,β, define

O0(⊥) = ⊥
Oα+1(⊥) = O(Oα(⊥)) for successor ordinals

Oβ(⊥) =
∨{

Oα(⊥)
∣∣ α < β}

for limit ordinals

Then for some ordinal α, the element Oα(⊥) is a fixpoint of O.

Example (Continued.)

Consider (2N,⊆) with operator O : 2N → 2N, M 7→ {
∏
K | K ⊆ M, K finite}.

We obtain the chain O0(∅) = ∅⇝ O1(∅) = {1}⇝ O2(∅) = O({1}) = {1}.
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Abstract Argumentation Frameworks
We assume some background reservoir of (abstract) arguments.
Definition (Dung, 1995)

An argumentation framework is a pair F = (A,R) with R ⊆ A× A.

A pair (a,b) ∈ R expresses that a attacks b.

Definition (Dung, 1995)

For an AF F = (A,R), its characteristic operator is given by

ΓF : 2A → 2A, S 7→ {a ∈ A | S defends a}

S defends a iff S attacks all attackers of a.
Example

In F1 = a b , we have ΓF1 (∅) = {a} and ΓF1 ({a}) = {a}.
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Semantics via Operators
Observation

• For any AF F , the operator ΓF is monotone in the complete lattice
(
2A,⊆

)
.

• Therefore, ΓF always has a least fixpoint.

Proposition

Let F be an argumentation framework.
• The ⊆-least fixpoint of ΓF corresponds to the grounded extension of F.
• The conflict-free fixpoints of ΓF correspond to complete extensions of F.

Open Questions

• Can other semantics also be recast in terms of operators?
• Can the extra condition of conflict-freeness be eliminated?
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Characteristic Operator: Example
Example

Consider A = {a,b, c} and the AF F2 = a b c .

The operator ΓF2 maps as follows:

∅

{a} {b} {c}

{a,b} {a, c} {b, c}

{a,b, c}

Least fixpoint

Greatest fixpoint

Complete lattice of fixpoints
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Pollock’s Operator
Definition (Pollock, 1987)
For an AF F = (A,R), its unattacked operator is given by

UF : 2A → 2A, S 7→ A \ R(S) with R(S) := {a ∈ A | (b,a) ∈ R for some b ∈ S} .

Example

F2 = a b c :

S UF2 (S) S UF2 (S)
∅ {a,b, c} {a,b} {a}

{a} {a, c} {a, c} {a}
{b} {a,b} {b, c} {a}
{c} {a} {a,b, c} {a}

Proposition

For any AF F = (A,R) and S, T ⊆ A, we have: S ⊆ T =⇒ UF (T ) ⊆ UF (S).
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Quiz: https://tud.link/jamqpw

Recall: UF (S) = A \ {a ∈ A | (b,a) ∈ R for some b ∈ S}.

Quiz
Consider the argumentation framework F3 = (A,R): . . .

What Can Approximation Fixpoint Theory Do For (Abstract) Argumentation? (Lecture 1)
Computational Logic Group // Hannes Strass
Argumentation Summer School, Hagen, 2024

Slide 20 of 58 Computational
Logic ∴ Group

https://tud.link/jamqpw


Pollock’s Operator: Properties
Lemma 45 (Dung, 1995)

For any argumentation framework F = (A,R) and S ⊆ A, ΓF (S) = UF (UF (S)).

Proof.

a /∈ ΓF (S) ⇐⇒ there is a b ∈ UF (S) with (b,a) ∈ R
⇐⇒ a ∈ R(UF (S))
⇐⇒ a /∈ A \ R(UF (S))
⇐⇒ a /∈ UF (UF (S))

Proposition

For any AF F = (A,R) and S ⊆ A,

S is conflict-free ⇐⇒ S ⊆ UF (S)
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Pollock’s Operator: Example
Example

Consider F4 = (A,R):

a b c

Operator UF visualised by

UF has a fixpoint:
The stable extension of F4.

∅

{a} {b} {c}

{a,b} {a, c} {b, c}

{a,b, c}

• Does the correspondence fixpoints/stable extensions generalise?
• How to capture more semantics?
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Characterising Semantics via Operators
Theorem
Let F = (A,R) be an argumentation framework. A set S ⊆ A is . . .
1. conflict-free iff S ⊆ UF (S);
2. admissible iff S ⊆ UF (S) and S ⊆ ΓF (S);
3. complete iff S ⊆ UF (S) and S = ΓF (S);
4. stable iff S = UF (S);
5. grounded iff it is the least fixpoint of ΓF .

Proof.
4. S is stable iff S is conflict-free and S attacks all arguments in A \ S

iff S is conflict-free and R(S) ⊇ A \ S
iff S ⊆ UF (S) and A \ R(S) ⊆ A \ (A \ S)
iff S ⊆ UF (S) and UF (S) ⊆ S
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Why Is This Not Enough?
Example

• F5 = a b ⇝

∅

{a} {b}

{a,b}

(no least fixpoint)

• F6 = a

b

c ⇝

∅

{a} {b} {c}

{a,b} {a, c} {b, c}

{a,b, c}

(no fixpoint at all)
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Stocktaking

• Monotone operators in complete lattices have (least and greatest)
fixpoints.

• Operators can be associated with knowledge bases such that their
fixpoints correspond to models.

• An AF F induces its characteristic operator ΓF , whose least fixpoint is
exactly the grounded extension of F.

• An AF F also induces its unattacked operator UF , which characterises
conflict-freeness and stable semantics.

• The unattacked operator UF can emulate the characteristic operator ΓF .
• Can semantics be formulated only in terms of UF , and in a more uniform

manner?
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Approximating Operators
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Approximating Operators
Main Idea
Use a more fine-grained structure to keep track of (partial) truth values.

Desiderata

• Preserve “interpretation revision” character of operators
• Preserve correspondence of fixpoints with models
• Obtain useful properties of operators

Approach

• Approximate sets of models by intervals.
• Use an information ordering on these approximations.
• Approximate operators by approximators – operators on intervals.
• Guarantee that fixpoints of approximators contain original fixpoints.
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From Lattices to Bilattices
Definition
Let (L,⩽) be a partially ordered set.
Its associated information bilattice is (L2,≤i) with L2 = L× L and

(u, v) ≤i (x, y) iff u ⩽ x and y ⩽ v

• A pair (x, y) is consistent iff x ⩽ y; it approximates all z ∈ L with x ⩽ z ⩽ y.
• For consistent pairs: Information ordering =̂ interval inclusion:

(u, v) ≤i (x, y) iff [x, y] ⊆ [u, v]

Proposition

If (L,⩽) is a complete lattice, then (L2,≤i) is a complete lattice. For S ⊆ L2:∧
iS =

(∧
S′,

∨
S′′

)
and

∨
iS =

(∨
S′,

∧
S′′

)
S′ = {x | (x,y)∈ S}
S′′ = {y | (x,y)∈ S}
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From Lattice to Bilattice: Example
Example

∅

{a} {b}

{a,b}

(∅, {a,b})

(∅, {a}) (∅, {b}) ({a} , {a,b}) ({b} , {a,b})

(∅, ∅) ({a} , {a}) ({b} , {b}) ({a,b} , {a,b})({a} , {b}) ({b} , {a})

({a} , ∅) ({b} , ∅) ({a,b} , {a}) ({a,b} , {b})

({a,b} , ∅)

Original lattice
(
2{a,b},⊆

)
Bilattice

(
2{a,b} × 2{a,b},≤i

)
Pairs in the bilattice correspond to four-valued interpretations v : {a,b} → {t, f,u, i}.

We will mostly be concerned with the consistent pairs (x, y) with x ⩽ y.
Elements of the original lattice correspond to exact pairs (x, x).
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Approximator
Recall approach: Approximate lattice operators on a richer structure.
Definition
Let (L,⩽) be a complete lattice and O : L → L be an operator.
An operator A : L2 → L2 approximates O iff for all x ∈ L, we have

A(x, x) = (O(x),O(x))

A is an approximator iff A approximates some O and A is ≤i-monotone.

Approximator coincides with the operator on exact pairs.
A : L2 → L2 induces A′,A′′ : L2 → L with A(x, y) = (A′(x, y),A′′(x, y)).
Definition
An approximator is symmetric iff A′(x, y) = A′′(y, x).

If A is symmetric, then A(x, y) = (A′(x, y),A′(y, x)), so A′ fully specifies A.
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Approximator: Example
Example

An argumentation framework F = (A,R) induces UF with UF (S) = A \ R(S).
The canonical approximator of UF is

UF : 2A × 2A → 2A × 2A, (X , Y ) 7→ (UF (Y ),UF (X))

In other words, UF is symmetric with A′(X , Y ) = UF (Y ).
• UF approximates UF , as UF (X , X) = (UF (X),UF (X)).
• UF is ≤i-monotone:

(X1, Y1) ≤i (X2, Y2) ⇐⇒ X1 ⊆ X2 & Y2 ⊆ Y1
=⇒ UF (X2) ⊆ UF (X1) & UF (Y1) ⊆ UF (Y2)
⇐⇒ (UF (Y1),UF (X1)) ≤i (UF (Y2),UF (X2))
⇐⇒ UF (X1, Y1) ≤i UF (X2, Y2)
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Approximator UF: Example

∅

{a} {b}

{a,b}

(∅, {a,b})

(∅, {a}) (∅, {b}) ({a} , {a,b}) ({b} , {a,b})

(∅, ∅) ({a} , {a}) ({b} , {b}) ({a,b} , {a,b})

Original lattice
(
2{a,b},⊆

)
Argumentation Framework

F5 = a b

Operator UF :

Bilattice
(
2{a,b} × 2{a,b},≤i

)
Approximator UF for UF :
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Quiz: Approximator UF
https://tud.link/8jn6f9

Recall: UF (X , Y ) = (UF (Y ),UF (X)), with UF (S) = A \ R(S).
Quiz
Consider the following argumentation framework: . . .
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Approximator: Observations (1)
Lemma
Let (L,⩽) be a complete lattice and A an approximator on (L2,≤i).
1. If C is a non-empty chain of consistent pairs, then

∨
iC is consistent.

2. If (x, y) is consistent, then A(x, y) is consistent.

Approximators map consistent pairs to consistent pairs.

Proof.

1. Let a,b ∈ C. Since C is a chain, a ≤i b (then a′ ⩽ b′ ⩽ b′′) or b ≤i a (then
a′ ⩽ a′′ ⩽ b′′). In any case, a′ ⩽ b′′. So every c′′ ∈ C ′′ is an upper bound of
C ′, and

∨
C ′ ⩽ c′′. Hence

∨
C ′ is a lower bound of C ′′ and

∨
C ′ ⩽

∧
C ′′.

2. If x ⩽ y, then for z with x ⩽ z ⩽ y we have (x, y) ≤i (z, z). A is ≤i-monotone,
thus A(x, y) ≤i A(z, z). A approximates some O, thus A(z, z) = (O(z),O(z)). In
combination A′(x, y) ⩽ O(z) ⩽ A′′(x, y).
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Approximator: Observations (2)
Theorem
Let (L,⩽) be a complete lattice with O : L → L, and A an approximator for O.
1. A has a ≤i-least fixpoint (x∗, y∗) with x∗ ⩽ y∗.
2. Every fixpoint z of O satisfies x∗ ⩽ z ⩽ y∗.

The least fixpoint of A is consistent and approximates all fixpoints of O.

Proof.

1. By Knaster/Tarski, A has a ≤i-least fixpoint (x∗, y∗). It is also consistent:
Define Q =

{
(x, y) ∈ L2

∣∣ x ⩽ y & (x, y) ≤i A(x, y) & (x, y) ≤i (x∗, y∗)
}
.

Q is non-empty as (⊥,⊤) ∈ Q. Each non-empty chain in Q has an upper
bound in Q,

Let ∅ ̸= C ⊆ Q be a
chain. Define d =

∨
iC.

(1) By the previous
lemma, d is consist-
ent. (2) For every c ∈ C
we have c ≤i d and
thus c ≤i A(c) ≤i A(d);
thus A(d) is an upper
bound of C, whence
d ≤i A(d). (3) We know
that C ⊆ Q whence
(x∗, y∗) is an upper
bound of C, thus
d ≤i (x∗, y∗).

therefore by Zorn’s Lemma, Q has a maximal element, ρ.
Since ρ is maximal, ρ ≤i A(ρ) directly yields A(ρ) = ρ = (x∗, y∗).

2. If O(z) = z then A(z, z) = (O(z),O(z)) = (z, z) and (x∗, y∗) ≤i (z, z).
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Approximator UF: Examples

(∅, {a,b, c})

(∅, {a,b}) (∅, {a, c}) (∅, {b, c}) ({a} , {a,b, c}) ({b} , {a,b, c}) ({c} , {a,b, c})

(∅, {a})
(∅, {b})

(∅, {c})
({a} , {a,b})

({a} , {a, c})
({b} , {a,b})

({b} , {b, c})
({c} , {a, c})

({c} , {b, c})
({a,b} , {a,b, c})

({a, c} , {a,b, c})
({b, c} , {a,b, c})

(∅, ∅) ({a} , {a}) ({b} , {b}) ({c} , {c}) ({a,b} , {a,b}) ({a, c} , {a, c}) ({b, c} , {b, c}) ({a,b, c} , {a,b, c})

F6 = a b cF8 = a b c
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Recovering Semantics
Approximator fixpoints give rise to several semantics.
Theorem
Let F = (A,R) be an argumentation framework and X ⊆ Y ⊆ A.
• X is stable for F iff UF (X , X) = (X , X).
• (X , Y ) is complete for F iff UF (X , Y ) = (X , Y ).
• (X , Y ) is grounded for F iff (X , Y ) = lfp(UF ).
• (X , Y ) is admissible for F iff (X , Y ) ≤i UF (X , Y ).

Further semantics (e.g. preferred, ideal) via maximisation/intersection/. . .

So what does it buy us?

For a new formalism, we only have to define an approximator!
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Abstract Dialectical Frameworks
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Abstract Dialectical Frameworks: Syntax
Main Idea: Allow for more flexible specification of argument relationships.

Definition (Brewka and Woltran, 2010)
An abstract dialectical framework (ADF) is a triple D = (S, L,C) with
• a finite set S of statements (arguments),
• a set L ⊆ S× S of links, (par(s) = {r ∈ S | (r, s) ∈ L})
• a family C = {Cs}s∈S of acceptance conditions Cs : 2par(s) → {t, f}.
A set M ⊆ S is amodel for D iff
for all s ∈ S, we have s ∈ M iff Cs(M∩ par(s)) = t.

• ForM ⊆ par(s), Cs(M) = t expresses that s can be accepted if all statements
in M are accepted (and all statements in par(s) \M are not accepted).

• An acceptance condition Cs is typically represented by a propositional
formula φs over par(s), with all M ⊆ par(s) satisfying Cs(M) = t iff M |= φs.

What Can Approximation Fixpoint Theory Do For (Abstract) Argumentation? (Lecture 2)
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Abstract Dialectical Frameworks: Example

cloudsφclouds = ⊤ wind φwind = ⊤

rainφrain = clouds∧ ¬wind hot φhot = ⊥

swimφswim = ¬rain∨ hot

+ –

– +

Single model: M = {clouds,wind, swim}
Bipolar: All links are attacking (–) or supporting (+).

Link (r, s) is attacking iff for all M ⊆ par(s), if Cs(M) = f then Cs(M∪ {r}) = f;
link (r, s) is supporting iff for all M ⊆ par(s), if Cs(M) = t then Cs(M∪ {r}) = t.
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From AFs to ADFs: Translation
Definition
Let F = (A,R) be an argumentation framework. Define its corresponding ADF
DF = (S, L,C) by setting S = A, L = R, and for every s ∈ S:

Cs : 2par(s) → {t, f} , M 7→
{
t if M = ∅,
f otherwise.

Example

F7 = a b c ⇝ DF7 = a b c

¬b ¬a∧ ¬c ¬b

Proposition

For any F = (A,R): M ⊆ A is stable for F iff M is a model of DF .

What Can Approximation Fixpoint Theory Do For (Abstract) Argumentation? (Lecture 2)
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ADFs: Operator
Definition
Let D = (S, L,C) be an abstract dialectical framework. A consequence
operator is given by GD : 2S → 2S with M 7→ {s ∈ S | Cs(M∩ par(s)) = t}.

Example

D1 = a

a∨ b
b

¬a

⇝

∅

{a} {b}

{a,b}

Proposition

Let D = (S, L,C) be an abstract dialectical framework. For any M ⊆ S:
GD(M) = M if and only if M is a model for D.

What Can Approximation Fixpoint Theory Do For (Abstract) Argumentation? (Lecture 2)
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Quiz: https://tud.link/djuy7e

Recall: GD(M) = {s ∈ S | Cs(M∩ par(s)) = t}

Quiz
Consider the following ADF: . . .

What Can Approximation Fixpoint Theory Do For (Abstract) Argumentation? (Lecture 2)
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ADFs: Approximator
Main Benefit of Approximation Fixpoint Theory

To obtain semantics for ADFs, we only need to define an approximator.

Definition
Let D = (S, L,C) be an ADF. Define approximator GD : (2S × 2S) → (2S × 2S) via

(X , Y ) 7→

 ⋂
X⊆Z⊆Y

GD(Z),
⋃

X⊆Z⊆Y
GD(Z)


• GD approximates GD, as GD(X , X) = (GD(X),GD(X)).
• GD is ≤i-monotone: (X1, Y1) ≤i (X2, Y2) implies X1 ⊆ X2 ⊆ Z ⊆ Y2 ⊆ Y1.
• This construction is known as ultimate approximation (Denecker, Marek,

and Truszczyński, 2004).

What Can Approximation Fixpoint Theory Do For (Abstract) Argumentation? (Lecture 2)
Computational Logic Group // Hannes Strass
Argumentation Summer School, Hagen, 2024

Slide 44 of 58 Computational
Logic ∴ Group



From AFs to ADFs: Defining Semantics
Definition
Let D = (S, L,C) be an ADF. A pair (X , Y ) is . . .
• admissible iff (X , Y ) ≤i GD(X , Y );
• complete iff GD(X , Y ) = (X , Y );
• preferred iff (X , Y ) is ≤i-maximal w.r.t. GD(X , Y ) = (X , Y );
• grounded iff (X , Y ) = lfp(GD).

Theorem
Let F = (A,R) be an AF and DF its corresponding ADF, and X ⊆ Y ⊆ A.
• (X , Y ) is admissible for F iff (X , Y ) is admissible for DF ;
• (X , Y ) is complete for F iff (X , Y ) is complete for DF ;
• (X , Y ) is grounded for F iff (X , Y ) is grounded for DF ;
• (X , X) is stable for F iff X is a model of DF .
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Towards Stable Model Semantics
Consider this simplified model of a fuel system for an aircraft:
Node n1 is pressurised by valve v1 or node n2; symmetrically for node n2.

n1 n2
v1 v2

We can model the behaviour of this system as an ADF as follows:

D2 = v1
⊥

n1
v1 ∨ n2

n2
v2 ∨ n1

v2
⊥

What are the models of D2?
There are two models.

Is this desired?

What Can Approximation Fixpoint Theory Do For (Abstract) Argumentation? (Lecture 2)
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Stable Operators

What Can Approximation Fixpoint Theory Do For (Abstract) Argumentation? (Lecture 2)
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Stable Operator: Intuition
The Gelfond-Lifschitz Reduct of a logic program P . . .

• . . . starts out with a two-valued interpretation M ⊆ S;
• . . . removes all rules requiring some a ∈ M to be false;
• . . . assumes all a /∈ M to be false in the remaining rules.

• To obtain ADF reduct DM, assume all and only atoms a /∈ M to be false.
• Using DM, try to constructively prove all and only atoms a ∈ M to be true.
• Try to ensure that GDM is a ⊆-monotone operator on (2S,⊆).
Expressing the Reduct via an Operator

• For pair (X , Y ), an a ∈ S is true iff a ∈ X ; atom a is false iff a /∈ Y .
• Use GD

′ to reconstruct what is true, fixing the upper bound to M:

GD
′(·,M) : 2A → 2A, X 7→ GD

′(X ,M)

What Can Approximation Fixpoint Theory Do For (Abstract) Argumentation? (Lecture 2)
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Stable Operator: Preparation
Proposition

Let (L,⩽) be a complete lattice and A be an approximator on (L2,≤i).
For every pair (x, y) ∈ L2, the following operators are ⩽-monotone:

A′(·, y) : L → L, z 7→ A′(z, y) and A′′(x, ·) : L → L, z 7→ A′′(x, z)

Proof.

1. Let x1 ⩽ x2 and y ∈ L.
Then (x1, y) ≤i (x2, y) and A(x1, y) ≤i A(x2, y), thus A′(x1, y) ⩽ A′(x2, y).

2. Let x ∈ L and y1 ⩽ y2.
Then (x, y2) ≤i (x, y1) and A(x, y2) ≤i A(x, y1), thus A′′(x, y1) ⩽ A′′(x, y2).

• A′(·, y) has a ⩽-least fixpoint, denoted lfp(A′(·, y));
• A′′(x, ·) has a ⩽-least fixpoint, denoted lfp(A′′(x, ·)).
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Stable Operator: Definition
Definition
Let (L,⩽) be a complete lattice and A be an approximator on (L2,≤i).
The stable approximator for A is given by SA : L2 → L2 with

SA′ : L2 → L, (x, y) 7→ lfp(A′(·, y))
SA′′ : L2 → L, (x, y) 7→ lfp(A′′(x, ·))

• SA′: improve lower bound for all fixpoints of O at or below upper bound;
• SA′′: obtain tightmost new upper bound (eliminate non-minimal fixpoints).
Proposition

Let (x, y) be a postfixpoint of approximator A. Then
a ∈ [⊥, y] implies A′(a, y) ∈ [⊥, y] and b ∈ [x,⊤] implies A′′(x,b) ∈ [x,⊤].

In particular, lfp(A′(·, y)) ⩽ y and x ⩽ lfp(A′′(x, ·)).
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Stable Operator: Observations
Theorem
Let (L,⩽) be a complete lattice and A be an approximator on (L2,≤i).
1. SA is ≤i-monotone.
2. If (x, y) is a consistent postfixpoint of A, then SA(x, y) is consistent.

Proof.

1. Let (u, v) ≤i (x, y). Now y ⩽ v implies A′(z, v) ⩽ A′(z, y) for all z ∈ L since A is
≤i-monotone. In particular, for z∗ = lfp(A′(·, y)), A′(z∗, v) ⩽ A′(z∗, y) = z∗

whence z∗ is a prefixpoint of A′(·, v). Thus lfp(A′(·, v)) ⩽ z∗ = lfp(A′(·, y)).
In combination, SA′(u, v) = lfp(A′(·, v)) ⩽ lfp(A′(·, y)) = SA′(x, y). SA′′: dual.

2. Let x ⩽ y with (x, y) ≤i A(x, y). For every z ∈ L with x ⩽ z ⩽ y, we have
SA′(x, y) ⩽ SA′(z, z) = lfp(A′(·, z)) ⩽ z ⩽ lfp(A′′(z, ·)) = SA′′(z, z) ⩽ SA′′(x, y).
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Stable Operator SGD: Example

(∅, {a,b, c})

(∅, {a,b}) (∅, {a, c}) (∅, {b, c}) ({a} , {a,b, c}) ({b} , {a,b, c}) ({c} , {a,b, c})

(∅, {a})
(∅, {b})

(∅, {c})
({a} , {a,b})

({a} , {a, c})
({b} , {a,b})

({b} , {b, c})
({c} , {a, c})

({c} , {b, c})
({a,b} , {a,b, c})

({a, c} , {a,b, c})
({b, c} , {a,b, c})

(∅, ∅) ({a} , {a}) ({b} , {b}) ({c} , {c}) ({a,b} , {a,b}) ({a, c} , {a, c}) ({b, c} , {b, c}) ({a,b, c} , {a,b, c})

D3 : φa = ⊤, φb = a∧ ¬c, φc = c SGD(∅, {a,b, c}) = (lfp(GD ′(·, {a,b, c})), lfp(GD ′′(∅, ·)))(lfp(GD ′(·, {a,b, c})), lfp(GD ′′(∅, ·)))({a} , lfp(GD ′′(∅, ·)))({a} , {a,b})SGD({a} , {a,b}) = (lfp(GD ′(·, {a,b})), lfp(GD ′′({a} , ·)))(lfp(GD ′(·, {a,b})), lfp(GD ′′({a} , ·)))({a,b} , lfp(GD ′′({a} , ·))({a,b} , {a,b})SGD({a,b} , {a,b}) = (GD({a,b}),GD({a,b})) = ({a,b} , {a,b})lfp(SGD) = ({a,b} , {a,b}): well-founded semantics of D3D4 : φa = ¬b, φb = ¬a, φc = c lfp(SGD): well-founded semantics of D4three-valued stable models of D4
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Stable Semantics: Definition via Operators
Definition
Let (L,⩽) be a complete lattice, O : L → L be an operator.
Let A : L2 → L2 be an approximator of O in (L2,≤i). A pair (x, y) ∈ L2 is
• a two-valued stable model of A iff x = y and SA(x, y) = (x, y);
• a three-valued stable model of A iff x ⩽ y and SA(x, y) = (x, y);
• the well-founded model of A iff it is the least fixpoint of SA.

The names are inspired by notions from logic programming.

Theorem

1. lfp(A) ≤i lfp(SA);
2. SA(x, y) = (x, y) implies A(x, y) = (x, y);
3. if SA(x, x) = (x, x) then x is a ⩽-minimal fixpoint of O;
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Reprise: How to Find an Approximator?
Definition
Let O : L → L be an operator in a complete lattice (L,⩽).
Define the ultimate approximator of O as follows:

XO : L2 → L2, (x, y) 7→
(∧

{O(z) | x ⩽ z ⩽ y} ,
∨

{O(z) | x ⩽ z ⩽ y}
)

Intuition: Consider glb and lub of applying O pointwise to given interval.

Theorem
For every approximator A of O and consistent pair (x, y) ∈ L2, we find

A(x, y) ≤i XO(x, y)

Ultimate approximator is most precise approximator possible.
Used e.g. for standard semantics of ADFs (Brewka et al., 2013).
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Conclusion
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Conclusion

Summary

• Operators in complete lattices can be used to define semantics of KR
formalisms.

• Approximation fixpoint theory provides a general account of
operator-based semantics.

• Stable approximator reconstructs well-founded and stable model
semantics of logic programming.

• To define semantics for new formalisms, only an approximator needs to
be defined, AFT does the rest.

• With ultimate approximation, only a consequence operator needs to be
defined.
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Outlook

What else can Approximation Fixpoint Theory do for Argumentation?

Open Topics

AFT could be used to analyse/define/compare semantics of . . .
• . . . argumentation frameworks with set attacks;
• . . . argumentation frameworks with supports/necessities;
• . . . gradual and probabilistic argumentation;
• . . . assumption-based argumentation;
• . . . the formalism you are interested in?
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