

Hannes Strass Faculty of Computer Science, Institute of Artificial Intelligence, Computational Logic Group

What Can Approximation Fixpoint Theory Do For (Abstract) Argumentation?

Lecture 1, 13th Sep 2024 // Argumentation Summer School, Hagen, 2024

Overview

Preliminaries Lattice Theory Abstract Argumentation Frameworks

Approximating Operators Approximator Defining Semantics

Abstract Dialectical Frameworks

Stable Operators Semantics via Fixpoints

Conclusion

What Can Approximation Fixpoint Theory Do For (Abstract) Argumentation? (Lecture 1) Computational logic Group // Hannes Strass Argumentation Summer School, Hagen, 2024

Motivation: Objective

Goal: Define semantics for (rule-based) KR formalisms in the presence of:

Recursion

- transitive closure
- indirect effects of actions

Negation

- shorter and more intuitive descriptions
- defaults and assumptions (e.g. closed world, non-effects of actions)

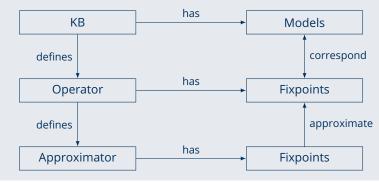
Recursion Through Negation

- · mutually exclusive alternatives
- non-deterministic effects of actions

Motivation: Basic Idea

Approximation Fixpoint Theory

- Framework for studying semantics of (non-monotonic) KR formalisms
- Due to Denecker, Marek, and Truszczyński [2000, 2003, 2004]
- Based on lattice theory and fixpoint theory:



What Can Approximation Fixpoint Theory Do For (Abstract) Argumentation? (Lecture 1) Computational Logic Group // Hannes Strass Argumentation Summer School, Hagen, 2024

Motivation: History and Context

Approximation Fixpoint Theory

... emerged from similarities in the semantics of

- Default Logic [Reiter, 1980]
- Autoepistemic Logic [Moore, 1985]
- Logic Programs, in particular Stable Models [Gelfond and Lifschitz, 1988]
- ... and has since been applied to define/reconstruct semantics of ...
- Abstract Argumentation Frameworks
- Abstract Dialectical Frameworks
- Active Integrity Constraints
- Recursive SHACL

Agenda

Preliminaries Lattice Theory Abstract Argumentation Frameworks

Approximating Operators Approximator Defining Semantics

Abstract Dialectical Frameworks

Stable Operators Semantics via Fixpoints

Conclusion

What Can Approximation Fixpoint Theory Do For (Abstract) Argumentation? (Lecture 1) Computational logic Group // Hannes Strass Argumentation Summer School, Hagen, 2024

Preliminaries

What Can Approximation Fixpoint Theory Do For (Abstract) Argumentation? (Lecture 1) Computational Logic Group // Hannes Strass Argumentation Summer School, Hagen, 2024

Slide 7 of 58

Partially Ordered Sets

Definition

A **partially ordered set** is a pair (L, \leq) with

• L a set, and

(carrier set)

- $\leq \subseteq L \times L$ a partial order. (reflexive, antisymmetric, transitive)
- A partially ordered set (L, \leq) has a
- **bottom element** $\bot \in L$ iff $\bot \leq x$ for all $x \in L$,
- **top element** $\top \in L$ iff $x \leq \top$ for all $x \in L$.

Examples

- (\mathbb{N} , \leq): natural numbers with "usual" ordering, $\perp =$ 0, no \top
- $(2^{S}, \subseteq)$: any powerset with subset relation, $\bot = \emptyset$, $\top = S$
- (IN, |): natural numbers with divisibility relation, $\bot=1,\, T=0$

Minimal, Maximal, Least, Greatest

Definition

Let (L, \leq) be a partially ordered set with $S \subseteq L$ and $x \in S$. We say that:

- *x* is a **minimal element** of *S* iff for each $y \in S$, $y \leq x$ implies y = x, dually,
- *x* is a **maximal element** of *S* iff for each $y \in S$, $x \leq y$ implies y = x;
- *x* is the **least element** of *S* iff for each $y \in S$, we have $x \leq y$, dually,
- *x* is the **greatest element** of *S* iff for each $y \in S$, we have $y \leq x$.

Example

In (\mathbb{N} , |) (natural numbers with divisibility $a \mid b \iff (\exists k \in \mathbb{N})a \cdot k = b), \dots$

- the set {2, 3, 6} has minimal elements 2 and 3, greatest element 6,
- the set {2, 4, 6} has least element 2, and maximal elements 4 and 6.

Least Upper and Greatest Lower Bounds

Definition

Let (L, \leq) be a partially ordered set with $S \subseteq L$ and $x \in L$.

- *x* is an **upper bound** of *S* iff for each $s \in S$, we have $s \leq x$, dually,
- *x* is a **lower bound** of *S* iff for each $s \in S$, we have $x \leq s$.

The set of all upper bounds of *S* is denoted by S^{u} , its lower bounds by S^{ℓ} .

- If S^u has a least element $z \in S$, z is the **least upper bound** of S, dually,
- if S^{ℓ} has a greatest element $z \in S$, z is the **greatest lower bound** of S. We denote the **glb** of $\{x, y\}$ by $x \land y$, and the **lub** of $\{x, y\}$ by $x \lor y$. We denote the glb of S by $\bigwedge S$, and the lub of S by $\bigvee S$.

Examples

- In (2^s, \subseteq), $\land = \land$ and $\lor = \lor$;
- in (\mathbb{N} , |), $\wedge = \text{gcd}$ and $\vee = \text{lcm}$, e.g. $4 \vee 6 = 12$ and $23 \wedge 42 = 1$.

(Complete) Lattices

Definition

Let (L, \leq) be a partially ordered set.

- 1. (L, \leq) is a **lattice** if and only if for all $x, y \in L$, both $x \land y$ and $x \lor y$ exist;
- 2. (L, \leq) is a **complete lattice** iff for all $S \subseteq L$, both $\bigwedge S$ and $\bigvee S$ exist.

In particular, a complete lattice has $\bigvee \emptyset = \bigwedge L = \bot$ and $\bigwedge \emptyset = \bigvee L = \top$.

Examples

- $(2^{S}, \subseteq)$ is a complete lattice for every set *S*.
- $(\mathbb{N}, |)$ is a complete lattice.
- $({M \subseteq \mathbb{N} \mid M \text{ is finite}}, \subseteq) \text{ is a lattice.}$
- Every lattice (L, \leq) with L finite is a complete lattice.

(induction on |*S*|)

Further reading: davey-priestley

Operators and Their Properties

Definition

Let (L, \leq) be a partially ordered set. An operator $O: L \to L$ is

- \leq -monotone iff for all $x, y \in L$, we find that $x \leq y$ implies $O(x) \leq O(y)$;
- \leq -**antimonotone** iff for all $x, y \in L$, we find that $x \leq y$ implies $O(y) \leq O(x)$.

Intuition: Operator application preserves/reverses ordering.

Example

Consider $(2^{\mathbb{N}}, \subseteq)$ with operator $O: 2^{\mathbb{N}} \to 2^{\mathbb{N}}$, $M \mapsto \{ \prod K \mid K \subseteq M, K \text{ finite} \}.$

- $O(\{2,3\}) = \{1,2,3,6\}$ and $O(\{2,3,5\}) = \{1,2,3,5,6,10,15,30\}$.
- *O* is ⊆-monotone:
 - Let $M_1 \subseteq M_2 \subseteq \mathbb{N}$ and consider $k \in O(M_1)$.
 - Then there is a $K \subseteq M_1$ with $k = \prod K$.
 - By $K \subseteq M_1 \subseteq M_2$, we get $k \in O(M_2)$.

Fixpoints of Operators

Definition

Let (L, \leq) be a partially ordered set and $O: L \to L$ be an operator.

- $x \in L$ is a **fixpoint** of *O* iff O(x) = x;
- $x \in L$ is a **prefixpoint** of *O* iff $O(x) \leq x$;
- $x \in L$ is a **postfixpoint** of *O* iff $x \leq O(x)$.

Theorem (Knaster/Tarski)

Let (L, \leq) be a complete lattice and $O: L \to L$ be a monotone operator. Then the set *F* of fixpoints of *O* has a least element and a greatest element.

Order-preserving operators on complete lattices have a fixpoint.

Example (Continued.)

Consider $(2^{\mathbb{N}}, \subseteq)$ with operator $O: 2^{\mathbb{N}} \to 2^{\mathbb{N}}$, $M \mapsto \{\prod K \mid K \subseteq M, K \text{ finite}\}$. *O* has least and greatest fixpoints: $O(\{1\}) = \{1\}$ and $O(\mathbb{N}) = \mathbb{N}$.

Fixpoints of Operators (2)

Theorem (Knaster/Tarski)

Let (L, \leq) be a complete lattice and $O: L \to L$ be a monotone operator. Then the set *F* of fixpoints of *O* has a least element and a greatest element.

Proof.

Define $A = \{x \in L \mid O(x) \leq x\}$ and $\alpha = \bigwedge A$.

$$(A \neq \emptyset$$
 as $\top \in A$.)

- For every $x \in A$, we have $a \leq x$ and by monotonicity $O(a) \leq O(x) \leq x$.
- Thus $O(\alpha)$ is a lower bound of A.
- Since α is the greatest lower bound of A, we get $O(\alpha) \leq \alpha$, that is, $\alpha \in A$.
- Furthermore, monotonicity yields $O(O(\alpha)) \leq O(\alpha)$, whence $O(\alpha) \in A$.
- Since α is a lower bound of A, we get $\alpha \leq O(\alpha)$, thus $O(\alpha) = \alpha$.
- Greatest fixpoint β is obtained dually: $B = \{x \in L \mid x \leq O(x)\}, \beta = \bigvee B$.

 (F, \leq) is a complete lattice: for $G \subseteq F$, take $([\bigvee G, \bigvee L], \leq)$ and $([\land L, \land G], \leq)$.

Fixpoints of Operators (3)

Nice to know there is one, but how do we get there?

Theorem

Let (L, \leq) be a complete lattice and $O: L \to L$ be a \leq -monotone operator. For ordinals α, β , define

$$O^{0}(\bot) = \bot$$

$$O^{\alpha+1}(\bot) = O(O^{\alpha}(\bot))$$
for successor ordinals
$$O^{\beta}(\bot) = \bigvee \{O^{\alpha}(\bot) \mid \alpha < \beta\}$$
for limit ordinals

Then for some ordinal α , the element $O^{\alpha}(\perp)$ is a fixpoint of O.

Example (Continued.)

Consider $(2^{\mathbb{N}}, \subseteq)$ with operator $O: 2^{\mathbb{N}} \to 2^{\mathbb{N}}$, $M \mapsto \{ \prod K \mid K \subseteq M, K \text{ finite} \}$. We obtain the chain $O^0(\emptyset) = \emptyset \rightsquigarrow O^1(\emptyset) = \{1\} \rightsquigarrow O^2(\emptyset) = O(\{1\}) = \{1\}$.

Abstract Argumentation Frameworks

We assume some background reservoir of (abstract) arguments.

Definition (Dung, 1995)

An **argumentation framework** is a pair F = (A, R) with $R \subseteq A \times A$.

A pair $(a, b) \in R$ expresses that a attacks b.

```
Definition (Dung, 1995)
```

For an AF F = (A, R), its **characteristic operator** is given by

 $\Gamma_F: 2^A \to 2^A$, $S \mapsto \{a \in A \mid S \text{ defends } a\}$

S defends a iff S attacks all attackers of a.

Example

In
$$F_1 = (a)$$
 b, we have $\Gamma_{F_1}(\emptyset) = \{a\}$ and $\Gamma_{F_1}(\{a\}) = \{a\}$.

Semantics via Operators

Observation

- For any AF *F*, the operator Γ_F is monotone in the complete lattice $(2^A, \subseteq)$.
- Therefore, Γ_F always has a least fixpoint.

Proposition

Let *F* be an argumentation framework.

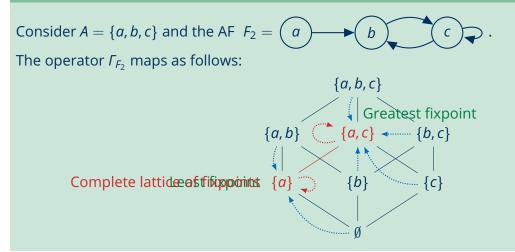
- The \subseteq -least fixpoint of Γ_F corresponds to the grounded extension of F.
- The conflict-free fixpoints of Γ_F correspond to complete extensions of F.

Open Questions

- Can other semantics also be recast in terms of operators?
- Can the extra condition of conflict-freeness be eliminated?

Characteristic Operator: Example

Example



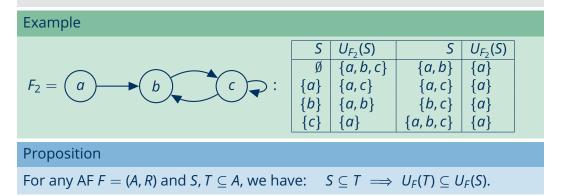
What Can Approximation Fixpoint Theory Do For (Abstract) Argumentation? (Lecture 1) Computational Logic Group // Hannes Strass Argumentation Summer School, Hagen, 2024

Pollock's Operator

Definition (Pollock, 1987)

For an AF F = (A, R), its **unattacked operator** is given by

 $U_F: 2^A \to 2^A$, $S \mapsto A \setminus R(S)$ with $R(S) := \{a \in A \mid (b, a) \in R \text{ for some } b \in S\}$.



What Can Approximation Fixpoint Theory Do For (Abstract) Argumentation? (Lecture 1) Computational Logic Group // Hannes Strass Argumentation Summer School, Hagen, 2024

Slide 19 of 58

Quiz: https://tud.link/jamqpw

Recall: $U_F(S) = A \setminus \{a \in A \mid (b, a) \in R \text{ for some } b \in S\}.$

Quiz

Consider the argumentation framework $F_3 = (A, R)$: ...

Pollock's Operator: Properties

Lemma 45 (Dung, 1995)

For any argumentation framework F = (A, R) and $S \subseteq A$, $\Gamma_F(S) = U_F(U_F(S))$.

Proof.

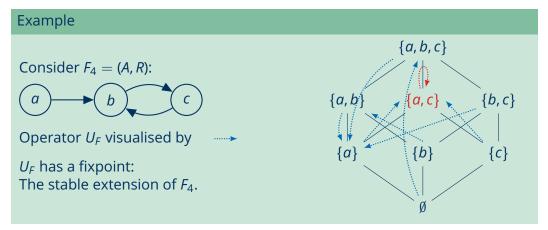
$$a \notin \Gamma_F(S) \iff \text{ there is a } b \in U_F(S) \text{ with } (b, a) \in R$$
$$\iff a \in R(U_F(S))$$
$$\iff a \notin A \setminus R(U_F(S))$$
$$\iff a \notin U_F(U_F(S))$$

Proposition

For any AF F = (A, R) and $S \subseteq A$,

S is conflict-free \iff S \subseteq U_F(S)

Pollock's Operator: Example



- Does the correspondence fixpoints/stable extensions generalise?
- · How to capture more semantics?

Characterising Semantics via Operators

Theorem

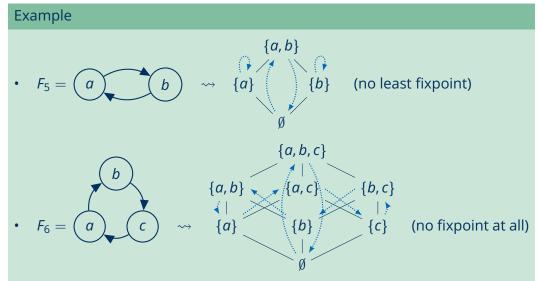
Let F = (A, R) be an argumentation framework. A set $S \subseteq A$ is ...

- 1. conflict-free iff $S \subseteq U_F(S)$;
- 2. admissible iff $S \subseteq U_F(S)$ and $S \subseteq \Gamma_F(S)$;
- 3. complete iff $S \subseteq U_F(S)$ and $S = \Gamma_F(S)$;
- 4. stable iff $S = U_F(S)$;
- 5. grounded iff it is the least fixpoint of Γ_F .

Proof.

4. *S* is stable iff *S* is conflict-free and *S* attacks all arguments in $A \setminus S$ iff *S* is conflict-free and $R(S) \supseteq A \setminus S$ iff $S \subseteq U_F(S)$ and $A \setminus R(S) \subseteq A \setminus (A \setminus S)$ iff $S \subseteq U_F(S)$ and $U_F(S) \subseteq S$

Why Is This Not Enough?



What Can Approximation Fixpoint Theory Do For (Abstract) Argumentation? (Lecture 1) Computational Logic Group // Hannes Strass Argumentation Summer School, Hagen, 2024

Slide 24 of 58

Stocktaking

- Monotone operators in complete lattices have (least and greatest) fixpoints.
- Operators can be associated with knowledge bases such that their fixpoints correspond to models.
- An AF *F* induces its characteristic operator Γ_F , whose least fixpoint is exactly the grounded extension of *F*.
- An AF *F* also induces its unattacked operator *U_F*, which characterises conflict-freeness and stable semantics.
- The unattacked operator U_F can emulate the characteristic operator Γ_F .
- Can semantics be formulated only in terms of *U_F*, and in a more uniform manner?

Approximating Operators

What Can Approximation Fixpoint Theory Do For (Abstract) Argumentation? (Lecture 1) Computational Logic Group // Hannes Strass Argumentation Summer School, Hagen, 2024

Slide 26 of 58

Approximating Operators

Main Idea

Use a more fine-grained structure to keep track of (partial) truth values.

Desiderata

- Preserve "interpretation revision" character of operators
- Preserve correspondence of fixpoints with models
- Obtain useful properties of operators

Approach

- Approximate sets of models by intervals.
- Use an information ordering on these approximations.
- Approximate operators by approximators operators on intervals.
- Guarantee that fixpoints of approximators contain original fixpoints.

From Lattices to Bilattices

Definition

Let (L, \leq) be a partially ordered set. Its associated **information bilattice** is (L^2, \leq_i) with $L^2 = L \times L$ and $(u, v) \leq_i (x, y)$ iff $u \leq x$ and $y \leq v$

- A pair (*x*, *y*) is **consistent** iff $x \leq y$; it approximates all $z \in L$ with $x \leq z \leq y$.
- For consistent pairs: Information ordering $\hat{=}$ interval inclusion:

 $(u, v) \leq_i (x, y)$ iff $[x, y] \subseteq [u, v]$

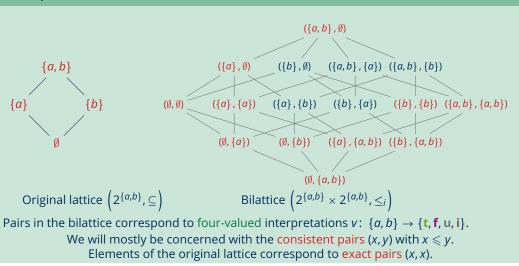
Proposition

If (L, \leq) is a complete lattice, then (L^2, \leq_i) is a complete lattice. For $S \subseteq L^2$:

$$\bigwedge_{i} S = \left(\bigwedge S', \bigvee S''\right) \quad \text{and} \quad \bigvee_{i} S = \left(\bigvee S', \bigwedge S''\right) \qquad \begin{array}{l} S' = \{x \mid (x,y) \in S\}\\ S'' = \{y \mid (x,y) \in S\}\end{array}$$

From Lattice to Bilattice: Example

Example



Approximator

Recall approach: Approximate lattice operators on a richer structure.

Definition

Let (L, \leq) be a complete lattice and $O: L \to L$ be an operator. An operator $\mathcal{A}: L^2 \to L^2$ **approximates** O iff for all $x \in L$, we have

 $\mathcal{A}(x,x)=(O(x),O(x))$

 \mathcal{A} is an **approximator** iff \mathcal{A} approximates some O and \mathcal{A} is \leq_i -monotone.

Approximator coincides with the operator on exact pairs.

 $\mathcal{A} \colon L^2 \to L^2 \text{ induces } \mathcal{A}', \mathcal{A}'' \colon L^2 \to L \text{ with } \mathcal{A}(x,y) = (\mathcal{A}'(x,y), \mathcal{A}''(x,y)).$

Definition

An approximator is **symmetric** iff $\mathcal{A}'(x, y) = \mathcal{A}''(y, x)$.

If \mathcal{A} is symmetric, then $\mathcal{A}(x, y) = (\mathcal{A}'(x, y), \mathcal{A}'(y, x))$, so \mathcal{A}' fully specifies \mathcal{A} .

Approximator: Example

Example

An argumentation framework F = (A, R) induces U_F with $U_F(S) = A \setminus R(S)$. The **canonical approximator** of U_F is

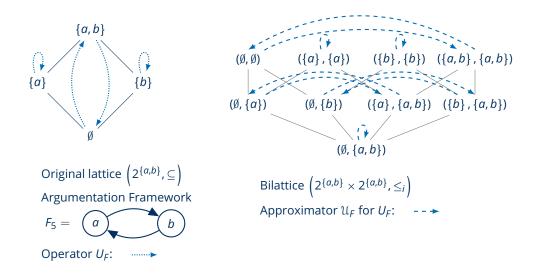
 $\mathfrak{U}_F\colon 2^A\times 2^A\to 2^A\times 2^A,\qquad (X,Y)\mapsto (U_F(Y),U_F(X))$

In other words, \mathcal{U}_F is symmetric with $\mathcal{A}'(X, Y) = U_F(Y)$.

- \mathcal{U}_F approximates U_F , as $\mathcal{U}_F(X, X) = (U_F(X), U_F(X))$.
- \mathcal{U}_F is \leq_i -monotone:

 $\begin{aligned} (X_1, Y_1) \leq_i (X_2, Y_2) &\iff X_1 \subseteq X_2 & \& Y_2 \subseteq Y_1 \\ &\implies U_F(X_2) \subseteq U_F(X_1) & \& U_F(Y_1) \subseteq U_F(Y_2) \\ &\iff (U_F(Y_1), U_F(X_1)) \leq_i (U_F(Y_2), U_F(X_2)) \\ &\iff \mathcal{U}_F(X_1, Y_1) \leq_i \mathcal{U}_F(X_2, Y_2) \end{aligned}$

Approximator U_F: Example



What Can Approximation Fixpoint Theory Do For (Abstract) Argumentation? (Lecture 1) Computational Logic Group // Hannes Strass Argumentation Summer School, Hagen, 2024

Quiz: Approximator U_F https://tud.link/8jn6f9

Recall: $\mathcal{U}_F(X, Y) = (U_F(Y), U_F(X))$, with $U_F(S) = A \setminus R(S)$.

Quiz

Consider the following argumentation framework: ...

Approximator: Observations (1)

Lemma

Let (L, \leq) be a complete lattice and \mathcal{A} an approximator on (L^2, \leq_i) .

- 1. If *C* is a non-empty chain of consistent pairs, then $\bigvee_i C$ is consistent.
- 2. If (x, y) is consistent, then $\mathcal{A}(x, y)$ is consistent.

Approximators map consistent pairs to consistent pairs.

Proof.

- 1. Let $a, b \in C$. Since C is a chain, $a \leq_i b$ (then $a' \leq b' \leq b''$) or $b \leq_i a$ (then $a' \leq a'' \leq b''$). In any case, $a' \leq b''$. So every $c'' \in C''$ is an upper bound of C', and $\bigvee C' \leq c''$. Hence $\bigvee C'$ is a lower bound of C'' and $\bigvee C' \leq \bigwedge C''$.
- 2. If $x \leq y$, then for z with $x \leq z \leq y$ we have $(x, y) \leq_i (z, z)$. \mathcal{A} is \leq_i -monotone, thus $\mathcal{A}(x, y) \leq_i \mathcal{A}(z, z)$. \mathcal{A} approximates some O, thus $\mathcal{A}(z, z) = (O(z), O(z))$. In combination $\mathcal{A}'(x, y) \leq O(z) \leq \mathcal{A}''(x, y)$.

Approximator: Observations (2)

Theorem

Let (L, \leq) be a complete lattice with $O: L \to L$, and \mathcal{A} an approximator for O.

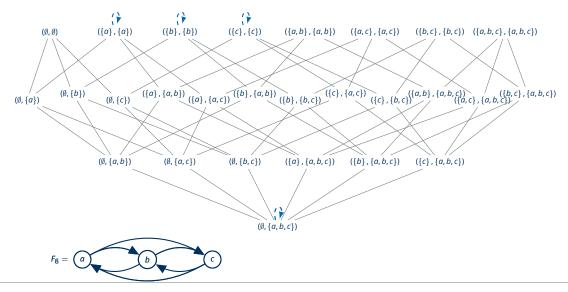
- 1. \mathcal{A} has a \leq_i -least fixpoint (x^*, y^*) with $x^* \leq y^*$.
- 2. Every fixpoint *z* of *O* satisfies $x^* \leq z \leq y^*$.

The least fixpoint of A is consistent and approximates all fixpoints of O.

Proof.

- 1. By Knaster/Tarski, \mathcal{A} has a \leq_i -least fixpoint (x^*, y^*) . It is also consistent: Define $Q = \{(x, y) \in L^2 \mid x \leq y \& (x, y) \leq_i \mathcal{A}(x, y) \& (x, y) \leq_i (x^*, y^*)\}$. Q is non-empty as $(\bot, \top) \in Q$. Each non-empty chain in Q has an upper bound in Q, therefore by Zorn's Lemma, Q has a maximal element, ρ . Since ρ is maximal, $\rho \leq_i \mathcal{A}(\rho)$ directly yields $\mathcal{A}(\rho) = \rho = (x^*, y^*)$.
- 2. If O(z) = z then A(z, z) = (O(z), O(z)) = (z, z) and $(x^*, y^*) \leq_i (z, z)$.

Approximator \mathcal{U}_F : Examples



What Can Approximation Fixpoint Theory Do For (Abstract) Argumentation? (Lecture 1) Computational Logic Group // Hannes Strass Argumentation Summer School, Hagen, 2024

Recovering Semantics

Approximator fixpoints give rise to several semantics.

Theorem

Let F = (A, R) be an argumentation framework and $X \subseteq Y \subseteq A$.

- X is stable for F iff $\mathcal{U}_F(X, X) = (X, X)$.
- (X, Y) is complete for F iff $\mathcal{U}_F(X, Y) = (X, Y)$.
- (X, Y) is grounded for F iff $(X, Y) = Ifp(\mathcal{U}_F)$.
- (X, Y) is admissible for F iff $(X, Y) \leq_i \mathcal{U}_F(X, Y)$.

Further semantics (e.g. preferred, ideal) via maximisation/intersection/...

So what does it buy us?

For a new formalism, we only have to define an approximator!

Abstract Dialectical Frameworks

What Can Approximation Fixpoint Theory Do For (Abstract) Argumentation? (Lecture 2) Computational Logic Group // Hannes Strass Argumentation Summer School, Hagen, 2024

Slide 38 of 58

Abstract Dialectical Frameworks: Syntax

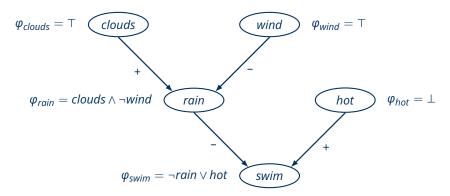
Main Idea: Allow for more flexible specification of argument relationships.

Definition (Brewka and Woltran, 2010)

An **abstract dialectical framework** (ADF) is a triple D = (S, L, C) with

- a finite set S of statements (arguments),
- a set $L \subseteq S \times S$ of links, $(par(s) = \{r \in S \mid (r, s) \in L\})$
- a family $C = \{C_s\}_{s \in S}$ of acceptance conditions $C_s : 2^{par(s)} \to \{\mathbf{t}, \mathbf{f}\}$. A set $M \subseteq S$ is a **model** for D iff for all $s \in S$, we have $s \in M$ iff $C_s(M \cap par(s)) = \mathbf{t}$.
- For $M \subseteq par(s)$, $C_s(M) = \mathbf{t}$ expresses that *s* can be accepted if all statements in *M* are accepted (and all statements in *par(s)* \ *M* are not accepted).
- An acceptance condition C_s is typically represented by a propositional formula φ_s over *par*(*s*), with all $M \subseteq par(s)$ satisfying $C_s(M) = \mathbf{t}$ iff $M \models \varphi_s$.

Abstract Dialectical Frameworks: Example



Single model: *M* = {*clouds*, *wind*, *swim*}

Bipolar: All links are attacking (-) or supporting (+).

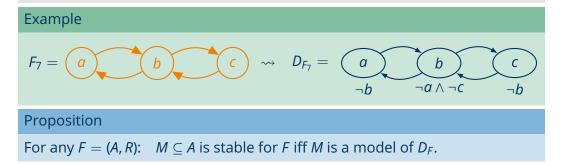
Link (*r*, *s*) is **attacking** iff for all $M \subseteq par(s)$, if $C_s(M) = \mathbf{f}$ then $C_s(M \cup \{r\}) = \mathbf{f}$; link (*r*, *s*) is **supporting** iff for all $M \subseteq par(s)$, if $C_s(M) = \mathbf{t}$ then $C_s(M \cup \{r\}) = \mathbf{t}$.

From AFs to ADFs: Translation

Definition

Let F = (A, R) be an argumentation framework. Define its corresponding ADF $D_F = (S, L, C)$ by setting S = A, L = R, and for every $s \in S$:

$$C_{s}: 2^{par(s)} \to \{\mathbf{t}, \mathbf{f}\}, \qquad M \mapsto \begin{cases} \mathbf{t} & \text{if } M = \emptyset, \\ \mathbf{f} & \text{otherwise.} \end{cases}$$

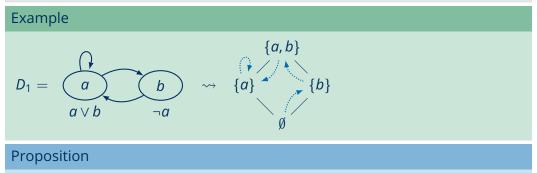


What Can Approximation Fixpoint Theory Do For (Abstract) Argumentation? (Lecture 2) Computational Logic Group // Hannes Strass Argumentation Summer School, Hagen, 2024

ADFs: Operator

Definition

Let D = (S, L, C) be an abstract dialectical framework. A consequence operator is given by $G_D: 2^S \to 2^S$ with $M \mapsto \{s \in S \mid C_s(M \cap par(s)) = \mathbf{t}\}$.



Let D = (S, L, C) be an abstract dialectical framework. For any $M \subseteq S$: $G_D(M) = M$ if and only if M is a model for D.

What Can Approximation Fixpoint Theory Do For (Abstract) Argumentation? (Lecture 2) Computational Logic Group // Hannes Strass Argumentation Summer School, Hagen, 2024

Quiz: https://tud.link/djuy7e

Recall: $G_D(M) = \{s \in S \mid C_s(M \cap par(s)) = \mathbf{t}\}$

Quiz

Consider the following ADF: ...

ADFs: Approximator

Main Benefit of Approximation Fixpoint Theory

To obtain semantics for ADFs, we only need to define an approximator.

Definition

Let D = (S, L, C) be an ADF. Define approximator $\mathcal{G}_D: (2^S \times 2^S) \to (2^S \times 2^S)$ via

$$(X, Y) \mapsto \left(\bigcap_{X \subseteq Z \subseteq Y} G_D(Z), \bigcup_{X \subseteq Z \subseteq Y} G_D(Z)\right)$$

- \mathcal{G}_D approximates G_D , as $\mathcal{G}_D(X, X) = (G_D(X), G_D(X))$.
- \mathcal{G}_D is \leq_i -monotone: $(X_1, Y_1) \leq_i (X_2, Y_2)$ implies $X_1 \subseteq X_2 \subseteq Z \subseteq Y_2 \subseteq Y_1$.
- This construction is known as ultimate approximation (Denecker, Marek, and Truszczyński, 2004).

From AFs to ADFs: Defining Semantics

Definition

Let D = (S, L, C) be an ADF. A pair (X, Y) is ...

- admissible iff $(X, Y) \leq_i \mathcal{G}_D(X, Y)$;
- **complete** iff $\mathcal{G}_D(X, Y) = (X, Y)$;
- **preferred** iff (X, Y) is \leq_i -maximal w.r.t. $\mathcal{G}_D(X, Y) = (X, Y)$;
- **grounded** iff $(X, Y) = Ifp(\mathcal{G}_D)$.

Theorem

Let F = (A, R) be an AF and D_F its corresponding ADF, and $X \subseteq Y \subseteq A$.

- (X, Y) is admissible for F iff (X, Y) is admissible for D_F ;
- (X, Y) is complete for F iff (X, Y) is complete for D_F ;
- (X, Y) is grounded for F iff (X, Y) is grounded for D_F ;
- (X, X) is stable for F iff X is a model of D_F .

Towards Stable Model Semantics

Consider this simplified model of a fuel system for an aircraft: Node n_1 is pressurised by valve v_1 or node n_2 ; symmetrically for node n_2 .

We can model the behaviour of this system as an ADF as follows:

$$D_2 = \underbrace{v_1}_{\perp} \underbrace{n_1}_{v_1 \lor n_2} \underbrace{n_2}_{v_2 \lor n_1} \underbrace{v_2}_{\perp}$$

What are the models of D_2 ?

There are two models.

Is this desired?

What Can Approximation Fixpoint Theory Do For (Abstract) Argumentation? (Lecture 2) Computational Logic Group // Hannes Strass Argumentation Summer School, Hagen, 2024

Stable Operators

What Can Approximation Fixpoint Theory Do For (Abstract) Argumentation? (Lecture 2) Computational Logic Group // Hannes Strass Argumentation Summer School, Hagen, 2024

Slide 47 of 58

Stable Operator: Intuition

The Gelfond-Lifschitz Reduct of a logic program P ...

- ... starts out with a two-valued interpretation $M \subseteq S$;
- ... removes all rules requiring some $a \in M$ to be false;
- ... assumes all $a \notin M$ to be false in the remaining rules.
- To obtain ADF reduct D^M , assume all and only atoms $a \notin M$ to be false.
- Using D^M , try to constructively prove all and only atoms $a \in M$ to be true.
- Try to ensure that G_{D^M} is a \subseteq -monotone operator on (2^{*s*}, \subseteq).

Expressing the Reduct via an Operator

- For pair (X, Y), an $a \in S$ is true iff $a \in X$; atom a is false iff $a \notin Y$.
- Use \mathcal{G}_D to reconstruct what is true, fixing the upper bound to *M*:

$$\mathfrak{G}_D{'}(\cdot,M)\colon 2^A\to 2^A,\quad X\mapsto \mathfrak{G}_D{'}(X,M)$$

Stable Operator: Preparation

Proposition

Let (L, \leq) be a complete lattice and \mathcal{A} be an approximator on (L^2, \leq_i) . For every pair $(x, y) \in L^2$, the following operators are \leq -monotone:

 $\mathcal{A}'(\cdot, y) \colon L \to L, \quad z \mapsto \mathcal{A}'(z, y) \quad \text{and} \quad \mathcal{A}''(x, \cdot) \colon L \to L, \quad z \mapsto \mathcal{A}''(x, z)$

Proof.

- 1. Let $x_1 \leq x_2$ and $y \in L$. Then $(x_1, y) \leq_i (x_2, y)$ and $\mathcal{A}(x_1, y) \leq_i \mathcal{A}(x_2, y)$, thus $\mathcal{A}'(x_1, y) \leq \mathcal{A}'(x_2, y)$.
- 2. Let $x \in L$ and $y_1 \leq y_2$. Then $(x, y_2) \leq_i (x, y_1)$ and $\mathcal{A}(x, y_2) \leq_i \mathcal{A}(x, y_1)$, thus $\mathcal{A}''(x, y_1) \leq \mathcal{A}''(x, y_2)$.
- $\mathcal{A}'(\cdot, y)$ has a \leq -least fixpoint, denoted lfp($\mathcal{A}'(\cdot, y)$);
- $\mathcal{A}''(x, \cdot)$ has a \leq -least fixpoint, denoted lfp($\mathcal{A}''(x, \cdot)$).

Stable Operator: Definition

Definition

Let (L, \leq) be a complete lattice and \mathcal{A} be an approximator on (L^2, \leq_i) . The **stable approximator** for \mathcal{A} is given by $S\mathcal{A}: L^2 \to L^2$ with

$$\begin{split} & \mathcal{S}\mathcal{A}' \colon L^2 \to L, & (x, y) \mapsto \mathsf{lfp}(\mathcal{A}'(\cdot, y)) \\ & \mathcal{S}\mathcal{A}'' \colon L^2 \to L, & (x, y) \mapsto \mathsf{lfp}(\mathcal{A}''(x, \cdot)) \end{split}$$

- SA': improve lower bound for all fixpoints of O at or below upper bound;
- SA": obtain tightmost new upper bound (eliminate non-minimal fixpoints).

Proposition

Let (x, y) be a postfixpoint of approximator A. Then

 $a \in [\bot, y]$ implies $\mathcal{A}'(a, y) \in [\bot, y]$ and $b \in [x, \top]$ implies $\mathcal{A}''(x, b) \in [x, \top]$.

In particular, $lfp(\mathcal{A}'(\cdot, y)) \leq y$ and $x \leq lfp(\mathcal{A}''(x, \cdot))$.

Stable Operator: Observations

Theorem

Let (L, \leq) be a complete lattice and \mathcal{A} be an approximator on (L^2, \leq_i) .

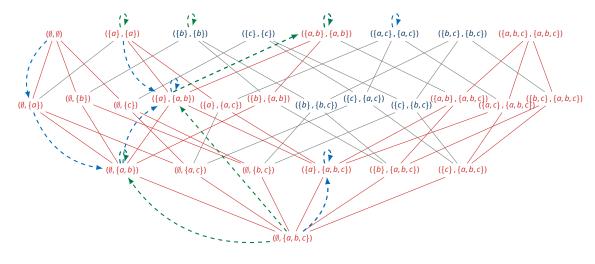
1. SA is \leq_i -monotone.

2. If (x, y) is a consistent postfixpoint of A, then SA(x, y) is consistent.

Proof.

- 1. Let $(u, v) \leq_i (x, y)$. Now $y \leq v$ implies $\mathcal{A}'(z, v) \leq \mathcal{A}'(z, y)$ for all $z \in L$ since \mathcal{A} is \leq_i -monotone. In particular, for $z^* = lfp(\mathcal{A}'(\cdot, y))$, $\mathcal{A}'(z^*, v) \leq \mathcal{A}'(z^*, y) = z^*$ whence z^* is a prefixpoint of $\mathcal{A}'(\cdot, v)$. Thus $lfp(\mathcal{A}'(\cdot, v)) \leq z^* = lfp(\mathcal{A}'(\cdot, y))$. In combination, $\mathcal{SA}'(u, v) = lfp(\mathcal{A}'(\cdot, v)) \leq lfp(\mathcal{A}'(\cdot, y)) = \mathcal{SA}'(x, y)$. \mathcal{SA}'' : dual.
- 2. Let $x \leq y$ with $(x, y) \leq_i \mathcal{A}(x, y)$. For every $z \in L$ with $x \leq z \leq y$, we have $\mathcal{SA}'(x, y) \leq \mathcal{SA}'(z, z) = lfp(\mathcal{A}'(\cdot, z)) \leq z \leq lfp(\mathcal{A}''(z, \cdot)) = \mathcal{SA}''(z, z) \leq \mathcal{SA}''(x, y)$.

Stable Operator SGD: Example



 $D_{a}: \quad \varphi_{a} = \exists b, \quad \varphi_{b} = a \not a, \neg c, \varphi_{c} \varphi_{\overline{c}} \in c$

Stable Semantics: Definition via Operators

Definition

Let (L, \leq) be a complete lattice, $O: L \to L$ be an operator. Let $\mathcal{A}: L^2 \to L^2$ be an approximator of O in (L^2, \leq_i) . A pair $(x, y) \in L^2$ is

- a **two-valued stable model of** A iff x = y and SA(x, y) = (x, y);
- a **three-valued stable model of** A iff $x \leq y$ and &A(x, y) = (x, y);
- the **well-founded model of** A iff it is the least fixpoint of A.

The names are inspired by notions from logic programming.

Theorem

- 1. If $p(\mathcal{A}) \leq_i f(\mathcal{SA})$;
- 2. SA(x, y) = (x, y) implies A(x, y) = (x, y);
- 3. if SA(x, x) = (x, x) then x is a \leq -minimal fixpoint of *O*;

Reprise: How to Find an Approximator?

Definition

Let $O: L \to L$ be an operator in a complete lattice (L, \leq) . Define the **ultimate approximator of** O as follows:

$$\mathfrak{X}_{O} \colon L^{2} \to L^{2}, \qquad (x, y) \mapsto \left(\bigwedge \{ O(z) \mid x \leq z \leq y \}, \bigvee \{ O(z) \mid x \leq z \leq y \} \right)$$

Intuition: Consider glb and lub of applying O pointwise to given interval.

Theorem

For every approximator A of O and consistent pair $(x, y) \in L^2$, we find

 $\mathcal{A}(x,y)\leq_i \mathcal{X}_O(x,y)$

Ultimate approximator is most precise approximator possible. Used e.g. for standard semantics of ADFs (Brewka et al., 2013).

Conclusion

What Can Approximation Fixpoint Theory Do For (Abstract) Argumentation? (Lecture 2) Computational Logic Group // Hannes Strass Argumentation Summer School, Hagen, 2024

Slide 55 of 58

Conclusion

Summary

- Operators in complete lattices can be used to define semantics of KR formalisms.
- Approximation fixpoint theory provides a general account of operator-based semantics.
- Stable approximator reconstructs well-founded and stable model semantics of logic programming.
- To define semantics for new formalisms, only an approximator needs to be defined, AFT does the rest.
- With ultimate approximation, only a consequence operator needs to be defined.

Outlook

What else can Approximation Fixpoint Theory do for Argumentation?

Open Topics

AFT could be used to analyse/define/compare semantics of ...

- ... argumentation frameworks with set attacks;
- ... argumentation frameworks with supports/necessities;
- ... gradual and probabilistic argumentation;
- ... assumption-based argumentation;
- ... the formalism you are interested in?

References

- davey-priestley
- DeneckerMT04
- Dung95
- Pollock87
- BrewkaW10
- Strass13
- BrewkaSEWW13

