
Lecture 3: Semantics of Programming Languages
Concurrency Theory Summer 2024

Dr. Stephan Mennicke

April 16th, 2024
TU Dresden, Knowledge-Based Systems Group

Review

Overview

Part 0: Completing the Introduction
• learning about bisimilarity and bisimulations

Part 1: Semantics of (Sequential) Programming Languages
• WHILE – an old friend (today)
• denotational semantics (a baseline and an exercise of the inductive method) (also today)
• natural semantics and (structural) operational semantics

Part 2: Towards Parallel Programming Languages
• bisimilarity and its success story
• deep-dive into induction and coinduction
• algebraic properties of bisimilarity

Part 3: Expressive Power
• Calculus of Communicating Systems (CCS)
• Petri nets

Dr. Stephan Mennicke Concurrency Theory 3 / 16

Semantics of Programming Languages

Programming Languages

• sometimes, pragmatics included (not here :))

Syntax
• grammatical structure of programs

Example 1 : The program

z := x; x := y; y := z

consists of three statements (separated by ;). Each statement has the form of a variable
followed by := and an expression.

Semantics
• is about specifying the meaning, or behavior, of programs, hardware, or systems in general

‣ to reveal ambiguities
‣ to form the basis for implementation, analysis, and verification

• meaning of grammatically correct programs

Dr. Stephan Mennicke Concurrency Theory 5 / 16

Programming Languages

Example 2 : The meaning of the program

z := x; x := y; y := z

is the exchange of values of variables x and y (whereas the value of z is set to the final
value of y).

• for a formal treatment we need to explain the meanings of
‣ sequences of statements and
‣ statements that are sequences of variables, :=, and expressions.

Dr. Stephan Mennicke Concurrency Theory 6 / 16

The Flavors of Semantics

Operational Semantics
• meaning = computation induced by the syntactic constructs
• it is important how? the effect of computation is produced

Denotational Semantics
• meaning = mathematical object that captures the effect of executing the program
• only the effect is important, not how it was obtained

Axiomatic Semantics
• properties of the effect of executing the program expressed as assertions
• some aspects of the computation may be neglected

Dr. Stephan Mennicke Concurrency Theory 7 / 16

Operational Semantics by Example

z := x; x := y; y := z

• how to execute the code?
‣ execution of a sequence of statements (separated by ;) is execution of individual state-

ments one after the other
‣ execution of statements with variable follows by := followed by an expression means

determining the value of the expression and assigning it to the first variable
• record the execution of programs in a state where x has value 5, y has value 7, and z has

value 0:

⟨ z := x; x := y; y := z, [𝑥 ↦ 5, 𝑦 ↦ 7, 𝑧 ↦ 0]⟩
⇒ ⟨ x := y; y := z, [𝑥 ↦ 5, 𝑦 ↦ 7, 𝑧 ↦ 5]⟩
⇒ ⟨ y := z, [𝑥 ↦ 7, 𝑦 ↦ 7, 𝑧 ↦ 5]⟩
⇒ [𝑥 ↦ 7, 𝑦 ↦ 5, 𝑧 ↦ 5]

Dr. Stephan Mennicke Concurrency Theory 8 / 16

Another Operational Semantics by Example

z := x; x := y; y := z

• the semantics so far abstracted from the computing architecture (e.g., memory locations)
• we can even go further by so-called derivation trees:

⟨ z := x , 𝑠0⟩ → 𝑠1 ⟨ x := y , 𝑠1⟩ → 𝑠2
⟨ z := x; x := y , 𝑠0⟩ → 𝑠2 ⟨ y := z , 𝑠2⟩ → 𝑠3

⟨ z := x; x := y; y := z , 𝑠0⟩ → 𝑠3
where 𝑠0 = [𝑥 ↦ 5, 𝑦 ↦ 7, 𝑧 ↦ 0], 𝑠1 = [𝑥 ↦ 5, 𝑦 ↦ 7, 𝑧 ↦ 5], 𝑠2 = [𝑥 ↦ 7, 𝑦 ↦ 7, 𝑧 ↦ 5],
and 𝑠3 = [𝑥 ↦ 7, 𝑦 ↦ 5, 𝑧 ↦ 5].
• this style is called the natural semantics or big step semantics

Dr. Stephan Mennicke Concurrency Theory 9 / 16

Denotational Semantics by Example

z := x; x := y; y := z

• the effect of the computation is modeled by mathematical functions:
• the effect of a sequence of statements is the function composition of the individual effects
• the effect of a statement consisting of a variable, followed by := and an expression is the

function that takes a state (i.e., a mapping from variables to values) and transforms it into
a state mapping the variable in question to its new value

• for the example we get 𝒮⟦z := x⟧, 𝒮⟦x := y⟧, and 𝒮⟦y := z⟧ to obtain the meaning

𝒮⟦z := x; x := y; y := z⟧ = 𝒮⟦y := z⟧ ∘ 𝒮⟦x := y⟧ ∘ 𝒮⟦z := x⟧

Remark on Order and Function Composition
Function composition is read in the reverse order: Functions 𝑔 : 𝐴 → 𝐵 and 𝑓 : 𝐵 → 𝐶 com-
pose to 𝑓 ∘ 𝑔 such that for all 𝑥 ∈ 𝐴, (𝑓 ∘ 𝑔)(𝑥) ≔ 𝑓(𝑔(𝑥)).

Dr. Stephan Mennicke Concurrency Theory 10 / 16

Axiomatic Semantics by Example

{𝑥 = 𝑛 ∧ 𝑦 = 𝑚}z := x; x := y; y := z{𝑥 = 𝑚 ∧ 𝑦 = 𝑛}

• precondition ({𝑥 = 𝑛 ∧ 𝑦 = 𝑚}) and postcondition ({𝑥 = 𝑚 ∧ 𝑦 = 𝑛})
• viewed as a specification focusing on particular aspect of the semantics
• partial correctness (i.e., upon termination) and total correctness
• once again, a derivation tree is appropriate
• axiomatic semantics tells us how to step-wise transform preconditions into postconditions:

[ass]
{𝑃 [𝑥 ↦ 𝑛]}x := 𝑛{𝑃}

{𝑃}𝑆1{𝑄} {𝑄}𝑆2{𝑅}[comp]
{𝑃} 𝑆1;𝑆2 {𝑅}

Dr. Stephan Mennicke Concurrency Theory 11 / 16

The Language of WHILE-Programs

Syntactic Categories

The following categories are pairwaise disjoint sets.

• Num is the set of numerals (e.g., 𝑛, 𝑛1, 𝑛2,…)
• Var is the set of variables (e.g., 𝑥, 𝑦, 𝑧,…)
• Aexp is the set of arithmetic expressions (e.g., 𝑎, 𝑎1 ⋆ 𝑎2,…)
• Bexp is the set of Boolean expressions (e.g., true, ¬𝑏, 𝑎1 < 𝑎2,…)
• Stm is the set of all statements (to be defined next)

Dr. Stephan Mennicke Concurrency Theory 13 / 16

Syntax of WHILE Programs

𝑎 ⩴ 𝑛 | 𝑥 | 𝑎 ⊕ 𝑎 | 𝑎 ⋆ 𝑎 | 𝑎 ⊖ 𝑎

𝑏 ⩴ true | false | 𝑎 ≡ 𝑎 | 𝑎 ≦ 𝑎 | ¬𝑏 | 𝑏 ∧ 𝑏

𝑆 ⩴ 𝑥 := 𝑎 | skip | 𝑆 ; 𝑆 | if 𝑏 then 𝑆 else 𝑆 | while 𝑏 do 𝑆

where 𝑛 ∈ Num and 𝑥 ∈ Var.

These are all the syntactic categories, rigorously defined by grammars. Really all?

Exercise: Provide a definition for numerals and variables.

Dr. Stephan Mennicke Concurrency Theory 14 / 16

Semantic Functions

Assumptions:
1. numerals are given in decimal notation
2. semantic function 𝒩⟦·⟧ : Num → ℤ

A state is a function from variables to ℤ.

State = ℤVar

Need semantic functions for the syntactic categories
• Aexp 𝒜 : Aexp → (State → ℤ)
• Bexp ℬ : Bexp → (State → 𝔹)
• Stm 𝒮 : Stm → (⁇)

⁇ should be replaced by partial functions State ↪ State.

Dr. Stephan Mennicke Concurrency Theory 15 / 16

Total and Partial Functions

A function 𝑓 : 𝐴 → 𝐵 is an object 𝑓 ⊆ 𝐴 ×𝐵 such that (1) ∀𝑎 ∈ 𝐴 : ∃𝑏 ∈ 𝐵 : (𝑎, 𝑏) ∈ 𝑓 and
(2) if for 𝑎 ∈ 𝐴 we have 𝑏1, 𝑏2 ∈ 𝐵 with (𝑎, 𝑏1) ∈ 𝑓 and (𝑎, 𝑏2) ∈ 𝑓 , then 𝑏1 = 𝑏2. In contrast,
a partial function 𝑔 : 𝐴 ↪ 𝐵 removes requirement (1).

If for 𝑎 ∈ 𝐴 there is a 𝑏 ∈ 𝐵 such that (𝑎, 𝑏) ∈ 𝑔, we write 𝑔(𝑎) = 𝑏. If for all 𝑏 ∈ 𝐵, (𝑎, 𝑏) ∉
𝑔, we write 𝑔(𝑎) =⊥ where ⊥∉ 𝐵 is assumed to be the symbol for undefined value.

Dr. Stephan Mennicke Concurrency Theory 16 / 16

	Syntax
	Semantics
	Operational Semantics
	Denotational Semantics
	Axiomatic Semantics
	Remark on Order and Function Composition

