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Abstract The analysis of properties of consequence operators has been
a very active field in the formative years of non-monotonic reasoning.
One possible approach to do this is to start with a model-theoretic se-
mantics and then to study the logical consequence relation induced by
that semantics. In this paper we follow that approach and analyse result-
ing consequence operators of so-called characterization logics. Roughly
speaking, a characterization logic characterizes, via its own notion of or-
dinary equivalence, another logic’s notion of strong equivalence. For ex-
ample, the logic of here and there is a characterization logic for answer
set programs, because strong equivalence of the latter is characterized
by ordinary equivalence of the former.
In previous work, we showed that the consideration of finite knowledge
bases only – a common assumption in the field of knowledge represent-
ation – guarantees the existence (and uniqueness) of characterization
logics. In this paper, we apply this existence result to the field of ab-
stract argumentation. We show that the associated consequence oper-
ator outputs a so-called reverse kernel, a useful construct that received
comparably little attention in the literature so far. As an aside, we cla-
rify that for several well-known logics, their canonical characterization
consequence operators are well-behaved.

Keywords: Characterization Logic · Strong Equivalence · Abstract Ar-
gumentation

1 Introduction

After many decades, the field of knowledge representation finds itself in a com-
fortable situation, as it is equipped with a variety of logical formalisms. Selecting
the most adequate one for a specific purpose is one of the decisive questions be-
fore starting to apply a formalism. In order to make an informed choice, it is
important to be aware of intrinsic properties of the available formalisms. For
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instance, one far-reaching decision is whether it is possible to withdraw former
conclusions (cf. [12] for an excellent overview). This distinctive feature divides
the formalisms into so-called monotonic and non-monotonic ones. Another im-
portant feature is the availability of semantically neutral replaceability, via a
notion of strong equivalence, which when present allows one to simplify parts
of a theory without looking at the rest. In a series of interesting developments,
researchers have succeeded in precisely characterizing strong equivalence for sev-
eral formalisms, among them logic programs [14,18], causal theories [19], default
logic [18] and some classes of non-monotonic logics in general [16,17].

In several cases, to characterize strong equivalence in formalism L, we can use
ordinary equivalence in formalism L′: for example, strong equivalence in normal
logic programs under stable models can be characterized by the standard se-
mantics of the logic of here and there [14]. We recently studied this phenomenon
in a general setting and coined the term characterization logics [4,5]. One main
result was that characterization logics exist in general if we restrict ourselves to
finite knowledge bases only – a common assumption in applications of knowledge
representation. However, although this represents a quite remarkable theoretical
result, the canonical semantics of these logics are somewhat unhandy and less
telling as they return infinite unions of equivalence classes. In this paper we
instead focus on the resulting consequence operators and show that they are
both enlightening and surprising. Firstly, we show that for a whole family of
logics (including well-known logics like classical propositional logic and first-
order logic) that their characterization logics return the same consequences as
the characterized logic. Secondly, and as our main contribution, we study a spe-
cific non-monotonic formalism, namely Dung’s argumentation frameworks [9]. It
turns out that the associated consequence operator outputs the reverse kernel,
an object that has received comparably little attention in the literature so far.

2 Preliminaries

2.1 Semantics, Consequences and Characterization Logics

A model-theoretic semantics for a language L uses a set I of interpretations and
a model function σ : 2L → 2I . The intuition is that σ assigns to each T ⊆ L, a
so-called L-theory, a set σ(T ) of models of T . (Note that a theory is merely a
set of formulas, there are no further assumptions on them.) A triple (L, I, σ) is
called a logic. As the set I of interpretations is implicit in σ, in the remainder
of the paper we will typically disregard I and denote logics by pairs (L, σ). We
now formally introduce two well-known notions of equvialence.

Definition 1. Let (L, σ) be a logic and T1, T2 ⊆ L be theories. T1 and T2 are
ordinarily equivalent if σ(T1) = σ(T2). If even σ(T1 ∪ U) = σ(T2 ∪ U) for all
theories U ⊆ L, we call T1 and T2 strongly equivalent.

We use [T ]σs = {S ⊆ L | S is strongly equivalent to T} to denote the asso-
ciated equivalence class. Obviously, strong equivalence implies ordinary equival-
ence but not necessarily vice versa [14,18]. Note that strong equivalence enables
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to replace a part of a theory without affecting the semantics, in arbitrary con-
texts. If in a given logic (L, σ) both notions coincide we say that (L, σ) possesses
the replacement property. Thus the replacement property guarantees that already
ordinary equivalence allows for semantically neutral replacements.

Definition 2. Let (L, σ) be a logic. The model function (the logic) possesses the
intersection property if for each L-theory T , we have σ(T ) =

⋂
φ∈T σ({φ}).

In previous work, we have shown that the intersection property implies the
replacement property [5, Proposition 3]. For a given logic we also defined an
associated consequence operator Cnσ (intuitively assigning to a given L-theory
T the theory Cnσ(T ) of its semantical consequences) in a canonical way.

Definition 3. Let (L, σ) be a logic. We call Cnσ the canonical consequence
operator of σ where Cnσ : 2L → 2L with T 7→

⋃
S⊆L,σ(T )⊆σ(S)

S.

If the logic (L, σ) possesses the intersection property, then the canonical
consequence operator is a closure operator [5, Proposition 6]. Thus in addition
to being increasing (T ⊆ Cnσ(T )) and idempotent (Cnσ(Cnσ(T )) ⊆ Cnσ(T )),
Cnσ is in particular monotone (T1 ⊆ T2 implies Cnσ(T1) ⊆ Cnσ(T2)), that is,
the intersection property is sufficient for the logic being monotone.

Finally, we introduce the central definition of a characterization logic (L, σ′)
of (L, σ). Such a logic possesses two properties: Firstly, it characterizes strong
equivalence in (L, σ) via its own ordinary equivalence and secondly, (L, σ′) has
the intersection property (thus is a monotone logic).

Definition 4. Logic (L, σ′) is a characterization logic for logic (L, σ) if:

1. ∀T1, T2 ∈ 2L : σ′(T1) = σ′(T2) ⇐⇒ [T1]
σ
s = [T2]

σ
s , and (characterization)

2. ∀T ⊆ 2L : σ′(⋃
T∈T T

)
=

⋂
T∈T σ′(T ).4 (intersection)

Note that the second property enforces that characterization logics are mono-
tonic. However, the logic being characterized need not be monotonic. For ex-
ample, it is already known that strong equivalence in normal logic programs
under stable models can be characterized by the standard semantics of the logic
of here and there [14]. This means, a highly non-monotonic formalism is char-
acterized by a monotonic one. Moreover, a logic can be its own characterization
logic. For instance, classical propositional logic is its own characterization logic,
as ordinary and strong equivalence coincide and intersection holds by definition.

2.2 Argumentation Frameworks and Semantics

An argumentation framework (AF) is a pair F = (A,R) where A (the set of
arguments) is a subset of a fixed infinite background set U . Moreover, R (the set
4 We mention that the second item is equivalent to the more common version presented

in Definition 2 [5, Proposition 9].
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of attacks) is a subset of A × A [9]. The set of all (finite) AFs is denoted by F
(Ffin). An extension-based semantics ρ : F → 22

U
assigns to each AF F = (A,R)

a set ρ(F ) ⊆ 2A of sets of arguments. Each E ∈ ρ(F ), a so-called ρ-extension, is
considered to be acceptable (according to ρ) with respect to F .

Some prominent semantics already introduced by Dung [9] are stable, admiss-
ible, complete, preferred and grounded semantics (abbreviated stb, ad , co, gr , pr).
We refrain from presenting the concrete definitions as we are concentrating on
consequence operators of characterization logics. However, for readers far from
the field we recommend an overview [1].

Similar to Definition 1 we introduce strong equivalence for two AFs F and G
(abbreviated F ≡ρ

s G) as: for each AF H , ρ(F ⊔ H ) = ρ(G ⊔ H ). The union
(A,R)⊔ (B,S) is defined as (A∪B,R∪S). Please note that we have to use “⊔”
instead of “∪” as we are dealing with directed graphs. The embedding of AFs in
the general setup of L-theories will be considered in detail in Section 4.2.

3 Propositional Logic, FOL, and Friends – Logics with
Intersection Property

We start with formalisms that possess the intersection property. Representatives
are well-known logics like propositional logic or first-order logic.5 Firstly, note
that for these logics, the intersection property holds by definition: Indeed, their
semantics σ (usually denoted as Mod) are firstly defined for single formulas φ and
then generalized to theories T by setting σ(T ) =

⋂
φ∈T σ({φ}). Furthermore, the

standard approach to define logical consequences Cn(·) based on model theory,
namely setting Cn(T ) = {φ ∈ L |σ(T ) ⊆ σ({φ})}, coincides with Definition 3’s
notion of canonical consequence: If φ ∈ Cn(T ), then clearly φ ∈ Cnσ(T ) via
S = {φ}; conversely, if φ ∈ S ⊆ L with σ(T ) ⊆ σ(S), then σ(S) = σ(S ∪{φ}) =
σ(S) ∩ σ({φ}) whence σ(S) ⊆ σ({φ}) and by transitivity σ(T ) ⊆ σ({φ}), that
is, φ ∈ Cn(T ). Thus for classical logic, the canonical consequence operator of
Definition 3 exactly embodies the standard notion of logical consequence.

How does a consequence operator of a characterization logic look like in gen-
eral? We already know that any characterization logic is a sublogic of the initial
one [5], that is, consequences in the characterizing logic are also consequences in
the characterized logic. In case of logics with intersection property we can show
even more. Since such formalisms have the replacement property, we may con-
sider the formalism itself as its own characterization logic. The following result
shows that the associated consequence operator of any other characterization
logic coincides with the already known consequence operator of the initial logic.
Thus, there is no space for surprising consequences, a reassuring result.

Proposition 1. Let (L, σ) be a logic that has the intersection property. For any
characterization logic (L, σ′) of (L, σ) we have: Cnσ = Cnσ′

.
5 Although these logics are monotonic, it would be a misconception to claim that all

monotonic logics have the replacement property [5, Exm. 5], in other words, to say
that being non-monotonic is the reasong for not having the replacement property.
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Proof. Let T be an arbitrary L-theory. We show Cnσ
(
T
)
= Cnσ′(

T
)
.

(⊆) Let φ ∈ Cnσ
(
T
)
. By definition of the canonical consequence there is a set

S, s.t. φ ∈ S and σ(T ) ⊆ σ(S). Consequently, φ ∈ S ∪ T and by intersec-
tion property we obtain: σ(S ∪ T ) = σ(S) ∩ σ(T ) = σ(T ). Since intersection
guarantees replacement we have [S ∪T ]σs = [T ]σs . As (L, σ′) is assumed to be
a characterization logic of (L, σ) we derive σ′(S ∪ T ) = σ′(T ). This means,
Cnσ′

(S ∪ T ) = Cnσ′
(T ). Since characterization logics possesses the inter-

section property we derive that Cnσ′
is a closure operator [5, Proposition 6].

Thus, by inclusion we get S ∪ T ⊆ Cnσ′
(S ∪ T ) = Cnσ′

(T ). Finally, using
φ ∈ S ∪ T yields φ ∈ Cnσ′

(T )

(⊇) The sublogic property, i.e. Cnσ′(
T
)
⊆ Cnσ

(
T
)

for any T , holds without any
restriction [5, Proposition 11, Item 1]. ⊓⊔

4 Logics without Intersection Property

In the section before we have clarified the case of logics possessing the intersection
property. In fact, there are no deviations from the initial consequences. Now let
us turn to logics without intersection property.

4.1 What is already known?

At the very beginning, we must clarify whether such logics possess characteriz-
ation logics at all. From our previous results [4], we know that, firstly, not every
formalism (that can be cast in our abstract, model-theoretic framework [5]) has
one, but secondly, there are restrictions that guarantee the existence of charac-
terization logics. One of those restrictions is the consideration of finite knowledge
bases only. Note that this restriction, especially in the field of knowledge repres-
entation, is indeed not overly limiting, as finite knowledge bases are the most
relevant for practical purposes.

The next definition translates this assumption into our setting. For a given
logic we call the restriction to finite knowledge bases the finite-theory version.

Definition 5. Let (L, σ) be a logic. The finite-theory version (L, σfin) of (L, σ)
is defined by the semantics σfin :

(
2L

)
fin

→ σ
(
2L

)
with σfin(T ) = σ(T ) where(

2L
)
fin

= {T ∈ 2L | T is finite}.

For finite-theory restrictions of logics, we adequately relax our requirements
on characterization logics (refer to Definition 4). Indeed, only finite theories are
considered and arbitrary unions are disallowed as they may lead to infinite sets.

Definition 6. Let (L, σfin) be the finite-theory version of (L, σ). We say that
(L, σ′

fin) is a finite-theory characterization logic for (L, σ) if and only if :

1. ∀T1, T2 ∈
(
2L

)
fin

: σ′
fin(T1) = σ′

fin(T2) iff [T1]
σfin
s = [T2]

σfin
s ,

(characterization)
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2. ∀T1, T2 ∈
(
2L

)
fin

: σ′
fin(T1 ∪ T2) = σ′

fin(T1) ∩ σ′
fin(T2). (intersection)

Now, we recall the central theorem stating that any logic possesses a finite-
theory characterization logic [4, Theorem 9]. We also put the associated con-
sequence operator (cf. Definition 3) in the theorem as the analysis of this oper-
ator is the main aim of this paper.

Theorem 1. Given a logic (L, σ), a finite-theory characterization logic for it
is given by (L, σ′

fin) with model function σ′
fin :

(
2L

)
fin

→ 22
L

and consequence
operator Cnσ′

fin :
(
2L

)
fin

→
(
2L

)
fin

are given by, respectively,

T 7→
⋃

S∈(2L)fin,

T⊆S

[S]σfin
s

and
T 7→

⋃
S∈(2L)fin,

σ′
fin(T )⊆σ′

fin(S)

S

The specifics of these consequence operators heavily rely on the underlying
logic (L, σfin). In this very first paper regarding consequences we consider a well-
known non-monotonic formalism and leave other logics for future work. We will
see that the analysis requires a lot of technical details. However, in the end the
great effort is worth it and rewards us with an unexpected outcome.

4.2 The Non-monotonic Theory of Abstract Argumentation

As discussed in Section 2.2, an AF F is a directed graph. However, in order
to apply the definitions and results of the preceding section to argumentation
theory we have to have L-theories which correspond to AFs, s.t. the standard
set union ∪ of such theories corresponds to ⊔ on the AF level. Moreover, it has
to be ensured that the semantics of theories correspond to the argumentation
semantics of the associated AFs. This can be done in the following way.

Definition 7. Given an argumentation semantics ρ : F → 22
U
, we define the

logic (LF , IF , σρ) where LF = {({a}, ∅), ({a, b}, {(a, b)}) | a, b ∈ U}, IF = 2U

and σρ : 2
LF → 2IF with σρ(T ) = ρ(

⊔
T ).

For a given LF -theory T we call AF (T ) =
⊔

T the associated AF. We extend
this definition to a set T of LF -theories via AF (T ) = {AF (T ) | T ∈ T }.
Moreover, the canonical theory T of a given AF F = (A,R) is defined as C (F ) =
{({a}, ∅) | a ∈ A} ∪ {({a, b}, {(a, b)}) | (a, b) ∈ R}. It follows that for single AFs
F we have AF (C (F )) = F .

In the following we state three important properties showing that the concrete
representation does not matter and that the argumentation semantics ρ and the
induced one σρ are compatible as desired (cf. [5, Proposition 23,Theorem 24]).

Proposition 2. Given a logic (LF , IF , σρ) and LF -theories S and T , we have

1. AF (S ∪ T ) = AF (S) ⊔AF (T ),
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2. σρ(S ∪ T ) = ρ(AF (S) ⊔AF (T )), and

3. AF (S) ≡ρ
s AF (T ) iff [S]

σρ
s = [T ]

σρ
s .

Now, we are ready to consider the associated finite-theory charaterization
logic (Theorem 1) as well as the resulting consequence operator.

Corollary 1. Given an argumentation semantics ρ with induced logic (LF , IF , σρ),(
LF , (σρ)

′
fin

)
is a finite-theory characterization logic of (LF , IF , σρ), where the

characterizing model function (σρ)
′
fin :

(
2LF

)
fin

→ 22
LF and consequence oper-

ator Cn(σρ)
′
fin :

(
2LF

)
fin

→
(
2LF

)
fin

are given by, respectively,

T 7→
⋃

S∈(2LF )
fin

,

T⊆S

[S]
(σρ)fin
s

and
T 7→

⋃
S∈(2LF )

fin
,

(σρ)
′
fin(T )⊆(σρ)

′
fin(S)

S

How can we interpret these finite-theory characterization logics in terms of
argumentation theory? In other words, what is the corresponding consequence
operator on the level of pure AFs (instead of theories associated with AFs)? This
question will be tackled in the remainder of this paper.

4.3 Interpreting the Consequence Operator on AF-level

Now we translate the consequence operator Cn(σρ)
′
fin to realm of abstract ar-

gumentation frameworks. This means, instead of mapping an LF -theory T to
another LF -theory S we do the following: (1) We start with an AF F , (2) Trans-
late it to the level of LF -theories via the canonical theory C(F ), (3) Apply then
the consequence operator Cn(σρ)

′
fin from Corollary 1, and (4) Retranslate the

obtained LF -theory Cn(σρ)
′
fin(C(F )) via the associated AF.

Definition 8. Given an argumentation semantics ρ : F → 22
U
. We define the

translated consequence operator Cnρ′
fin as

Cnρ′
fin : Ffin → Ffin, F 7→ AF

(
Cn(σρ)

′
fin (C(F ))

)
In the following we will prove several technical results needed to show that

the output AF
(
Cn(σρ)

′
fin (C(F ))

)
can be greatly simplified.

Proposition 3. Given two LF -theories S and T . We have:

(σρ)
′
fin (T ) ⊆ (σρ)

′
fin (S) iff AF

(
(σρ)

′
fin (T )

)
⊆ AF

(
(σρ)

′
fin (S)

)
Proof. Let S and T be LF -theories.

(⇒) Remember that (σρ)
′
fin :

(
2LF

)
fin

→ 22
LF . This means, a LF -theory is

mapped to a set of LF -theories. Assume U ∈ AF
(
(σρ)

′
fin (T )

)
. As AF is

applied pointwise there exists a T ′ ∈ (σρ)
′
fin (T ) s.t. U = AF (T ′). Since

(σρ)
′
fin (T ) ⊆ (σρ)

′
fin (S) is assumed we deduce U ∈ AF

(
(σρ)

′
fin (S)

)
.
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(⇐) We show the contrapositive. So let (σρ)
′
fin (T ) ̸⊆ (σρ)

′
fin (S). Hence, there

is a LF -theory T ′ ∈ (σρ)
′
fin (T ) \ (σρ)

′
fin (S). Consequently, there has to be

a LF -theory T ′′ with T ⊆ T ′′ and T ′ ∈ [T ′′]
(σρ)fin
s . Since we are consider-

ing equivalence classes we even have [T ′′]
(σρ)fin
s ∩ (σρ)

′
fin (S) = ∅. Note that

LF -theories resulting in identical frameworks are in the same strong equi-
valence class (Proposition 2, Item 3). This means, for each LF -theory S′

with AF (T ′) = AF (S′) we have S′ ∈ [T ′′]
(σρ)fin
s . Consequently, AF (T ′) /∈

AF
(
(σρ)

′
fin (S)

)
. Hence, AF

(
(σρ)

′
fin (T )

)
̸⊆ AF

(
(σρ)

′
fin (S)

)
. ⊓⊔

In order to proceed we retranslate the semantics (σρ)
′
fin to AF-level. This can

be done in similar way to Definition 8 and was already considered in previous
work [5, Definition 15]. We name the semantics ρ′fin as it perfectly fits with the
translated consequence operator Cnρ′

fin (Definition 8).

Definition 9. Given an argumentation semantics ρ : F → 22
U
, its translated

characterization semantics is ρ′fin : Ffin → 2F with F 7→ AF
(
(σρ)

′
fin (C(F ))

)
.

It was shown that crucial properties of the finite-theory characterization logic(
LF , (σρ)

′
fin

)
transfer to (F , ρ′fin) [5, Proposition 26]. In particular, the charac-

terization property is fulfilled, i.e. for two AFs F and G: ρ′fin(F ) = ρ′fin(G) if
and only if [F ]

ρ
s = [G]

ρ
s . We now show that Cnρ′

fin can be alternatively expressed
with the help of the translated characterization semantics ρ′fin, thereby justifying
the naming convention (confer Definition 3).

Proposition 4. Consider an argumentation semantics ρ : F → 22
U
. For any

AF F ∈ Ffin we have:

Cnρ′
fin(F ) =

⊔
G∈Ffin,

ρ′
fin(F ) ⊆ ρ′

fin(G)

G

Proof. Given an AF F ∈ Ffin, we have the following equalities:
Cnρ′

fin(F ) = AF
(
Cn(σρ)

′
fin (C(F ))

)
(Definition 8)

= AF


⋃

S∈(2LF )
fin

,

(σρ)
′
fin(C(F )) ⊆ (σρ)

′
fin(S)

S

 (Definition Cn(σρ)
′
fin , Corollary 1)

=
⊔

S∈(2LF )
fin

,

(σρ)
′
fin(C(F )) ⊆ (σρ)

′
fin(S)

AF (S) (Proposition 2, Item 1)

=
⊔

S∈(2LF )
fin

,

AF((σρ)
′
fin(C(F ))) ⊆ AF((σρ)

′
fin(S))

AF (S) (Proposition 3)
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=
⊔

S∈(2LF )
fin

,

ρ′
fin ⊆ AF((σρ)

′
fin(S))

AF (S) (Definition 9)

=
⊔

S∈(2LF )
fin

,

ρ′
fin ⊆ AF((σρ)

′
fin(C(AF(S))))

AF (S) ((σρ)
′
fin (C(AF (S))) = (σρ)

′
fin (S))

=
⊔

G∈Ffin,

ρ′
fin ⊆ AF((σρ)

′
fin(C(G)))

G (set AF (S) = G )

=
⊔

G∈Ffin,

ρ′
fin(F ) ⊆ ρ′

fin(G)

G (Definition 9) ⊓⊔

4.4 Characterizing Strong Equivalence: (Reverse) Kernels

The notion of strong equivalence for AFs was firstly tackled by Oikarinen and
Woltran [15]. They provided a series of characterization theorems for deciding
strong equivalence. The surprising result was that being strongly equivalent can
be decided syntactically, which is a distinctive characteristic in the realm of
non-monontonic logics [14,18,19]. More precisely, they introduced the notion of
a kernel of an AF F which is simply a subgraph of F where certain redundant
attacks are deleted. It was shown that syntactical identity of these subgraphs
characterizes strong equivalence w.r.t. the considered semantics.

Later on, it was recognized that the presented kernel definitions are not
uniquely determined [2]. In more detail, the classical kernels [15] represents
the ⊑-least element in the associated strong equivalence class. Remember that
(A,R) ⊑ (B,S) if both, A ⊆ B and R ⊆ S. Alternatively, one may consider
⊑-greatest elements (in case of existence). This means, such a so-called reverse
kernel adds all redundant attacks to an AF instead of removing them. As an
aside, such alternative kernels have already shown to be useful in the context of
orderings and boundaries [3] and will be key for the aim of this paper.

In the following we restrict ourselves to the traditional Dung semantics. How-
ever, further characterization results exist and can be used to define reverse
kernels [13,6].

Definition 10. Let ρ ∈ {stb, ad , co, gr , pr}. For any AF F = (A,R) we define
the ρ-reverse kernel F k+(σ) =

(
A,Rk+(σ)

)
as:

1. Rk+(stb) = R ∪ {(a, b) | a ̸= b, (a, a) ∈ R},
2. Rk+(ad) = R ∪ {(a, b) | a ̸= b, (a, a) ∈ R, {(b, a) , (b, b)} ∩R ̸= ∅},
3. Rk+(co) = R ∪ {(a, b) | a ̸= b, (a, a) , (b, b) ∈ R},
4. Rk+(gr) = R ∪ {(a, b) | a ̸= b, (b, b) ∈ R, {(a, a) , (b, a)} ∩R ̸= ∅},
5. Rk+(pr) = R ∪ {(a, b) | a ̸= b, (a, a) ∈ R, {(b, a) , (b, b)} ∩R ̸= ∅}.

At first we state that these alternative kernels are characterizing too.
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Proposition 5. Given two AFs F and G and ρ ∈ {stb, ad , co, gr , pr}. We have:

[F ]
ρ
s = [G]

ρ
s iff F k+(ρ) = Gk+(ρ)

Proof (Sketch). The classical kernels k (ρ) are characterizing, i.e. [F ]
ρ
s = [G]

ρ
s iff

F k(ρ) = Gk(ρ) [15]. These kernels simply delete the redundant attacks, e.g. for
ρ = stb we have Rk(stb) = R \ {(a, b) | a ̸= b, (a, a) ∈ R}. Now, it suffices to see

that for each AF F : 1.
(
F k+(ρ)

)k(ρ)

= F k(ρ) and 2.
(
F k(ρ)

)k+(ρ)
= F k+(ρ).

Now we recall an already known alternative formulation for the translated
characterization semantics ρ′fin [5, Proposition 27]. This formulation will lift our
consequence operator to the level of equivalence classes and finally to reverse
kernels via Proposition 5.

Proposition 6. Let ρ : F → 22
U

be a semantics and ρ′fin as defined in Defini-
tion 9. We have:

ρ′fin(F ) =
⋃

H∈F, F⊑H

[H]
ρ
s

Finally, we present the main theorem of the paper stating that the induced
consequence operator maps an AF F to its associated reverse kernel. Note that
this result stems from a completely abstract view on logics and model theory,
respectively [5]. We just applied the conditional existence result to abstract ar-
gumentation theory. It will be interesting to see what can be achieved for other
well-known non-monotonic logics.

Theorem 2. Given a semantics ρ : F → 22
U
, for any AF F ∈ Ffin we have:

Cnρ′
fin(F ) = F k+(ρ).

Proof. At first we reformulate Cnρ′
fin(F ) as given in Proposition 4. More pre-

cisely, we show:

Cnρ′
fin(F ) =

⊔
G ∈ Ffin |

⋃
H∈F,

Fk+(ρ)⊑H

[H]
ρ
s ⊆

⋃
H∈F,

G⊑H

[H]
ρ
s

 (1)

This can be seen as follows: First, remember that ρ′fin is characterizing, i.e.
ρ′fin(F ) = ρ′fin(G) if and only if [F ]

ρ
s = [G]

ρ
s. Moreover, since obviously [F ]

ρ
s =[

F k+(ρ)
]ρ
s

we obtain ρ′fin(F ) = ρ′fin

(
F k+(ρ)

)
. Hence, we get

Cnρ′
fin(F ) =

⊔
G∈Ffin,

ρ′
fin(F ) ⊆ ρ′

fin(G)

G =
⊔

G∈Ffin,

ρ′
fin(Fk+(ρ)) ⊆ ρ′

fin(G)

G.

Now, applying Propositions 4 to the latter term results in (1).
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Next, we prove the following equality

{
G ∈ Ffin | G ⊑ F k+(ρ)

}
=

G ∈ Ffin |
⋃

H∈F,

Fk+(ρ)⊑H

[H]
ρ
s ⊆

⋃
H∈F,

G⊑H

[H]
ρ
s

 (2)

(⊆) Given an AF G, s.t. G ⊑ F k+(ρ). Let H ′ ∈
⋃

H∈F,Fk+(ρ)⊑H
[H]

ρ
s. Hence,

there is an H with F k+(ρ) ⊑ H and H ′ ∈ [H]
ρ
s. Applying the assumption

yields G ⊑ H and H ′ ∈
⋃

H∈F,G⊑H
[H]

ρ
s is shown.

(⊇) Now, consider an AF G, s.t.
⋃

H∈F,Fk+(ρ)⊑H
[H]

ρ
s ⊆

⋃
H∈F,G⊑H

[H]
ρ
s. Since

F k+(ρ) ⊑ F k+(ρ) we deduce
[
F k+(ρ)

]ρ
s
⊆

⋃
H∈F,G⊑H

[H]
ρ
s. Thus, there is an

F ′ with G ⊑ F ′ and F ′ ∈
[
F k+(ρ)

]ρ
s
. As F k+(ρ) is the ⊑-greatest element in[

F k+(ρ)
]ρ
s

we get F ′ ⊑ F k+(ρ) and thus, G ⊑ F k+(ρ).

Finally, combining (2) and (1) yields Cnρ′
(F ) =

⊔{
G ∈ Ffin | G ⊑ F k+(ρ)

}
=

F k+(ρ) concluding the proof. ⊓⊔

Note that Cnρ′
fin indeed satisfies the decisive properties of a consequence

operator. We put them in the form of a proposition.

Proposition 7. Consider two AFs F and G and any ρ ∈ {stb, ad , co, gr , pr}.

1. F ⊑ F k+(ρ) (inclusion)

2.
(
F k+(ρ)

)k+(ρ)

= F k+(ρ) (idempotency)

3. If F ⊑ G, then F k+(ρ) ⊑ Gk+(ρ) (monotonicity)

5 Conclusion and Related Work

We have shown that for a whole family of logics, namely logics satisfying the
intersection property, we have that consequence operators of any characterization
logic coincide with the consequence operator of the underlying logic. We want to
highlight two points: First, this result covers (but is not limited to) well-known
logics like propositional logic, first-order logic or modal logic and secondly, the
result is achieved from a very abstract view on logics, in particular, there is no
recourse on syntactical specifics of a certain logic.

The main part of the paper was the consideration of abstract argumentation
theory. We applied a former existence result to the specifics of argumentation
semantics. We showed that characterization logics return the reverse kernel of a
given AF. Such a kernel contains the initial AF and additionally includes any
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redundant (w.r.t. strong equivalence) attack. Note that, at least after certain
period of reflection, this result is not as strange as it first seems: In propositional
logic, by comparison, the consequence operator returns the initial theory and
additionally includes any already implicit – that is, “redundant” (w.r.t. ordinary
equivalence) – formula.

For future work, it would be interesting to consider other formalisms (apart
from argumentation frameworks) whose strong equivalence has been studied in
the literature. Most prominently, we envision analysing (recent extensions of)
answer set programming languages [11,8,7]. In another direction, we also plan
to analyze uniform [10] and other intermediate notions of equivalence [20] in our
general setting. The main challenge there is to translate the typically syntactical
restrictions (on theories U that are allowed for extending) into our general frame-
work, where there is no access to syntax.
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