
Computational
Logic ∴ Group

Hannes Strass
Faculty of Computer Science, Institute of Artificial Intelligence, Computational Logic Group

Game Description Language
Lecture 10, 24th Jun 2024 // Algorithmic Game Theory, SS 2024

https://iccl.inf.tu-dresden.de/web/Algorithmic_Game_Theory_(SS2024)


Previously . . .
• In a finite repeated game, a two-player normal-form game is repeatedfor a fixed number of times; cooperation cannot be expected in this case.
• In a random repeated game, the end of interaction can not be predictedfor sure; cooperation can emerge for large enough continuationprobabilities, but equilibria make no specific predictions.
• A noisy repeated gamemay have implementation/perception errors.
• An evolutionarily stable strategy is a Nash equilibrium that performsbetter against “mutants” than the “mutants” against themselves.
• Deciding whether a game has an ESS is NP-hard and coNP-hard.

(1, 2) Hawk Dove

Hawk V–C2 V

Dove 0 V2

• If V > C, then V–C2 > 0 and Hawk is an ESS.
• If V ≤ C and C > 0, then

π =
{
Hawk 7→ V

C
, Dove 7→ 1 – V

C

} is an ESS.
Game Description Language (Lecture 10)Computational Logic Group // Hannes StrassAlgorithmic Game Theory, SS 2024 Slide 2 of 38 Computational

Logic ∴ Group



Motivation: General Game Playing

• Game playing agents are a testbed for AI approaches and techniques.
• Programs playing specific games have limited value (for AI):

– very narrow: can play the game(s) they are programmed for, but may not beable to learn to play other (not even simpler) games– most analysis and design work is done in advance by human programmers
• General Game Playing (GGP) systems use given descriptions of arbitrarygames to play these games effectively without human intervention.
• A formal game description language (GDL) is used to compactly represent(state-based models of) games.
• Success of the general game player also depends on the “intelligence” ofthe system itself and not just the human programmer(s).

Game Description Language (Lecture 10)Computational Logic Group // Hannes StrassAlgorithmic Game Theory, SS 2024 Slide 3 of 38 Computational
Logic ∴ Group



Overview

Game Description Language

Playing Games

Incomplete Information

Game Description Language (Lecture 10)Computational Logic Group // Hannes StrassAlgorithmic Game Theory, SS 2024 Slide 4 of 38 Computational
Logic ∴ Group



Game Description Language

Game Description Language (Lecture 10)Computational Logic Group // Hannes StrassAlgorithmic Game Theory, SS 2024 Slide 5 of 38 Computational
Logic ∴ Group



Game Description Language: Ideas

• Main idea: games can be declaratively described using logic
• Game rules are described by a set of formulas (a normal logic program)
• A state in the game is represented by a logical interpretation
• GDL uses simultaneous moves (sequentiality is modelled via “no-ops”)
• GDL’s payoffs are scaled to values from [0, 100]
• During play, information is obtained from descriptions via reasoning:

– Which moves are legal in a state– What the next state looks like after a joint move in a state– Which states are terminal– Players’ payoffs in terminal states
• But logical reasoning can in principle also be used to analyse the game.
• Thus GDL is also relevant for knowledge representation and reasoning.

Game Description Language (Lecture 10)Computational Logic Group // Hannes StrassAlgorithmic Game Theory, SS 2024 Slide 6 of 38 Computational
Logic ∴ Group



Background: First-Order Logic (Syntax)
We start out from a logical vocabulary (P,F,V) with
• P a set of predicate symbols p,q,p1,p2, . . ., each with an arity n ∈N,
• F a set of function symbols f , g, f1, f2, . . ., each with an arity n ∈N, and
• V a set of variables x, y, x1, x2, . . ..
The set TP,F,V of terms over (P,F,V) is the smallest set such that:
• every variable v ∈ V is a term, and
• if t1, . . . , tn are terms and f ∈ F is a function symbol of arity n, then

f (t1, . . . , tn) is a term.
The set AP,F,V of atoms over (P,F,V) contains all expressions of the form
p(t1, . . . , tn) where p is a predicate symbol of arity n and t1, . . . , tn ∈ TP,F,V.
• The Herbrand universe is TP,F,∅, the set of all variable-free terms.
• The Herbrand base is AP,F,∅, the set of all variable-free atoms.

Game Description Language (Lecture 10)Computational Logic Group // Hannes StrassAlgorithmic Game Theory, SS 2024 Slide 7 of 38 Computational
Logic ∴ Group



Background: Logic Programs (Syntax)
Definition
Let (P,F,V) be a logical vocabulary.
• A definite clause is an expression of the form (implicitly universally quantified)

H← B1 ∧ . . . ∧ Bm
where H,B1, . . . ,Bm ∈ AP,F,V; H is called the head and each Bi a body atom.

• A normal clause is an expression of the form
H← B1 ∧ . . . ∧ Bm ∧∼Bm+1 ∧ . . . ∧ ∼Bm+n

where H,B1, . . . ,Bm+n ∈ AP,F,V and 0 ≤ m,n; the symbol ∼ is read as “not”.
• A (normal) logic program is a set of (normal) logic program clauses.
• A logic program D over vocabulary (P,F,V) defines a predicate p ∈ P iff

D contains some clause(s) with head p(t1, . . . , tn) for some t1, . . . , tn ∈ TP,F,V.
Intuition: A clause is a logical implication “body implies head”.

Game Description Language (Lecture 10)Computational Logic Group // Hannes StrassAlgorithmic Game Theory, SS 2024 Slide 8 of 38 Computational
Logic ∴ Group



GDL by Example: Tic-Tac-Toe (1)
The Game Description Language uses logic programs to define games byrequiring a number of special predicate symbols be used in a special way.• Implication← is written as :- and conjunction ∧ is written as &.• Variables in terms are indicated by upper case identifiers.
There are two roles (players), X and O:
role(x)
role(o)

Cells are addressed by indices and can be either blank or marked:
base(cell(X, Y, M)) :- index(X) & index(Y) & marker(M)
index(1)
index(2)
index(3)
marker(P) :- role(P)
marker(b)

Game Description Language (Lecture 10)Computational Logic Group // Hannes StrassAlgorithmic Game Theory, SS 2024 Slide 9 of 38 Computational
Logic ∴ Group



GDL by Example: Tic-Tac-Toe (2)
Available moves are “marking a cell” and “doing nothing”:
base(control(P)) :- role(P)
input(P, mark(X, Y)) :- role(P) & index(X) & index(Y)
input(P, noop) :- role(P)

Initially, all cells are blank and it is X’s turn:
init(cell(X, Y, b)) :- index(X) & index(Y)
init(control(x))

A player is allowed to mark a cell if that cell is blank and it is the player’s turn:
legal(P, mark(X, Y)) :- true(cell(X, Y, b)) & true(control(P))

If it is not the player’s turn, the only legal action is doing nothing:
legal(x, noop) :- true(control(o))
legal(o, noop) :- true(control(x))

Game Description Language (Lecture 10)Computational Logic Group // Hannes StrassAlgorithmic Game Theory, SS 2024 Slide 10 of 38 Computational
Logic ∴ Group



GDL by Example: Tic-Tac-Toe (3)
If a player marks a cell, the cell gets that mark:
next(cell(X, Y, P)) :- does(P, mark(X, Y)) & true(cell(X, Y, b))

Any marked cell retains its mark for the rest of the game:
next(cell(X, Y, M)) :- true(cell(X, Y, M)) & distinct(M, b)

Blank cells stay blank if not marked:
next(cell(X, Y, b)) :-

does(P, mark(I, J)) & true(cell(X, Y, b)) & distinct(X, I)
next(cell(X, Y, b)) :-

does(P, mark(I, J)) & true(cell(X, Y, b)) & distinct(Y, J)

Control alternates between the players:
next(control(o)) :- true(control(x))
next(control(x)) :- true(control(o))

Game Description Language (Lecture 10)Computational Logic Group // Hannes StrassAlgorithmic Game Theory, SS 2024 Slide 11 of 38 Computational
Logic ∴ Group



GDL by Example: Tic-Tac-Toe (4)
The game terminates when one player has won or every cell is marked:
terminal :- line(P)
terminal :- õpen
open :- true(cell(X, Y, b))

The players’ payoffs in terminal states are as expected:
goal(x, 100) :- line(x) & l̃ine(o)
goal(x, 50) :- l̃ine(x) & l̃ine(o)
goal(x, 0) :- l̃ine(x) & line(o)
goal(o, 100) :- line(o) & l̃ine(x)
goal(o, 50) :- l̃ine(o) & l̃ine(x)
goal(o, 0) :- l̃ine(o) & line(x)

Exercise: Define the predicate line, possibly using auxiliary predicates.
Game Description Language (Lecture 10)Computational Logic Group // Hannes StrassAlgorithmic Game Theory, SS 2024 Slide 12 of 38 Computational

Logic ∴ Group



GDL Special Predicates: Overview
The special predicates of GDL are the following:
• role(r) . . . r is a role (player) in the game
• input(r,m) . . .player r has feasible movem in the game
• base(p) . . .p is a base proposition in the game
• init(p) . . .p is true in the initial state
• true(p) . . .p is true in the current state
• does(r,m) . . .player r makes movem in the current state
• next(p) . . .p is true in the next state
• legal(r,m) . . . it is legal for player r to make movem in the current state
• goal(r,u) . . . the current state has utility u for player r
• terminal . . . the current state is a terminal state
The pre-defined auxiliary predicate distinct defines syntactic inequality.

Game Description Language (Lecture 10)Computational Logic Group // Hannes StrassAlgorithmic Game Theory, SS 2024 Slide 13 of 38 Computational
Logic ∴ Group



GDL Game Descriptions: Definition
Definition
A GDL game description is a logic program D over a vocabulary (P,F,V)where P includes the special predicates of GDL. Furthermore:
1. Dmust give complete definitions for role, base, input, and init.
2. Dmust define legal, terminal, and goal in terms of true.
3. Dmust define next in terms of true and does.
4. Dmust not define true and does.
“Defining p in terms of q1, . . . ,qn” means:
For every clause with head predicate p, its body only contains:
• atoms with predicates among q1, . . . ,qn, or
• auxiliary predicates (in turn defined in terms of q1, . . . ,qn). (e.g. line)

Game Description Language (Lecture 10)Computational Logic Group // Hannes StrassAlgorithmic Game Theory, SS 2024 Slide 14 of 38 Computational
Logic ∴ Group



Background: First-Order Logic (Semantics)
• An interpretation is a pair I = (Δ, ·I) where Δ ̸= ∅ and ·I assigns:
• to each predicate symbol p ∈ P of arity n a relation pI ⊆ Δn, and
• to each function symbol f ∈ P of arity n a function f I : Δn → Δ.
• A variable valuation is a function v : V→ Δ.
• An Herbrand interpretation is an interpretation (Δ, ·I) with Δ = TP,F,∅where every ground term t ∈ TP,F,∅ is interpreted by itself, tI = t.
• The value of a term t ∈ TP,F,V under an interpretation I and variablevaluation v is

t
I,v :=

{
v(x) if t = x ∈ V,
f I(tI,v1 , . . . , tI,v2 ) if t = f (t1, . . . , tn).

• An interpretation I with variable valuation v satisfies an atom p(t1, . . . , tn),written I |= p(t1, . . . , tn), iff (tI,v1 , . . . , tI,vn ) ∈ pI.
Game Description Language (Lecture 10)Computational Logic Group // Hannes StrassAlgorithmic Game Theory, SS 2024 Slide 15 of 38 Computational

Logic ∴ Group



Background: Logic Programs (Semantics I)
Definition
Let D be a logic program under vocabulary (P,F,V) and I be aninterpretation for the vocabulary.
• I satisfies a clause H← B1 ∧ . . . ∧ Bm ∧∼Bm+1 ∧ . . . ∧ ∼Bm+n iffif I |= Bi for 1 ≤ i ≤ m and I ̸|= Bm+j for 1 ≤ j ≤ n, then I |= H.
• I is amodel of a logic program D iff I satisfies all clauses in D.
• An atom A ∈ AP,F,∅ is entailed by a logic program D, written D |= A, ifffor every model I of D, we have I |= A.
• Herbrand interpretations can be represented as sets I ⊆ AP,F,∅ of atoms.
• Definite logic programs (containing only definite clauses) have a unique
⊆-least Herbrand model capturing the set of all atoms entailed by it.

• For normal logic programs, a (unique) model need not exist in general.
Game Description Language (Lecture 10)Computational Logic Group // Hannes StrassAlgorithmic Game Theory, SS 2024 Slide 16 of 38 Computational

Logic ∴ Group



Background: Logic Programs (Semantics II)
For normal logic programs (using negation), a unique least Herbrand modelexists only under special circumstances.
In one particular set of restrictions, the program must be:• safe (in every clause, every variable occurring in the head or in a negatedbody atom must also occur in a positive body atom)• stratified (there must be no recursion through negation)• recursion-restricted (positive recursion must be range-restricted)
Then, the intended semantics of the program is given by its standard model:
• We first consider the least model M0 of the subset of rules for predicates

P0 ⊆ P that do not depend negatively on another predicate.
• We next extend M0 by all ground atoms derivable by clauses forpredicates P1 ⊆ P \P0 that depend negatively only on predicates from P0.• . . .

For more details, see the lecture Foundations of Logic Programming (WS).
Game Description Language (Lecture 10)Computational Logic Group // Hannes StrassAlgorithmic Game Theory, SS 2024 Slide 17 of 38 Computational

Logic ∴ Group

https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2023)


Game Description Language: Semantics
Definition
Given a GDL game description D, the resulting state-based game model isobtained as follows: (where |= is w.r.t. the standard model)
• The players are P = {r | D |= role(r)}. (Denote n = |P|.)
• The moves of each player r ∈ P are Mr = {m | D |= input(r,m)}.
• The set of states is given by 2Q with Q = {true(q) | D |= base(q)}.
• The initial state is given by S0 = {true(q) | D |= init(q)}.
• The legal moves of r ∈ P in state S ⊆ Q are {m | D∪ S |= legal(r,m)}.
• Given a state S ⊆ Q and a joint move (m1, . . . ,mn), the next state is givenby {true(q) | D∪ S ∪ {does(r1,m1), . . . , does(rn,mn)} |= next(q)}.
• A state S ⊆ Q is terminal iff D∪ S |= terminal.
• The utility of player r ∈ P in terminal state S ⊆ Q is u for D∪ S |= goal(r,u).
There are further technical requirements (playability, winnability) that we will not delve into.

Game Description Language (Lecture 10)Computational Logic Group // Hannes StrassAlgorithmic Game Theory, SS 2024 Slide 18 of 38 Computational
Logic ∴ Group



Playing Games

Game Description Language (Lecture 10)Computational Logic Group // Hannes StrassAlgorithmic Game Theory, SS 2024 Slide 19 of 38 Computational
Logic ∴ Group



Playing GDL Games
• A game manager coordinates the individual players (agents) via networkusing the game communication language.
• In the beginning, a start(id, role,D, startclock,playclock) message from thegame manager to an agent signals that:

– the match with id starts after startclock seconds have elapsed,– the agent receiving the message will play role, and– the agent will have playclock seconds to choose each move.
• Agents use the startclock time to understand the game rules, analyse thegame and possibly start searching.
• For each subsequent round of the match, a play(id,move) message fromthe game manager to an agent indicates that:

– the agent is supposed to submit a move for match id,– where the previous joint move (for non-initial states) is given inmove.
• When the game is over, the game manager sends a stop(id,move)message to all agents, informing them about the lastmove.

Game Description Language (Lecture 10)Computational Logic Group // Hannes StrassAlgorithmic Game Theory, SS 2024 Slide 20 of 38 Computational
Logic ∴ Group



Playing GDL Games: Example
Denote by D the GDL game description of Tic-Tac-Toe considered earlier.
• By description and definition, the initial state is

S0 = {true(cell(1, 1,b)), true(cell(1, 2,b)), . . . , true(cell(3, 3,b)), true(control(x))}
• The legal moves of X in S0 are

mark(1, 1, x),mark(1, 2, x), . . . ,mark(3, 3, x)
• The only legal move of O in S0 is noop.• After the joint move (mark(2, 2, x),noop), the next state is

S1 = {true(cell(2, 2, x)), true(cell(1, 1,b)), . . . , true(cell(3, 3,b)), true(control(o))}
• State S1 is not yet terminal, as D∪ S1 ̸|= terminal because D∪ S1 |= open.

Game Description Language (Lecture 10)Computational Logic Group // Hannes StrassAlgorithmic Game Theory, SS 2024 Slide 21 of 38 Computational
Logic ∴ Group



Playing GDL Games: Move Selection

• Implement Monte Carlo or Minimax Tree Search on GDL descriptions:Consider turn-taking between own single and opponents’ joint moves.
• For zero-sum games (can be checked in coNP), use alpha-beta pruning.
• Heuristics for depth-limited game tree search:

– Analyse goal rules for goal proximity heuristics.– Analyse legalmoves in states for mobility heuristics.
• Analyse next rules to find persistent propositions (e.g. markers inTic-Tac-Toe).

Game Description Language (Lecture 10)Computational Logic Group // Hannes StrassAlgorithmic Game Theory, SS 2024 Slide 22 of 38 Computational
Logic ∴ Group



Incomplete Information

Game Description Language (Lecture 10)Computational Logic Group // Hannes StrassAlgorithmic Game Theory, SS 2024 Slide 23 of 38 Computational
Logic ∴ Group



GDL-II: GDL with Incomplete Information
Both imperfect information and incomplete information can be modelledusing only two additional keywords:
• percept(r,q) . . .player r has possible percept q in the game
• sees(r,q) . . .player r perceives q in the next state
To model chance nodes (moves by Nature), a new role name is introduced:
• random . . . special role that chooses a legal move uniformly at random
Definition
A GDL-II game description is a logic program D over vocabulary (P,F,V)where P includes the GDL-II keywords and F includes the constant symbol
random. Furthermore, Dmust obey the syntactic restrictions of GDL gamedescriptions where additionally predicate sees only appears as head ofclauses and must be defined in terms of true and does.

Game Description Language (Lecture 10)Computational Logic Group // Hannes StrassAlgorithmic Game Theory, SS 2024 Slide 24 of 38 Computational
Logic ∴ Group



GDL-II by Example: Simplified Poker (1)
There are three cards, two players, and the game begins with dealing:
card(1) card(2) card(3)
beats(3,2) beats(3,1) beats(2,1)
role(ann) role(bob) init(control(random))

Naturemoves first and deals the cards (otherwise does nothing):
legal(random, deal(C, D)) :-

true(control(random)) & card(C) & card(D) & distinct(C, D)
legal(random, noop) :- t̃rue(control(random))

Dealing has the expected effects and percepts:
next(hasCard(ann, C)) :- does(random, deal(C, D))
next(hasCard(bob, D)) :- does(random, deal(C, D))
sees(ann, yourCard(C)) :- does(random, deal(C, D))
sees(bob, yourCard(D)) :- does(random, deal(C, D))

Game Description Language (Lecture 10)Computational Logic Group // Hannes StrassAlgorithmic Game Theory, SS 2024 Slide 25 of 38 Computational
Logic ∴ Group



GDL-II by Example: Simplified Poker (2)
Next comes Ann’s turn to choose a move:
next(control(ann)) :- true(control(random))
legal(ann, check) :- true(control(ann))
legal(ann, raise) :- true(control(ann))

Bob can see Ann’s decision and can move iff Ann did a raise:
sees(bob, annsMove(M)) :- does(ann, M)
next(control(bob)) :- true(control(ann)) & does(ann, raise)
next(showdown) :- does(ann, check)
next(hasCard(P, C)) :- true(hasCard(P, C))

Bob’s moves are fold and call, with a showdown happening after call:
legal(bob, fold) :- true(control(bob))
legal(bob, call) :- true(control(bob))
next(showdown) :- does(bob, call)

Game Description Language (Lecture 10)Computational Logic Group // Hannes StrassAlgorithmic Game Theory, SS 2024 Slide 26 of 38 Computational
Logic ∴ Group



GDL-II by Example: Simplified Poker (3)If Bob folds, the game is over and Ann wins:
next(annWins) :- true(control(bob)) & does(bob, fold)
terminal :- true(annWins)
goal(bob, 0) :- true(annWins)
goal(ann, 100) :- true(annWins)

In a showdown, cards are revealed and the higher card wins:
sees(P, hasCard(O, C)) :-
does(ann, check) & true(hasCard(O, C)) & role(P) & distinct(P, O)

sees(P, hasCard(O, C)) :-
does(bob, call) & true(hasCard(O, C)) & role(P) & distinct(P, O)

terminal :- true(showdown)
goal(P, 100) :-

true(hasCard(P, C)) & true(hasCard(O, D)) & beats(C, D)
goal(O, 0) :-

true(hasCard(P, C)) & true(hasCard(O, D)) & beats(C, D)

Game Description Language (Lecture 10)Computational Logic Group // Hannes StrassAlgorithmic Game Theory, SS 2024 Slide 27 of 38 Computational
Logic ∴ Group



GDL-II: Semantics via State Transitions
For a GDL-II game description D, the resulting state-based game model is:• Players, (legal) moves, and initial/terminal state(s) are obtained as in GDL.• The next state after joint movem := (m1, . . . ,mn) is obtained as usual:

n(m, S) := {true(q) | D∪ S ∪ {does(r1,m1), . . . , does(rn,mn)} |= next(q)}
• An information relation I ⊆ P×Mn × 2Q ×Qmodels players’ incompleteinformation: (r,m, S,q) indicates that player r perceives q after joint move

m happens in state S.• A probability distribution over possible resulting states modelsuncertainty induced by random’s moves: After joint movem in state S ⊆ Q,the probability of T ⊆ Q being the resulting state is
|{m ∈ L | n((m;m), S) = T}|

|L|
where L = {m ∈ Mrandom | D∪ S |= legal(random,m, S)},and (m;m) := (m1, . . . ,mn,m) extendsm by random’s movem.

Game Description Language (Lecture 10)Computational Logic Group // Hannes StrassAlgorithmic Game Theory, SS 2024 Slide 28 of 38 Computational
Logic ∴ Group



Playing GDL-II Games

Game management can be adjusted to the incomplete information setting:
1. Send each agent the game description and inform them about their role.
2. Set S to the initial game state.
3. For every subsequent state S of the game:

(a) Collect moves from all agents and (if applicable) choose a legal move for
random with uniform probability.(b) To every agent r ∈ P, send percepts {q ∈ Q | (r,M, S,q) ∈ I} for joint moveM in S.(c) Update current state S to next state n(M, S).

4. Repeat until S is terminal, then send utilities to agents.
Since the game manager has complete knowledge about the game state, itcan compute all percepts and resulting states.

Game Description Language (Lecture 10)Computational Logic Group // Hannes StrassAlgorithmic Game Theory, SS 2024 Slide 29 of 38 Computational
Logic ∴ Group



GDL-II: Developments
For a GDL-II game description D, it is also possible to define an extensiveform game GD. A first necessary ingredient is that of a development.
Definition
Consider the state-based game model of a GDL-II game description.
• A development is a finite sequence δ = ⟨S0,m1, S1, . . . ,md, Sd⟩ where– d ≥ 0,– S0, . . . , Sd ⊆ Q are states, in particular S0 is the initial state,– mj = (m0,m1, . . . ,mn) is a joint move including a movem0 for random,– every move inmj is legal (for its player) in state Sj–1, for all 1 ≤ j ≤ d,– the sequence obeys state update, i.e. n(mj, Sj–1) = Sj for all 1 ≤ j ≤ d, and– only Sd may be terminal.
• Two developments δ, δ′ are indistinguishable for player 1 ≤ i ≤ n iff

– {
q ∈ Q

∣∣∣ (i,mj, Sj–1,q) ∈ I

}
=

{
q ∈ Q

∣∣∣ (i,m′
j
, S′

j–1,q) ∈ I

} for all 1 ≤ j ≤ d, and
– player imakes the same move inmj andm′j , for all 1 ≤ j ≤ d.

Game Description Language (Lecture 10)Computational Logic Group // Hannes StrassAlgorithmic Game Theory, SS 2024 Slide 30 of 38 Computational
Logic ∴ Group



GDL-II: Quasi-Developments
• Main Idea: Sequentialise joint moves and keep individual moves privateuntil joint move is complete.
Definition
Consider the state-based game model of a GDL-II game description.
• A partial joint move is a tuplem(i) = (m0,m1, . . . ,mi) with 0 ≤ i < n.
• A quasi-development is of the form γ = ⟨δ,m(i)⟩ where δ is adevelopment andm(i) is a partial joint move.
• Intuition: A partial joint movem(i) serves to model the sequentialisationof a joint move where players {i + 1, . . . ,n} are yet to move.• The history arising from a development δ = ⟨S0,m1, S1, . . . ,md, Sd⟩ isthen hδ := [(m1)0, (m1)1, . . . , (m1)n, (m2)0, . . . , (md)n];• the history arising from a quasi-development ⟨δ,m(i)⟩ is then

h⟨δ,m(i)⟩ := [
hδ; (m(i))0, . . . , (m(i))i].

For a tuplem = (m0, . . . ,mn) we denote (m)i := mi for 0 ≤ i ≤ n.
Game Description Language (Lecture 10)Computational Logic Group // Hannes StrassAlgorithmic Game Theory, SS 2024 Slide 31 of 38 Computational

Logic ∴ Group



GDL-II: Semantics via Extensive-Form Games
Definition
Consider the state-based game model of a GDL-II game description D.
The associated extensive-form game GD is as follows:• Its players are {0, 1, . . . ,n}, where 0 denotes random.
• Its moves and utilities are as in the state-based game model.
• Its histories are all those that arise from (quasi-)developments of D.
• Its terminal histories arise from developments δ with Sd terminal.
• Its player function assigns p(hδ) = 0 and p(h⟨δ,m(i)⟩) = i + 1.
• Its probability distributions for chance nodes are always uniform.
• Its indistinguishability relation is as follows:

hδ ∼GD hδ′ iff δ and δ′ are indistinguishable for some player
h⟨δ,m(i)⟩ ∼GD h⟨δ′,m(i′)⟩ iff hδ ∼GD hδ′ and i = i

′

Game Description Language (Lecture 10)Computational Logic Group // Hannes StrassAlgorithmic Game Theory, SS 2024 Slide 32 of 38 Computational
Logic ∴ Group



Properties of GDL-II: Extension of GDL

Proposition
GDL-II is a proper extension of GDL.
Proof.
• Let D be a game description in GDL.
• To express the same game in GDL-II, we add one rule:

sees(P, move(O, M)) :- role(P) & does(O, M)

• Thus, every player knows every move of every other player.

Game Description Language (Lecture 10)Computational Logic Group // Hannes StrassAlgorithmic Game Theory, SS 2024 Slide 33 of 38 Computational
Logic ∴ Group



Properties of GDL-II: Universality (1)
Theorem (Thielscher, 2011)
GDL-II is universal, i.e. for every finite extensive-form game G there is aGDL-II game description DG that formalises G.
Proof (Sketch, 1/3).
• We assume a game G given in extensive form (i.e. as explicit tree).
• Players are defined through role(random), role(1), . . . , role(n).
• Histories h ∈ H are encoded as terms th via

t[] := nil and t[h;m] := cons(m, th).• The initial state is encoded via init(nil).
• Terminal states are expressed via terminal :- true(th) for all h ∈ Z.
• We declare utilities via goal(i,ui(h)) :- true(th) for h ∈ Z.(Utilities are scaled to [0, 100] using min/max {ui(h) | h ∈ Z, 1 ≤ i ≤ n}.)

Game Description Language (Lecture 10)Computational Logic Group // Hannes StrassAlgorithmic Game Theory, SS 2024 Slide 34 of 38 Computational
Logic ∴ Group



Properties of GDL-II: Universality (2)
Proof (Sketch, 2/3).
• Legality and state update are defined as expected:

legal(i,m) :- true(th)
next(t[h;m]) :- true(th) & does(i,m)

legal(i′, noop) :- true(th)
for all [h;m] ∈ H, p(h) = i with 1 ≤ i ≤ n,m ∈ Mi, and 0 ≤ i′ ≤ n with i′ ̸= i.

• Information sets of the game lead to abstract percepts:
sees(i′, j) :- true(th) & does(i,m)

member(t[h;m], j)
for [h;m] ∈ H, p(h) = i, [h;m] ∈ Ij, and p(Ij) = i′, for 0 ≤ i, i′ ≤ n.

Game Description Language (Lecture 10)Computational Logic Group // Hannes StrassAlgorithmic Game Theory, SS 2024 Slide 35 of 38 Computational
Logic ∴ Group



Properties of GDL-II: Universality (3)
Proof (Sketch, 3/3).
• For moves of Nature (random), we assume the probability distribution

over moves is {
m1 7→ p1

q
, . . . ,mℓ 7→ pℓ

q

} for some h ∈ H with p(h) = Nature.
• For every 1 ≤ k ≤ ℓ , we now create pk many copies ofmk and specify

legal(random,m(1)
k
) :- true(th)

next(t[h;mk ]) :- true(th) & does(random,m(1)
k
)

...
legal(random,m(pk)

k
) :- true(th)

next(t[h;mk ]) :- true(th) & does(random,m(pk)
k

)
to express proportionality of probabilities.

Game Description Language (Lecture 10)Computational Logic Group // Hannes StrassAlgorithmic Game Theory, SS 2024 Slide 36 of 38 Computational
Logic ∴ Group



Playing GDL-II Games: Move Selection
Schofield, Cerexhe, & Thielscher [2012] propose a method called HyperPlay:
• Estimate the true history by a list of samples from the information set.
• Each sample is a complete history that is consistent with what is known.
• Initialise the list of samples as ⟨[] , . . . , []⟩.
• Use “conventional” techniques to select a move for each complete history.
• An overall move is selected based on its expected utility weighted by theprobability that its history h is the true match history given percepts Q:

P(h|Q) = P(Q|h) · P(h)
P(Q)

• After each own move and received percepts, update the samples:
– Randomly sample from other players’ legal moves to obtain a full joint move.– Compute the next state and expected own percepts.– Remove those samples where received and expected percepts disagree.

Game Description Language (Lecture 10)Computational Logic Group // Hannes StrassAlgorithmic Game Theory, SS 2024 Slide 37 of 38 Computational
Logic ∴ Group

https://ojs.aaai.org/index.php/AAAI/article/download/8335/8194


Conclusion
Summary
• General Game Playing is concerned with computers learning to playpreviously unknown games without human intervention.
• The game description language (GDL) is used to declaratively specify(deterministic) games (with complete information about game states).
• The syntax of GDL game descriptions is that of normal logic programs;various restrictions apply to obtain a finite, unique interpretation.
• The semantics of GDL is given through a state transition system.
• GDL-II allows to represent moves by Nature and information sets.
• The semantics of GDL-II can be given through extensive-form games.
• Conversely, GDL-II can express any finite extensive-form game.
Exercise: Adapt the payoffs in the GDL model of simplified poker.

Game Description Language (Lecture 10)Computational Logic Group // Hannes StrassAlgorithmic Game Theory, SS 2024 Slide 38 of 38 Computational
Logic ∴ Group


	Game Description Language
	Playing Games
	Incomplete Information

