

International Center for Computational Logic

COMPLEXITY THEORY

Lecture 8: NP-Complete Problems

Markus Krötzsch

Knowledge-Based Systems

TU Dresden, 11 Nov 2024

More recent versions of this slide deck might be available. For the most current version of this course, see https://iccl.inf.tu-dresden.de/web/Complexity_Theory/en

Towards More NP-Complete Problems

Starting with **Sat**, one can readily show more problems **P** to be NP-complete, each time performing two steps:

- (1) Show that $\mathbf{P} \in NP$
- (2) Find a known NP-complete problem \mathbf{P}' and reduce $\mathbf{P}' \leq_p \mathbf{P}$

Thousands of problem have now been shown to be NP-complete. (See Garey and Johnson for an early survey)

In this course:

 $\leq_p \text{CLique} \leq_p \text{Independent Set}$ Sat $\leq_p 3$ -Sat $\leq_p \text{Dir. Hamiltonian Path}$ $\leq_p \text{Subset Sum} \leq_p \text{Knapsack}$

3-Sat, Hamiltonian Path, and Subset Sum

NP-Completeness of 3-SAT

3-SAT: Satisfiability of formulae in CNF with ≤ 3 literals per clause

Theorem 8.1: 3-SAT is NP-complete.

Proof: Hardness by reduction **Sat** \leq_p **3-Sat**:

- Given: φ in CNF
- Construct φ' by replacing clauses $C_i = (L_1 \vee \cdots \vee L_k)$ with k > 3 by

 $C'_i := (L_1 \vee Y_1) \land (\neg Y_1 \vee L_2 \vee Y_2) \land \dots \land (\neg Y_{k-1} \vee L_k)$

Here, the Y_j are fresh variables for each clause.

• Claim: φ is satisfiable iff φ' is satisfiable.

Let $\varphi := (X_1 \lor X_2 \lor \neg X_3 \lor X_4) \land (\neg X_4 \lor \neg X_2 \lor X_5 \lor \neg X_1)$ Then $\varphi' := (X_1 \vee Y_1) \wedge$ $(\neg Y_1 \lor X_2 \lor Y_2) \land$ $(\neg Y_2 \lor \neg X_3 \lor Y_3) \land$ $(\neg Y_3 \lor X_4) \land$ $(\neg X_4 \lor Z_1) \land$ $(\neg Z_1 \lor \neg X_2 \lor Z_2) \land$ $(\neg Z_2 \lor X_5 \lor Z_3) \land$ $(\neg Z_3 \lor \neg X_1)$

Proving NP-Completeness of 3-SAT

" \Rightarrow " Given $\varphi := \bigwedge_{i=1}^{m} C_i$ with clauses C_i , show that if φ is satisfiable then φ' is satisfiable For a satisfying assignment β for φ , define an assignment β' for φ' : For each $C := (L_1 \lor \cdots \lor L_k)$, with k > 3, in φ there is

 $C' = (L_1 \lor Y_1) \land (\neg Y_1 \lor L_2 \lor Y_2) \land \dots \land (\neg Y_{k-1} \lor L_k) \text{ in } \varphi'$

As β satisfies φ , there is $i \le k$ s.th. $\beta(L_i) = 1$ i.e. $\beta(X) = 1$ if $L_i = X$ $\beta(X) = 0$ if $L_i = \neg X$

 $\begin{array}{ll} \beta'(Y_j) = 1 & \mbox{ for } j < i \\ \\ \mbox{Set} & \beta'(Y_j) = 0 & \mbox{ for } j \geq i \\ & \beta'(X) = \beta(X) & \mbox{ for all variables in } \varphi \end{array}$

This is a satisfying assignment for φ'

Proving NP-Completeness of 3-SAT

"
—" Show that if φ' is satisfiable then so is φ

Suppose β is a satisfying assignment for φ' – then β satisfies φ :

Let $C := (L_1 \lor \cdots \lor L_k)$ be a clause of φ

- (1) If $k \leq 3$ then *C* is a clause of φ'
- (2) If k > 3 then

 $C' = (L_1 \vee Y_1) \land (\neg Y_1 \vee L_2 \vee Y_2) \land \dots \land (\neg Y_{k-1} \vee L_k) \text{ in } \varphi'$

 β must satisfy at least one L_i , $1 \le i \le k$

Case (2) follows since, if $\beta(L_i) = 0$ for all $i \le k$ then C' can be reduced to

$$C' = (Y_1) \land (\neg Y_1 \lor Y_2) \land \dots \land (\neg Y_{k-1})$$
$$\equiv Y_1 \land (Y_1 \to Y_2) \land \dots \land (Y_{k-2} \to Y_{k-1}) \land \neg Y_{k-1}$$

which is not satisfiable.

Markus Krötzsch; 11 Nov 2024

DIRECTED HAMILTONIAN PATH

Input: A directed graph G.

Problem: Is there a directed path in *G* containing every vertex exactly once?

Theorem 8.2: DIRECTED HAMILTONIAN PATH is NP-complete.

DIRECTED HAMILTONIAN PATH

Input: A directed graph G.

Problem: Is there a directed path in *G* containing every vertex exactly once?

Theorem 8.2: DIRECTED HAMILTONIAN PATH is NP-complete.

Proof:

(1) Directed Hamiltonian Path $\in NP$:

Take the path to be the certificate.

Digression: How to design reductions

Task: Show that problem **P** (**DIRECTED HAMILTONIAN PATH**) is NP-hard.

• Arguably, the most important part is to decide where to start from.

That is, which problem to reduce to DIRECTED HAMILTONIAN PATH?

Digression: How to design reductions

Task: Show that problem **P** (DIRECTED HAMILTONIAN PATH) is NP-hard.

• Arguably, the most important part is to decide where to start from.

That is, which problem to reduce to DIRECTED HAMILTONIAN PATH?

- Considerations:
 - Is there an NP-complete problem similar to **P**? (for example, **CLIQUE** and **INDEPENDENT SET**)
 - It is not always beneficial to choose a problem of the same type (for example, reducing a graph problem to a graph problem)
 - For instance, **CLIQUE**, **INDEPENDENT SET** are "local" problems (is there a set of vertices inducing some structure)
 - Hamiltonian Path is a global problem (find a structure – the Hamiltonian path – containing all vertices)

Digression: How to design reductions

Task: Show that problem **P** (DIRECTED HAMILTONIAN PATH) is NP-hard.

• Arguably, the most important part is to decide where to start from.

That is, which problem to reduce to DIRECTED HAMILTONIAN PATH?

- Considerations:
 - Is there an NP-complete problem similar to **P**? (for example, **CLIQUE** and **INDEPENDENT SET**)
 - It is not always beneficial to choose a problem of the same type (for example, reducing a graph problem to a graph problem)
 - For instance, **CLIQUE**, **INDEPENDENT SET** are "local" problems (is there a set of vertices inducing some structure)
 - Hamiltonian Path is a global problem (find a structure – the Hamiltonian path – containing all vertices)
- How to design the reduction:
 - Does your problem come from an optimisation problem?
 - If so: a maximisation problem? a minimisation problem?
 - Learn from examples, have good ideas.

DIRECTED HAMILTONIAN PATH

Input: A directed graph G.

Problem: Is there a directed path in *G* containing every vertex exactly once?

Theorem 8.2: DIRECTED HAMILTONIAN PATH is NP-complete.

Proof:

(1) Directed Hamiltonian Path $\in NP$:

Take the path to be the certificate.

DIRECTED HAMILTONIAN PATH

Input: A directed graph G.

Problem: Is there a directed path in *G* containing every vertex exactly once?

Theorem 8.2: DIRECTED HAMILTONIAN PATH is NP-complete.

Proof:

- (1) **DIRECTED HAMILTONIAN PATH** \in NP: Take the path to be the certificate.
- (2) DIRECTED HAMILTONIAN PATH is NP-hard: 3-Sat \leq_p Directed Hamiltonian Path

Proof (Proof idea): (see blackboard for details)

Let $\varphi := \bigwedge_{i=1}^{k} C_i$ and $C_i := (L_{i,1} \lor L_{i,2} \lor L_{i,3})$

- For each variable X occurring in φ, we construct a directed graph ("gadget") that allows only two Hamiltonian paths: "true" and "false"
- Gadgets for each variable are "chained" in a directed fashion, so that all variables must be assigned one value
- Clauses are represented by vertices that are connected to the gadgets in such a way that they can only be visited on a Hamiltonian path that corresponds to an assignment where they are true

Details are also given in [Sipser, Theorem 7.46].

Example 8.3: $\varphi := C_1 \land C_2$ where $C_1 := (X \lor \neg Y \lor Z)$ and $C_2 := (\neg X \lor Y \lor \neg Z)$ (see blackboard)

Towards More NP-Complete Problems

Starting with **SAT**, one can readily show more problems **P** to be NP-complete, each time performing two steps:

- (1) Show that $\mathbf{P} \in NP$
- (2) Find a known NP-complete problem \mathbf{P}' and reduce $\mathbf{P}' \leq_p \mathbf{P}$

Thousands of problem have now been shown to be NP-complete. (See Garey and Johnson for an early survey)

In this course:

 $\leq_p \text{CLique} \leq_p \text{Independent Set}$ Sat $\leq_p 3$ -Sat $\leq_p \text{Dir. Hamiltonian Path}$ $\leq_p \text{Subset Sum} \leq_p \text{Knapsack}$

NP-Completeness of SUBSET SUM

SUBSET SUM

Input:	A collection ¹ of	positive integers
--------	------------------------------	-------------------

 $S = \{a_1, \ldots, a_k\}$ and a target integer *t*.

Problem: Is there a subset $T \subseteq S$ such that $\sum_{a_i \in T} a_i = t$?

Theorem 8.4: SUBSET SUM is NP-complete.

Proof:

- (1) **SUBSET SUM** \in NP: Take *T* to be the certificate.
- (2) SUBSET SUM is NP-hard: SAT \leq_p SUBSET SUM

¹) This "collection" is supposed to be a multi-set, i.e., we allow the same number to occur several times. The solution "subset" can likewise use numbers multiple times, but not more often than they occured in the given collection.

Markus Krötzsch; 11 Nov 2024

$(X_1 \lor X_2 \lor X_3) \land (\neg X_1 \lor \neg X_4) \land (X_4 \lor X_5 \lor \neg X_2 \lor \neg X_3)$

$X_1 X_2 X_3 X_4 X_5 C_1 C_2 C_3$

$\begin{array}{c} t_1 \\ f_1 \\ t_2 \\ f_2 \\ t_3 \\ f_4 \\ f_4 \\ t_5 \\ f_5 \end{array}$		1	0 1 1	0 0 0 1 1	0 0 0 0 0 0 1 1	0 0 0 0 0 0 0 1 1	$ \begin{array}{c} 1 \\ 0 \\ 1 \\ 0 \\ $	0 1 0 0 0 0 0 1 0 0	0 0 1 0 1 1 0 1 0	
$m_{1,1}$	=						1	0	0	
$m_{1,2}$	=						1	0	0	
$m_{2,1}$	=						0	1	0	
$m_{3,1}$	=						0	0	1	
$m_{3,2}$	=						0	0	1	
$m_{3,3}$	=						0	0	1	_
t	=	1	1	1	1	1	3	2	4	

Sat
$$\leq_p$$
 Subset Sum

Given: $\varphi := C_1 \land \cdots \land C_k$ in conjunctive normal form.

```
(w.l.o.g. at most 9 literals per clause)
```

Let X_1, \ldots, X_n be the variables in φ . For each X_i let

$$t_i := a_1 \dots a_n c_1 \dots c_k \text{ where } a_j := \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases} \text{ and } c_j := \begin{cases} 1 & X_i \text{ occurs in } C_j \\ 0 & \text{otherwise} \end{cases}$$
$$f_i := a_1 \dots a_n c_1 \dots c_k \text{ where } a_j := \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases} \text{ and } c_j := \begin{cases} 1 & \neg X_i \text{ occurs in } C_j \\ 0 & \text{otherwise} \end{cases}$$

$(X_1 \lor X_2 \lor X_3) \land (\neg X_1 \lor \neg X_4) \land (X_4 \lor X_5 \lor \neg X_2 \lor \neg X_3)$

$X_1 X_2 X_3 X_4 X_5 C_1 C_2 C_3$

$\begin{array}{c} t_1 \\ f_1 \\ t_2 \\ f_2 \\ t_3 \\ f_4 \\ f_4 \\ t_5 \\ f_5 \end{array}$		1	0 1 1	0 0 0 1 1	0 0 0 0 0 0 1 1	0 0 0 0 0 0 0 1 1	$ \begin{array}{c} 1 \\ 0 \\ 1 \\ 0 \\ $	0 1 0 0 0 0 0 1 0 0	0 0 1 0 1 1 0 1 0	
$m_{1,1}$	=						1	0	0	
$m_{1,2}$	=						1	0	0	
$m_{2,1}$	=						0	1	0	
$m_{3,1}$	=						0	0	1	
$m_{3,2}$	=						0	0	1	
$m_{3,3}$	=						0	0	1	_
t	=	1	1	1	1	1	3	2	4	

$\mathbf{Sat} \leq_p \mathbf{Subset} \ \mathbf{Sum}$

Further, for each clause C_i take $r := |C_i| - 1$ integers $m_{i,1}, \ldots, m_{i,r}$

where
$$m_{i,j} := c_i \dots c_k$$
 with $c_\ell := \begin{cases} 1 & \ell = i \\ 0 & \ell \neq i \end{cases}$
Definition of *S*: Let

$$S := \{t_i, f_i \mid 1 \le i \le n\} \cup \{m_{i,j} \mid 1 \le i \le k, \quad 1 \le j \le |C_i| - 1\}$$

Target: Finally, choose as target

$$t := a_1 \dots a_n c_1 \dots c_k$$
 where $a_i := 1$ and $c_i := |C_i|$

Claim: There is $T \subseteq S$ with $\sum_{a_i \in T} a_i = t$ iff φ is satisfiable.

Markus Krötzsch; 11 Nov 2024

Complexity Theory

$(X_1 \lor X_2 \lor X_3) \land (\neg X_1 \lor \neg X_4) \land (X_4 \lor X_5 \lor \neg X_2 \lor \neg X_3)$

$X_1 X_2 X_3 X_4 X_5 C_1 C_2 C_3$

$t_1 \\ f_1 \\ t_2 \\ f_2 \\ t_3 \\ f_4 \\ f_4 \\ t_5 \\ f_5$		1	0 1 1	0 0 0 1 1	0 0 0 0 0 1 1	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ \end{array} $	$ \begin{array}{c} 1 \\ 0 \\ 1 \\ 0 \\ $	0 1 0 0 0 0 0 1 0 0	0 0 1 0 1 1 0 1 0	
$m_{1,1}$	=						1	0	0	
$m_{1,2}$	=						1	0	0	
$m_{2,1}$	=						0	1	0	
$m_{3,1}$	=						0	0	1	
$m_{3,2}$	=						0	0	1	
$m_{3,3}$	=						0	0	1	_
t	=	1	1	1	1	1	3	2	4	

NP-Completeness of SUBSET SUM

Let $\varphi := \bigwedge C_i$ C_i : clauses

Show: If φ is satisfiable, then there is $T \subseteq S$ with $\sum_{s \in T} s = t$.

Let β be a satisfying assignment for φ

Set $T_1 := \{t_i \mid \beta(X_i) = 1, 1 \le i \le m\} \cup \{f_i \mid \beta(X_i) = 0, 1 \le i \le m\}$

Further, for each clause C_i let r_i be the number of satisfied literals in C_i (with resp. to β).

Set $T_2 := \{m_{i,j} \mid 1 \le i \le k, \quad 1 \le j \le |C_i| - r_i\}$ and define $T := T_1 \cup T_2$. It follows: $\sum_{s \in T} s = t$

NP-Completeness of SUBSET SUM

Show: If there is $T \subseteq S$ with $\sum_{s \in T} s = t$, then φ is satisfiable.

```
Let T \subseteq S such that \sum_{s \in T} s = t
```

```
Define \beta(X_i) = \begin{cases} 1 & \text{if } t_i \in T \\ 0 & \text{if } f_i \in T \end{cases}
```

This is well defined as for all *i*: $t_i \in T$ or $f_i \in T$ but not both.

Further, for each clause, there must be one literal set to 1 as for all i,

the $m_{i,j} \in S$ do not sum up to the number of literals in the clause.

Towards More NP-Complete Problems

Starting with **SAT**, one can readily show more problems **P** to be NP-complete, each time performing two steps:

- (1) Show that $\mathbf{P} \in NP$
- (2) Find a known NP-complete problem \mathbf{P}' and reduce $\mathbf{P}' \leq_p \mathbf{P}$

Thousands of problem have now been shown to be NP-complete. (See Garey and Johnson for an early survey)

In this course:

 $\leq_p \text{CLique} \leq_p \text{Independent Set}$ Sat $\leq_p 3$ -Sat $\leq_p \text{Dir. Hamiltonian Path}$ $\leq_p \text{Subset Sum} \leq_p \text{Knapsack}$

NP-completeness of **KNAPSACK**

Knapsack	
Input:	A set $I := \{1,, n\}$ of items
	each of value v_i and weight w_i for $1 \le i \le n$,
	target value t and weight limit ℓ
Problem:	Is there $T \subseteq I$ such that
	$\sum_{i\in T} v_i \ge t$ and $\sum_{i\in T} w_i \le \ell$?

Theorem 8.5: KNAPSACK is NP-complete.

NP-completeness of **Кнарзаск**

Knapsack	
Input:	A set $I := \{1,, n\}$ of items
	each of value v_i and weight w_i for $1 \le i \le n$,
	target value t and weight limit ℓ
Problem:	Is there $T \subseteq I$ such that
	$\sum_{i \in T} v_i \ge t$ and $\sum_{i \in T} w_i \le \ell$?

Theorem 8.5: КNAPSACK is NP-complete.

Proof:

- (1) **KNAPSACK** \in NP: Take *T* to be the certificate.
- (2) Knapsack is NP-hard: Subset Sum \leq_p Knapsack

Subset Sum \leq_p Knapsack

	Given:	$S:=\{a_1,\ldots,a_n\}$	collection of positive integers
Subset Sum:		t	target integer
	Problem:	Is there a subset	$T \subseteq S$ such that $\sum_{a_i \in T} a_i = t$?

Subset Sum \leq_p Knapsack

Given: $S := \{a_1, \dots, a_n\}$ collection of positive integersSubset Sum:ttarget integerProblem:Is there a subset $T \subseteq S$ such that $\sum_{a_i \in T} a_i = t$?

Reduction: From this input to SUBSET SUM construct

- set of items *I* := {1, ..., *n*}
- weights and values $v_i = w_i = a_i$ for all $1 \le i \le n$
- target value t' := t and weight limit $\ell := t$

Subset Sum \leq_p Knapsack

Given: $S := \{a_1, \dots, a_n\}$ collection of positive integersSubset Sum:ttarget integer

Problem: Is there a subset $T \subseteq S$ such that $\sum_{a_i \in T} a_i = t$?

Reduction: From this input to SUBSET SUM construct

- set of items $I := \{1, ..., n\}$
- weights and values $v_i = w_i = a_i$ for all $1 \le i \le n$
- target value t' := t and weight limit $\ell := t$

Clearly: For every $T \subseteq S$

$$\sum_{a_i \in T} a_i = t \qquad \text{iff} \qquad \qquad \sum_{a_i \in T} v_i \ge t' = t$$
$$\sum_{a_i \in T} w_i \le \ell = t$$

Hence: The reduction is correct and in polynomial time.

Markus Krötzsch; 11 Nov 2024

A Polynomial Time Algorithm for KNAPSACK

Кларваск can be solved in time $O(n\ell)$ using dynamic programming

Initialisation:

- Create an $(\ell + 1) \times (n + 1)$ matrix *M*
- Set M(w, 0) := 0 for all $1 \le w \le \ell$ and M(0, i) := 0 for all $1 \le i \le n$

Input $I = \{1, 2, 3, 4\}$ with Values: $v_1 = 1$ $v_2 = 3$ $v_3 = 4$ $v_4 = 2$ Weight: $w_1 = 1$ $w_2 = 1$ $w_3 = 3$ $w_4 = 2$ Weight limit: $\ell = 5$ Target value: t = 7

weight	max. total value from first <i>i</i> items							
limit w	<i>i</i> = 0	<i>i</i> = 1	<i>i</i> = 2	<i>i</i> = 3	<i>i</i> = 4			
0								
1								
2								
3								
4								
5								

Set M(w, 0) := 0 for all $1 \le w \le \ell$ and M(0, i) := 0 for all $1 \le i \le n$

Input $I = \{1, 2, 3, 4\}$ with Values: $v_1 = 1$ $v_2 = 3$ $v_3 = 4$ $v_4 = 2$ Weight: $w_1 = 1$ $w_2 = 1$ $w_3 = 3$ $w_4 = 2$ Weight limit: $\ell = 5$ Target value: t = 7

weight	max. total value from first <i>i</i> items							
limit w	<i>i</i> = 0	<i>i</i> = 1	<i>i</i> = 2	<i>i</i> = 3	<i>i</i> = 4			
0	0	0	0	0	0			
1	0							
2	0							
3	0							
4	0							
5	0							

Set M(w, 0) := 0 for all $1 \le w \le \ell$ and M(0, i) := 0 for all $1 \le i \le n$

A Polynomial Time Algorithm for KNAPSACK

Кларваск can be solved in time $O(n\ell)$ using dynamic programming

Initialisation:

- Create an $(\ell + 1) \times (n + 1)$ matrix *M*
- Set M(w, 0) := 0 for all $1 \le w \le \ell$ and M(0, i) := 0 for all $1 \le i \le n$

A Polynomial Time Algorithm for **KNAPSACK**

Киарзаск can be solved in time $O(n\ell)$ using dynamic programming

Initialisation:

- Create an $(\ell + 1) \times (n + 1)$ matrix *M*
- Set M(w, 0) := 0 for all $1 \le w \le \ell$ and M(0, i) := 0 for all $1 \le i \le n$

Computation: Assign further M(w, i) to be the largest total value obtainable by selecting from the first *i* items with weight limit *w*:

For i = 0, 1, ..., n - 1 set M(w, i + 1) as

 $M(w, i + 1) := \max \{ M(w, i), \ M(w - w_{i+1}, i) + v_{i+1} \}$

Here, if $w - w_{i+1} < 0$ we always take M(w, i).

Acceptance: If *M* contains an entry $\geq t$, accept. Otherwise reject.

Markus Krötzsch; 11 Nov 2024

Complexity Theory

Input $I = \{1, 2, 3, 4\}$ with Values: $v_1 = 1$ $v_2 = 3$ $v_3 = 4$ $v_4 = 2$ Weight: $w_1 = 1$ $w_2 = 1$ $w_3 = 3$ $w_4 = 2$ Weight limit: $\ell = 5$ Target value: t = 7

weight	max. total value from first i items							
limit w	<i>i</i> = 0	<i>i</i> = 1	<i>i</i> = 2	<i>i</i> = 3	<i>i</i> = 4			
0	0	0	0	0	0			
1	0							
2	0							
3	0							
4	0							
5	0							

Input $I = \{1, 2, 3, 4\}$ with Values: $v_1 = 1$ $v_2 = 3$ $v_3 = 4$ $v_4 = 2$ Weight: $w_1 = 1$ $w_2 = 1$ $w_3 = 3$ $w_4 = 2$ Weight limit: $\ell = 5$ Target value: t = 7

weight	max. total value from first <i>i</i> items							
limit w	<i>i</i> = 0	<i>i</i> = 1	<i>i</i> = 2	<i>i</i> = 3	<i>i</i> = 4			
0	0	0	0	0	0			
1	0	1						
2	0	1						
3	0	1						
4	0	1						
5	0	1						

Input $I = \{1, 2, 3, 4\}$ with Values: $v_1 = 1$ $v_2 = 3$ $v_3 = 4$ $v_4 = 2$ Weight: $w_1 = 1$ $w_2 = 1$ $w_3 = 3$ $w_4 = 2$ Weight limit: $\ell = 5$ Target value: t = 7

weight	max. total value from first <i>i</i> items							
limit w	<i>i</i> = 0	<i>i</i> = 1	<i>i</i> = 2	<i>i</i> = 3	<i>i</i> = 4			
0	0	0	0	0	0			
1	0	1	3					
2	0	1						
3	0	1						
4	0	1						
5	0	1						

Input $I = \{1, 2, 3, 4\}$ with Values: $v_1 = 1$ $v_2 = 3$ $v_3 = 4$ $v_4 = 2$ Weight: $w_1 = 1$ $w_2 = 1$ $w_3 = 3$ $w_4 = 2$ Weight limit: $\ell = 5$ Target value: t = 7

weight	max. total value from first <i>i</i> items				
limit w	<i>i</i> = 0	<i>i</i> = 1	<i>i</i> = 2	<i>i</i> = 3	<i>i</i> = 4
0	0	0	0	0	0
1	0	1	3		
2	0	1	4		
3	0	1			
4	0	1			
5	0	1			

Input $I = \{1, 2, 3, 4\}$ with Values: $v_1 = 1$ $v_2 = 3$ $v_3 = 4$ $v_4 = 2$ Weight: $w_1 = 1$ $w_2 = 1$ $w_3 = 3$ $w_4 = 2$ Weight limit: $\ell = 5$ Target value: t = 7

weight	max. total value from first <i>i</i> items				
limit w	<i>i</i> = 0	<i>i</i> = 1	<i>i</i> = 2	<i>i</i> = 3	<i>i</i> = 4
0	0	0	0	0	0
1	0	1	3		
2	0	1	4		
3	0	1	4		
4	0	1			
5	0	1			

Input $I = \{1, 2, 3, 4\}$ with Values: $v_1 = 1$ $v_2 = 3$ $v_3 = 4$ $v_4 = 2$ Weight: $w_1 = 1$ $w_2 = 1$ $w_3 = 3$ $w_4 = 2$ Weight limit: $\ell = 5$ Target value: t = 7

weight	max.	total va	lue fror	n first <i>i</i>	items
limit w	<i>i</i> = 0	<i>i</i> = 1	<i>i</i> = 2	<i>i</i> = 3	<i>i</i> = 4
0	0	0	0	0	0
1	0	1	3		
2	0	1	4		
3	0	1	4		
4	0	1	4		
5	0	1			

Input $I = \{1, 2, 3, 4\}$ with Values: $v_1 = 1$ $v_2 = 3$ $v_3 = 4$ $v_4 = 2$ Weight: $w_1 = 1$ $w_2 = 1$ $w_3 = 3$ $w_4 = 2$ Weight limit: $\ell = 5$ Target value: t = 7

weight	max.	total va	lue fror	n first <i>i</i>	items
limit w	<i>i</i> = 0	<i>i</i> = 1	<i>i</i> = 2	<i>i</i> = 3	<i>i</i> = 4
0	0	0	0	0	0
1	0	1	3		
2	0	1	4		
3	0	1	4		
4	0	1	4		
5	0	1	4		

Input $I = \{1, 2, 3, 4\}$ with Values: $v_1 = 1$ $v_2 = 3$ $v_3 = 4$ $v_4 = 2$ Weight: $w_1 = 1$ $w_2 = 1$ $w_3 = 3$ $w_4 = 2$ Weight limit: $\ell = 5$ Target value: t = 7

weight	max.	total va	lue fror	n first i	items
limit w	<i>i</i> = 0	<i>i</i> = 1	<i>i</i> = 2	<i>i</i> = 3	<i>i</i> = 4
0	0	0	0	0	0
1	0	1	3	3	3
2	0	1	4	4	4
3	0	1	4	4	5
4	0	1	4	7	7
5	0	1	4	8	8

Did we prove P = NP?

Summary:

- Theorem 8.5: Кнарзаск is NP-complete
- **KNAPSACK** can be solved in time $O(n\ell)$ using dynamic programming

What went wrong?

Knapsack	
Input:	A set $I := \{1, \ldots, n\}$ of items
	each of value v_i and weight w_i for $1 \le i \le n$,
	target value t and weight limit ℓ
Problem:	Is there $T \subseteq I$ such that
	$\sum_{i \in T} v_i \ge t$ and $\sum_{i \in T} w_i \le \ell$?

Pseudo-Polynomial Time

The previous algorithm is not sufficient to show that KNAPSACK is in P

- The algorithm fills a $(\ell + 1) \times (n + 1)$ matrix *M*
- The size of the input to **KNAPSACK** is $O(n \log \ell)$

 \rightarrow the size of *M* is not bounded by a polynomial in the length of the input!

Pseudo-Polynomial Time

The previous algorithm is not sufficient to show that KNAPSACK is in P

- The algorithm fills a $(\ell + 1) \times (n + 1)$ matrix *M*
- The size of the input to **KNAPSACK** is $O(n \log \ell)$

 \rightarrow the size of *M* is not bounded by a polynomial in the length of the input!

Definition 8.6 (Pseudo-Polynomial Time): Problems decidable in time polynomial in the sum of the input length and the value of numbers occurring in the input.

Equivalently: Problems decidable in polynomial time when using unary encoding for all numbers in the input.

- If KNAPSACK is restricted to instances with ℓ ≤ p(n) for a polynomial p, then we obtain a problem in P.
- KNAPSACK is in polynomial time for unary encoding of numbers.

Strong NP-completeness

Pseudo-Polynomial Time: Algorithms polynomial in the maximum of the input length and the value of numbers occurring in the input.

Examples:

- KNAPSACK
- SUBSET SUM

Strong NP-completeness: Problems which remain NP-complete even if all numbers are bounded by a polynomial in the input length (equivalently: even for unary coding of numbers).

Examples:

- CLIQUE
- SAT
- HAMILTONIAN CYCLE
- ...

Note: Showing **SAT** \leq_p **SUBSET SUM** required exponentially large numbers.

Markus Krötzsch; 11 Nov 2024

Complexity Theory

Beyond NP

The Class coNP

Recall that coNP is the complement class of NP.

Definition 8.7:

- For a language $L \subseteq \Sigma^*$ let $\overline{L} := \Sigma^* \setminus L$ be its complement
- For a complexity class C, we define $coC := \{L \mid \overline{L} \in C\}$
- In particular $coNP = \{L \mid \overline{L} \in NP\}$

A problem belongs to coNP, if no-instances have short certificates.

Examples:

- No HAMILTONIAN PATH: Does the graph G not have a Hamiltonian path?
- **ΤΑυτοLOGY**: Is the propositional logic formula *φ* a tautology (true under all assignments)?

• ...

coNP-completeness

Definition 8.8: A language $C \in coNP$ is coNP-complete, if $L \leq_p C$ for all $L \in coNP$.

Theorem 8.9: (1) P = coP(2) Hence, $P \subseteq NP \cap coNP$

Open questions:

• NP = coNP?

Most people do not think so.

• $P = NP \cap coNP$?

Again, most people do not think so.

Summary and Outlook

3-Sat and Hamiltonian Path are also NP-complete

So are **SUBSET SUM** and **KNAPSACK**, but only if numbers are encoded effiently (pseudo-polynomial time)

There do not seem to be polynomial certificates for coNP instances; and for some problems there seem to be certificates neither for instances nor for non-instances

What's next?

- Space
- Games
- Relating complexity classes