

International Center for Computational Logic

COMPLEXITY THEORY

[Lecture 8: NP-Complete Problems](https://iccl.inf.tu-dresden.de/web/Complexity_Theory_(WS2024))

[Markus Krotzsch](https://iccl.inf.tu-dresden.de/web/Markus_Kr%C3%B6tzsch/en) ¨

Knowledge-Based Systems

TU Dresden, 11 Nov 2024

More recent versions of this slide deck might be available. For the most current version of this course, see https://iccl.inf.tu-dresden.de/web/Complexity_Theory/en

Towards More NP-Complete Problems

Starting with **S**at, one can readily show more problems **P** to be NP-complete, each time performing two steps:

- (1) Show that **P** ∈ NP
- (2) Find a known NP-complete problem P' and reduce $P' \leq_{p} P$

Thousands of problem have now been shown to be NP-complete. (See Garey and Johnson for an early survey)

In this course:

 $\mathsf{SAT} \leq_n \mathsf{3}\text{-}\mathsf{SAT}$ \leq_p **CLIQUE** \leq_p **INDEPENDENT SET** \leq_p **Dir. Hamiltonian Path** ≤*^p* **S**ubset **S**um ≤*^p* **K**napsack

3-Sat, Hamiltonian Path, and Subset Sum

NP-Completeness of **3-S**at

3-Sat: Satisfiability of formulae in CNF with ≤ 3 literals per clause

Theorem 8.1: 3-Sat is NP-complete.

Proof: Hardness by reduction **S**at ≤*^p* **3-S**at:

- Given: φ in CNF
- Construct φ' by replacing clauses $C_i = (L_1 \vee \cdots \vee L_k)$ with $k > 3$ by

C[']_{*i*}</sub> := (*L*₁ ∨ *Y*₁) ∧ (¬*Y*₁ ∨ *L*₂ ∨ *Y*₂) ∧ ... ∧ (¬*Y*_{*k*-1} ∨ *L*_{*k*})

Here, the Y_i are fresh variables for each clause.

• Claim: φ is satisfiable iff φ' is satisfiable.

Let $\varphi := (X_1 \vee X_2 \vee \neg X_3 \vee X_4) \wedge (\neg X_4 \vee \neg X_2 \vee X_5 \vee \neg X_1)$ Then $\varphi' := (X_1 \vee Y_1) \wedge$ $(¬Y_1 ∨ X_2 ∨ Y_2) ∧$ $(¬Y_2 ∨ ¬X_3 ∨ Y_3) ∧$ $(¬Y_3 ∨ X_4) ∧$ $(\neg X_4 \lor Z_1) \land$ $(\neg Z_1 \lor \neg X_2 \lor Z_2) \land$ $(\neg Z_2 \lor X_5 \lor Z_3) \land$ $(¬Z_3 ∨ ¬X_1)$

Proving NP-Completeness of **3-S**at

 f^* ⇒" Given $\varphi := \bigwedge_{i=1}^m C_i$ with clauses C_i , show that if φ is satisfiable then φ' is satisfiable For a satisfying assignment β for φ , define an assignment β' for φ' : For each $C := (L_1 \vee \cdots \vee L_k)$, with $k > 3$, in φ there is

C' = (*L*₁ ∨ *Y*₁) ∧ (¬*Y*₁ ∨ *L*₂ ∨ *Y*₂) ∧ ... ∧ (¬*Y*_{*k*−1} ∨ *L*_{*k*}) in φ'

As β satisfies φ , there is $i \leq k$ s.th. $\beta(L_i) = 1$ i.e. $\beta(X) = 1$ if $L_i = X$ $\beta(X) = 0$ if $L_i = \neg X$

Set β $\mathcal{C}(Y_j) = 1$ for $j < i$ β $J'(Y_j) = 0$ for $j \geq i$ β $\mathcal{C}(X) = \beta(X)$ for all variables in φ

This is a satisfying assignment for φ'

Proving NP-Completeness of **3-S**at

" \Leftarrow " Show that if φ' is satisfiable then so is φ

Suppose β is a satisfying assignment for φ' – then β satisfies φ :

Let $C := (L_1 \vee \cdots \vee L_k)$ be a clause of φ

- (1) If $k \le 3$ then *C* is a clause of φ'
- (2) If $k > 3$ then

C' = (*L*₁ ∨ *Y*₁) ∧ (¬*Y*₁ ∨ *L*₂ ∨ *Y*₂) ∧ ... ∧ (¬*Y*_{*k*−1} ∨ *L*_{*k*}) in φ'

 β must satisfy at least one L_i , $1 \le i \le k$

Case (2) follows since, if $\beta(L_i) = 0$ for all $i \leq k$ then C' can be reduced to

$$
C' = (Y_1) \wedge (\neg Y_1 \vee Y_2) \wedge \dots \wedge (\neg Y_{k-1})
$$

$$
\equiv Y_1 \wedge (Y_1 \rightarrow Y_2) \wedge \dots \wedge (Y_{k-2} \rightarrow Y_{k-1}) \wedge \neg Y_{k-1}
$$

which is not satisfiable. $□$

Directed **H**amiltonian **P**ath

Input: A directed graph *G*.

Problem: Is there a directed path in *G* containing every vertex exactly once?

Theorem 8.2: Directed **H**amiltonian **P**ath is NP-complete.

Directed **H**amiltonian **P**ath

Input: A directed graph *G*.

Problem: Is there a directed path in *G* containing every vertex exactly once?

Theorem 8.2: Directed **H**amiltonian **P**ath is NP-complete.

Proof:

(1) **D**irected **H**amiltonian **P**ath ∈ NP:

Take the path to be the certificate.

Digression: How to design reductions

Task: Show that problem **P** (**D**irected **H**amiltonian **P**ath) is NP-hard.

• Arguably, the most important part is to decide where to start from.

That is, which problem to reduce to **D**irected **H**amiltonian **P**ath?

Digression: How to design reductions

Task: Show that problem **P** (**D**irected **H**amiltonian **P**ath) is NP-hard.

• Arguably, the most important part is to decide where to start from.

That is, which problem to reduce to **D**irected **H**amiltonian **P**ath?

- Considerations:
	- Is there an NP-complete problem similar to **P**? (for example, **C**lique and **I**ndependent **S**et)
	- It is not always beneficial to choose a problem of the same type (for example, reducing a graph problem to a graph problem)
		- For instance, **C**lique, **I**ndependent **S**et are "local" problems (is there a set of vertices inducing some structure)
		- Hamiltonian Path is a global problem (find a structure – the Hamiltonian path – containing all vertices)

Digression: How to design reductions

Task: Show that problem **P** (**D**irected **H**amiltonian **P**ath) is NP-hard.

• Arguably, the most important part is to decide where to start from.

That is, which problem to reduce to **D**irected **H**amiltonian **P**ath?

- Considerations:
	- Is there an NP-complete problem similar to **P**? (for example, **C**lique and **I**ndependent **S**et)
	- It is not always beneficial to choose a problem of the same type (for example, reducing a graph problem to a graph problem)
		- For instance, **C**lique, **I**ndependent **S**et are "local" problems (is there a set of vertices inducing some structure)
		- Hamiltonian Path is a global problem (find a structure – the Hamiltonian path – containing all vertices)
- How to design the reduction:
	- Does your problem come from an optimisation problem?
		- If so: a maximisation problem? a minimisation problem?
	- Learn from examples, have good ideas.

Directed **H**amiltonian **P**ath

Input: A directed graph *G*.

Problem: Is there a directed path in *G* containing every vertex exactly once?

Theorem 8.2: Directed **H**amiltonian **P**ath is NP-complete.

Proof:

(1) **D**irected **H**amiltonian **P**ath ∈ NP:

Take the path to be the certificate.

Directed **H**amiltonian **P**ath

Input: A directed graph *G*.

Problem: Is there a directed path in *G* containing every vertex exactly once?

Theorem 8.2: Directed **H**amiltonian **P**ath is NP-complete.

Proof:

- (1) **D**irected **H**amiltonian **P**ath ∈ NP: Take the path to be the certificate.
- (2) **D**irected **H**amiltonian **P**ath is NP-hard: **3-S**at ≤*^p* **D**irected **H**amiltonian **P**ath

Proof (Proof idea): (see blackboard for details)

Let $\varphi := \bigwedge_{i=1}^{k} C_i$ and $C_i := (L_{i,1} \vee L_{i,2} \vee L_{i,3})$

- For each variable *X* occurring in φ , we construct a directed graph ("gadget") that allows only two Hamiltonian paths: "true" and "false"
- Gadgets for each variable are "chained" in a directed fashion, so that all variables must be assigned one value
- Clauses are represented by vertices that are connected to the gadgets in such a way that they can only be visited on a Hamiltonian path that corresponds to an assignment where they are true

Details are also given in [Sipser, Theorem 7.46].

Example 8.3: $\varphi := C_1 \wedge C_2$ where $C_1 := (X \vee \neg Y \vee Z)$ and $C_2 := (\neg X \vee Y \vee \neg Z)$ (see blackboard)

Towards More NP-Complete Problems

Starting with **S**at, one can readily show more problems **P** to be NP-complete, each time performing two steps:

- (1) Show that **P** ∈ NP
- (2) Find a known NP-complete problem P' and reduce $P' \leq_{p} P$

Thousands of problem have now been shown to be NP-complete. (See Garey and Johnson for an early survey)

In this course:

 $\mathsf{SAT} \leq_n \mathsf{3}\text{-}\mathsf{SAT}$ \leq_p **CLIQUE** \leq_p **INDEPENDENT SET** \leq_p **Dir. Hamiltonian Path** ≤*^p* **S**ubset **S**um ≤*^p* **K**napsack

NP-Completeness of **S**ubset **S**um

Subset **S**um

 $S = \{a_1, \ldots, a_k\}$ and a target integer *t*.

Problem: Is there a subset $T \subseteq S$ such that $\sum_{a_i \in T} a_i = t$?

Theorem 8.4: SUBSET SUM is NP-complete.

Proof:

- (1) **SUBSET SUM** \in NP: Take *T* to be the certificate.
- (2) **S**ubset **S**um is NP-hard: **S**at ≤*^p* **S**ubset **S**um

 $¹$) This "collection" is supposed to be a multi-set, i.e., we allow the same number to occur several</sup> times. The solution "subset" can likewise use numbers multiple times, but not more often than they occured in the given collection.

Markus Krötzsch: 11 Nov 2024 **[Complexity Theory](#page-0-0)** Complexity Theory slide 13 of 34

$(X_1 \vee X_2 \vee X_3) \wedge (\neg X_1 \vee \neg X_4) \wedge (X_4 \vee X_5 \vee \neg X_2 \vee \neg X_3)$

*X*¹ *X*² *X*³ *X*⁴ *X*⁵ *C*¹ *C*² *C*³

$$
\mathbf{S}\text{at}\leq_{p}\mathbf{S}\text{ubset}\ \mathbf{S}\text{um}
$$

Given: $\varphi := C_1 \wedge \cdots \wedge C_k$ in conjunctive normal form.

```
(w.l.o.g. at most 9 literals per clause)
```
Let X_1, \ldots, X_n be the variables in φ . For each X_i let

$$
t_i := a_1 \dots a_n c_1 \dots c_k \text{ where } a_j := \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases} \text{ and } c_j := \begin{cases} 1 & X_i \text{ occurs in } C_j \\ 0 & \text{otherwise} \end{cases}
$$

$$
f_i := a_1 \dots a_n c_1 \dots c_k \text{ where } a_j := \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases} \text{ and } c_j := \begin{cases} 1 & \neg X_i \text{ occurs in } C_j \\ 0 & \text{otherwise} \end{cases}
$$

$(X_1 \vee X_2 \vee X_3) \wedge (\neg X_1 \vee \neg X_4) \wedge (X_4 \vee X_5 \vee \neg X_2 \vee \neg X_3)$

*X*¹ *X*² *X*³ *X*⁴ *X*⁵ *C*¹ *C*² *C*³

\mathbf{S} at $\leq_p \mathbf{S}$ ubset \mathbf{S} um

Further, for each clause C_i take $r := |C_i| - 1$ integers $m_{i,1}, \ldots, m_{i,r}$

where
$$
m_{i,j} := c_i \dots c_k
$$
 with $c_{\ell} := \begin{cases} 1 & \ell = i \\ 0 & \ell \neq i \end{cases}$
Definition of *S*: Let

$$
S := \{t_i, f_i \mid 1 \le i \le n\} \cup \{m_{i,j} \mid 1 \le i \le k, \quad 1 \le j \le |C_i| - 1\}
$$

Target: Finally, choose as target

$$
t := a_1 \dots a_n c_1 \dots c_k \text{ where } a_i := 1 \text{ and } c_i := |C_i|
$$

Claim: There is $T \subseteq S$ with $\sum_{a_i \in T} a_i = t$ iff φ is satisfiable.

Markus Krötzsch; 11 Nov 2024 **[Complexity Theory](#page-0-0)** Complexity Theory slide 17 of 34

$(X_1 \vee X_2 \vee X_3) \wedge (\neg X_1 \vee \neg X_4) \wedge (X_4 \vee X_5 \vee \neg X_2 \vee \neg X_3)$

*X*¹ *X*² *X*³ *X*⁴ *X*⁵ *C*¹ *C*² *C*³

NP-Completeness of **S**ubset **S**um

Let $\varphi := \bigwedge C_i$ *C_i* C: clauses

Show: If φ is satisfiable, then there is $T \subseteq S$ with $\sum_{s \in T} s = t$.

Let β be a satisfying assigment for φ

Set *T*₁ := {*t_i* | β (*X_i*) = 1, 1 ≤ *i* ≤ *m*} ∪ ${f_i | \beta(X_i) = 0, 1 \le i \le m}$

Further, for each clause C_i let r_i be the number of satisfied literals in C_i (with resp. to β).

```
Set T_2 := \{m_{i,j} \mid 1 \le i \le k, \quad 1 \le j \le |C_i| - r_i\}
```

```
and define T := T_1 \cup T_2.
```

```
It follows: \sum_{s \in T} s = t
```
NP-Completeness of **S**ubset **S**um

Show: If there is $T \subseteq S$ with $\sum_{s \in T} s = t$, then φ is satisfiable.

```
Let T \subseteq S such that \sum_{s \in T} s = t
```

```
Define \beta(X_i) =\left\{ \right.\overline{\mathcal{L}}1 if t_i \in T0 if f_i \in T
```
This is well defined as for all *i*: $t_i \in T$ or $f_i \in T$ but not both.

Further, for each clause, there must be one literal set to 1 as for all *i*,

the $m_{i,j} \in S$ do not sum up to the number of literals in the clause. \Box

Towards More NP-Complete Problems

Starting with **S**at, one can readily show more problems **P** to be NP-complete, each time performing two steps:

- (1) Show that **P** ∈ NP
- (2) Find a known NP-complete problem P' and reduce $P' \leq_{p} P$

Thousands of problem have now been shown to be NP-complete. (See Garey and Johnson for an early survey)

In this course:

 $\mathsf{SAT} \leq_n \mathsf{3}\text{-}\mathsf{SAT}$ \leq_p **CLIQUE** \leq_p **INDEPENDENT SET** ≤*^p* **3-S**at ≤*^p* **D**ir**. H**amiltonian **P**ath ≤*^p* **S**ubset **S**um ≤*^p* **K**napsack

NP-completeness of **K**napsack

Theorem 8.5: Knapsack is NP-complete.

NP-completeness of **K**napsack

Theorem 8.5: Knapsack is NP-complete.

Proof:

- (1) **KNAPSACK** \in NP: Take *T* to be the certificate.
- (2) **K**napsack is NP-hard: **S**ubset **S**um ≤*^p* **K**napsack

Subset **S**um ≤*^p* **K**napsack

Subset **S**um ≤*^p* **K**napsack

Subset Sum: Given: $S := \{a_1, \ldots, a_n\}$ collection of positive integers
target integer *t* target integer Problem: Is there a subset $T \subseteq S$ such that $\sum_{a_i \in T} a_i = t$?

Reduction: From this input to **SUBSET SUM** construct

- set of items $I := \{1, \ldots, n\}$
- weights and values $v_i = w_i = a_i$ for all $1 \le i \le n$
- target value $t' := t$ and weight limit $\ell := t$

Subset **S**um ≤*^p* **K**napsack

Subset Sum: Given: $S := \{a_1, \ldots, a_n\}$ collection of positive integers
 t target integer *t* target integer

Problem: Is there a subset $T \subseteq S$ such that $\sum_{a_i \in T} a_i = t$?

Reduction: From this input to **SUBSET SUM** construct

- set of items $I := \{1, \ldots, n\}$
- weights and values $v_i = w_i = a_i$ for all $1 \le i \le n$
- target value $t' := t$ and weight limit $\ell := t$

Clearly: For every *T* ⊆ *S*

$$
\sum_{a_i \in T} a_i = t \qquad \text{iff} \qquad \qquad \sum_{a_i \in T} v_i \ge t' = t
$$
\n
$$
\sum_{a_i \in T} w_i \le \ell = t
$$

Hence: The reduction is correct and in polynomial time.

Markus Krötzsch; 11 Nov 2024 [Complexity Theory](#page-0-0) slide 23 of 34

A Polynomial Time Algorithm for **K**napsack

KNAPSACK can be solved in time $O(n\ell)$ using dynamic programming

Initialisation:

- Create an $(\ell + 1) \times (n + 1)$ matrix M
- Set $M(w, 0) := 0$ for all $1 \le w \le \ell$ and $M(0, i) := 0$ for all $1 \le i \le n$

Input $I = \{1, 2, 3, 4\}$ with Values: $v_1 = 1$ $v_2 = 3$ $v_3 = 4$ $v_4 = 2$ **Weight:** $w_1 = 1$ $w_2 = 1$ $w_3 = 3$ $w_4 = 2$ Weight limit: $\ell = 5$ Target value: $t = 7$

Set $M(w, 0) := 0$ for all $1 \le w \le \ell$ and $M(0, i) := 0$ for all $1 \le i \le n$

Input $I = \{1, 2, 3, 4\}$ with Values: $v_1 = 1$ $v_2 = 3$ $v_3 = 4$ $v_4 = 2$ **Weight:** $w_1 = 1$ $w_2 = 1$ $w_3 = 3$ $w_4 = 2$ Weight limit: $\ell = 5$ Target value: $t = 7$

Set $M(w, 0) := 0$ for all $1 \le w \le \ell$ and $M(0, i) := 0$ for all $1 \le i \le n$

A Polynomial Time Algorithm for **K**napsack

KNAPSACK can be solved in time $O(n\ell)$ using dynamic programming

Initialisation:

- Create an $(\ell + 1) \times (n + 1)$ matrix M
- Set $M(w, 0) := 0$ for all $1 \le w \le \ell$ and $M(0, i) := 0$ for all $1 \le i \le n$

A Polynomial Time Algorithm for **K**napsack

^Knapsack can be solved in time *^O*(*n*ℓ) using dynamic programming

Initialisation:

- Create an $(\ell + 1) \times (n + 1)$ matrix M
- Set $M(w, 0) := 0$ for all $1 \leq w \leq \ell$ and $M(0, i) := 0$ for all $1 \leq i \leq n$

Computation: Assign further $M(w, i)$ to be the largest total value obtainable by selecting from the first *i* items with weight limit *w*:

For $i = 0, 1, ..., n - 1$ set $M(w, i + 1)$ as

 $M(w, i + 1) := \max \{M(w, i), M(w - w_{i+1}, i) + v_{i+1}\}$

Here, if $w - w_{i+1} < 0$ we always take $M(w, i)$.

Acceptance: If *M* contains an entry > *t*, accept. Otherwise reject.

Markus Krötzsch; 11 Nov 2024 [Complexity Theory](#page-0-0) slide 26 of 34

Input $I = \{1, 2, 3, 4\}$ with Values: $v_1 = 1$ $v_2 = 3$ $v_3 = 4$ $v_4 = 2$ **Weight:** $w_1 = 1$ $w_2 = 1$ $w_3 = 3$ $w_4 = 2$ Weight limit: $\ell = 5$ Target value: $t = 7$

Input $I = \{1, 2, 3, 4\}$ with Values: $v_1 = 1$ $v_2 = 3$ $v_3 = 4$ $v_4 = 2$ **Weight:** $w_1 = 1$ $w_2 = 1$ $w_3 = 3$ $w_4 = 2$ Weight limit: $\ell = 5$ Target value: $t = 7$

Input $I = \{1, 2, 3, 4\}$ with Values: $v_1 = 1$ $v_2 = 3$ $v_3 = 4$ $v_4 = 2$ **Weight:** $w_1 = 1$ $w_2 = 1$ $w_3 = 3$ $w_4 = 2$ Weight limit: $\ell = 5$ Target value: $t = 7$

Input $I = \{1, 2, 3, 4\}$ with Values: $v_1 = 1$ $v_2 = 3$ $v_3 = 4$ $v_4 = 2$ **Weight:** $w_1 = 1$ $w_2 = 1$ $w_3 = 3$ $w_4 = 2$ Weight limit: $\ell = 5$ Target value: $t = 7$

Input $I = \{1, 2, 3, 4\}$ with Values: $v_1 = 1$ $v_2 = 3$ $v_3 = 4$ $v_4 = 2$ **Weight:** $w_1 = 1$ $w_2 = 1$ $w_3 = 3$ $w_4 = 2$ Weight limit: $\ell = 5$ Target value: $t = 7$

Input $I = \{1, 2, 3, 4\}$ with Values: $v_1 = 1$ $v_2 = 3$ $v_3 = 4$ $v_4 = 2$ **Weight:** $w_1 = 1$ $w_2 = 1$ $w_3 = 3$ $w_4 = 2$ Weight limit: $\ell = 5$ Target value: $t = 7$

Input $I = \{1, 2, 3, 4\}$ with Values: $v_1 = 1$ $v_2 = 3$ $v_3 = 4$ $v_4 = 2$ **Weight:** $w_1 = 1$ $w_2 = 1$ $w_3 = 3$ $w_4 = 2$ Weight limit: $\ell = 5$ Target value: $t = 7$

Input $I = \{1, 2, 3, 4\}$ with Values: $v_1 = 1$ $v_2 = 3$ $v_3 = 4$ $v_4 = 2$ **Weight:** $w_1 = 1$ $w_2 = 1$ $w_3 = 3$ $w_4 = 2$ Weight limit: $\ell = 5$ Target value: $t = 7$

Did we prove $P = NP$?

Summary:

- Theorem 8[.5:](#page-25-0) **K**napsack is NP-complete
- **KNAPSACK** can be solved in time *O*(*nℓ*) using dynamic programming

What went wrong?

Pseudo-Polynomial Time

The previous algorithm is not sufficient to show that **K**napsack is in P

- The algorithm fills a $(\ell + 1) \times (n + 1)$ matrix M
- The size of the input to **KNAPSACK** is $O(n \log \ell)$

 \rightarrow the size of *M* is not bounded by a polynomial in the length of the input!

Pseudo-Polynomial Time

The previous algorithm is not sufficient to show that **K**napsack is in P

- The algorithm fills a $(\ell + 1) \times (n + 1)$ matrix M
- The size of the input to **KNAPSACK** is $O(n \log \ell)$

 \rightarrow the size of *M* is not bounded by a polynomial in the length of the input!

Definition 8.6 (Pseudo-Polynomial Time): Problems decidable in time polynomial in the sum of the input length and the value of numbers occurring in the input.

Equivalently: Problems decidable in polynomial time when using unary encoding for all numbers in the input.

- If **Knapsack** is restricted to instances with $\ell \leq p(n)$ for a polynomial p, then we obtain a problem in P.
- **KNAPSACK** is in polynomial time for unary encoding of numbers.

Strong NP-completeness

Pseudo-Polynomial Time: Algorithms polynomial in the maximum of the input length and the value of numbers occurring in the input.

Examples:

- **K**napsack
- **S**ubset **S**um

Strong NP-completeness: Problems which remain NP-complete even if all numbers are bounded by a polynomial in the input length (equivalently: even for unary coding of numbers).

Examples:

- **C**lique
- **S**at
- **H**amiltonian **C**ycle
- \bullet . . .

Note: Showing **S**at ≤*^p* **S**ubset **S**um required exponentially large numbers.

Markus Krötzsch: 11 Nov 2024 **[Complexity Theory](#page-0-0)** Complexity Theory slide 30 of 34

Beyond NP

The Class coNP

Recall that coNP is the complement class of NP.

Definition 8.7:

- For a language **L** ⊆ Σ^{*} let **L** := Σ^{*} \ **L** be its complement
- For a complexity class C, we define $\text{coC} := \{ L | \overline{L} \in C \}$
- In particular coNP = ${L | \overline{L} \in NP}$

A problem belongs to coNP, if no-instances have short certificates.

Examples:

- **No Hamiltonian Path:** Does the graph *G* not have a Hamiltonian path?
- **Taurology:** Is the propositional logic formula φ a tautology (true under all assignments)?

• . . .

coNP-completeness

Definition 8.8: A language **C** ∈ coNP is coNP-complete, if **L** \leq_p **C** for all **L** ∈ coNP.

Theorem 8.9: (1) P = coP (2) Hence, P ⊆ NP ∩ coNP

Open questions:

• $NP = conNP?$

Most people do not think so.

• $P = NP \cap coNP?$

```
Again, most people do not think so.
```
Summary and Outlook

3-Sat and **H**amiltonian **P**ath are also NP-complete

So are **S**ub**S**et **S**um and **K**napsack, but only if numbers are encoded effiently (pseudo-polynomial time)

There do not seem to be polynomial certificates for coNP instances; and for some problems there seem to be certificates neither for instances nor for non-instances

What's next?

- Space
- Games
- Relating complexity classes