Exercise Sheet 4: Time Complexity

David Carral

November 27, 2019
Exercise 1.1

Show that P is closed under concatenation.

Solution. Consider some languages $A, B \in P$. We show that the union of these two languages is in P. That is, we show that $L = \{uv \mid u \in A \text{ and } v \in B\}$ is in P.

1. Since $A, B \in P$, there are some poly-time bounded TMs M and N that solve A and B, respectively.
2. Let D be the 3-tape TM that performs the following computation on input w:
 - Sequentially iterate through each $i \in \{0, \ldots, |w|\}$:
 - Copy w_0,i on to working tape 1 and simulate M on this input.
 - Copy $w_i,|w|$ on to working tape 2 and simulate N on this input.
 - If both simulations accept, then accept.
 - Clear both working tapes.
 - Reject.
3. D accepts L (discuss).
4. D is a poly-time bounded TM (discuss).
Exercise 1.2

Show that P is closed under star.

Solution. Given some language $L \in P$, we show that $L^* \in P$.

1. There is a poly-time bounded TM M that solves L.
2. Let D be the 3-tape DTM that performs the following computation on input w:
 - If w is the empty word, then accept.
 - For every $0 \leq i < j \leq |w|$
 - Copy the string $w_{i,j}$ on to working tape 1.
 - Simulate M on working tape 1. If this simulation accepts, append the pair (i, j) on to working tape 2.
 - Clear tape 1.
 - Accept if and only if there is a path from 0 to $|w|$ on the directed graph represented in working tape 2.
3. D accepts L^* (discuss).
4. D is a poly-time bounded TM (discuss).
Consider the problem \textit{CLIQUE}:

- Input: An undirected graph G and some $k \in \mathbb{N}$
- Output: Does there exist a clique in G of size at least k?

Suppose \textit{CLIQUE} can be solved in time $T(n)$ for some $T: \mathbb{N} \rightarrow \mathbb{N}$ with $T(n) \geq n$ for all $n \in \mathbb{N}$. Then, show that the optimisation problem

- Input: An undirected graph G.
- Output: A clique in G of maximal size.

can be computed in time $O(n \cdot T(n))$. You can assume that T is monotone.
Exercise 2

Suppose \textit{CLIQUE} can be solved in time $T(n)$ for some $T : \mathbb{N} \rightarrow \mathbb{N}$ with $T(n) \geq n$ for all $n \in \mathbb{N}$. Then, show that the optimisation problem

\begin{itemize}
 \item Input: An undirected graph G.
 \item Output: A clique in G of maximal size.
\end{itemize}

\textit{can be computed in time $O(n \cdot T(n))$.} You can assume that T is monotone.

\textbf{Solution.} For an input graph $G = \{V, E\}$, apply the following strategy.

\begin{itemize}
 \item Using binary search and the $T(n)$-procedure to solve \textit{CLIQUE}, compute the size k of a maximal clique in G.
 \item Sequentially iterate through every $v \in V$ and perform the following computation:
 \begin{itemize}
 \item Compute the graph G' that results from removing the vertex v from G.
 \item Check if G' contains a clique of size k.
 \item If so, then remove the vertex v from G.
 \end{itemize}
 \item Return G.
\end{itemize}

\textbf{Remark:} The above strategy runs the decision procedure of \textit{CLIQUE} at most $\lceil \log n \rceil$ times to compute k plus at most n times to weed out nodes.
Exercise 3

Show that if a language L is NP-complete, then \overline{L} is coNP-complete.

Solution.

A. If L is in NP, then \overline{L} is in coNP.

B. We show that, if L is NP-hard, then \overline{L} is coNP-hard.

1. L is NP-hard.
2. Let K be a language in coNP.
3. By (2): \overline{K} is in NP.
4. By (1) and (3): $\overline{K} \leq_p L$.
5. By (4): $K \leq_p \overline{L}$.
6. By (2) and (5): \overline{L} is coNP-hard.

C. By (A) and (B): if L is NP-complete, then \overline{L} is coNP-complete.
Exercise 4

Show that if $P = NP$, then a polynomial-time algorithm exists that produces a satisfying assignment of a given satisfiable propositional formula.

Solution. Step by step solution.

1. Assume that $P = NP$.
2. $Sat \in NP$.
3. By (1) and (2): $Sat \in P$.
4. Let ϕ be some satisfiable propositional formula with variables X_1, \ldots, X_n.
5. For a sequence $V = V_1, \ldots, V_m$ with $m \leq n$ and $V_i \in \{0, 1\}$ for all $1 \leq i \leq m$, let ϕ_V be the formula that results from replacing X_i by V_i in ϕ for all $1 \leq i \leq m$.
6. Let $U_1 = 0$, if ϕ_0 is satisfiable; and $U_1 = 1$, otherwise.
7. For all $2 \leq i \leq n$, let $U_i = 0$ if $\phi_{U_1, \ldots, U_{i-1}, 0}$ is satisfiable, and $U_i = 1$ otherwise.
8. We can show via induction that, for all $1 \leq i \leq n$, the formula ϕ_{U_1, \ldots, U_i} for all $1 \leq i \leq n$ is satisfiable.
9. The assignment α mapping X_i to U_i for all $1 \leq i \leq n$ is satisfying for ϕ.
10. The assignment α can be computed in polynomial time (discuss).
Show that the following problem is NP-complete.

\[\text{Path} = \{ \langle G, s, t, k \rangle \mid G \text{ contains a simple path from } s \text{ to } t \text{ of length } k \} \]

Solution. Let us have a look at a similar problem.

\[\text{AtMostPath} = \{ \langle G, s, t, k \rangle \mid G \text{ contains a simple path from } s \text{ to } t \text{ of length at most } k \} \]

Is \text{AtMostPath} in NP? In P? Discuss.

Remark. If there is a (possibly non-simple) path in \(G\) of length at most \(k\) from \(s\) to \(t\), then there is a simple path in \(G\) of length at most \(k\) from \(s\) to \(t\).
Exercise 5

Show that the following problem is \(\text{NP} \)-complete.

\[
Path = \{ \langle G, s, t, k \rangle \mid G \text{ contains a simple path from } s \text{ to } t \text{ of length } k \}
\]

Solution. The above problem is in \(\text{NP} \) (discuss).

Definition. \(G \in \text{HamCycle} \) iff there is a path in \(G \) that starts and ends in the same vertex and visits each vertex in \(G \) exactly once.

To show that it is also \(\text{NP} \)-hard, we show that \(\text{HamCycle} \leq_p \text{Path} \).

1. Let \(f \) be the function mapping \(\langle G \rangle \) into \(\langle G, s, s, n \rangle \) with \(s \) the first vertex syntactically occurring in \(\langle G \rangle \) and \(n \) is the number of vertices in \(G \).
2. By (1): the function \(f \) is poly-time computable.
3. By (1): if \(\langle G \rangle \in \text{HamCycle} \), then \(\langle G, s, s, n \rangle \in \text{Path} \) (discuss).
4. By (1): if \(\langle G, s, s, n \rangle \in \text{Path} \), then \(\langle G \rangle \in \text{HamCycle} \) (discuss).
5. By (2), (3), and (4): \(\text{HamCycle} \leq_p \text{Path} \).
Exercise 6

Let $A \subseteq 1^*$. Show that, if A is NP-complete, then $P = NP$.

Solution To show that $P = NP$, we describe a polynomial-time procedure for SAT.

- Let f be a poly-time reduction from SAT to A.
- Let ϕ be a propositional formula and $\{x_1, \ldots, x_n\}$ be the set of all variables in ϕ.
- We inductively define the sets L_0, \ldots, L_n:
 1. $L_0 = \{\langle f(\phi), \phi \rangle\}$
 2. For every $k \in \{1, \ldots, n\}$ and $\langle f(\psi), \psi \rangle \in L_{k-1}$:
 - Add $\langle f(\psi_{x_k=0}), \psi_{x_k=0} \rangle$ and $\langle f(\psi_{x_k=1}), \psi_{x_k=1} \rangle$ to L_k where $\psi_{x_k=\ell}$ denotes the formula ψ with the variable x_k set to the value ℓ and simplified afterwards.
 - Then, remove all pairs $\langle w, \psi \rangle$ in L_k where w contains some symbol different from 1.
 - Furthermore, for every $m \in \mathbb{N}$, keep at most one (arbitrarily chosen) pair of the form $\langle 1^m, \psi \rangle$ in L_k.

- Then, ϕ is satisfiable if and only if $L_n \neq \emptyset$.

Can we compute the sets L_0, \ldots, L_n in polynomial time in the size of ϕ? Discuss