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Abstract. In the context of aggregating probabilistic opinions from
multiple agents facing severe uncertainty, imprecise probabilities are com-
monly utilized to represent their beliefs. Voting for Bins (VfB) is a novel
voting method enabling agents with imprecise probabilistic beliefs to
vote for sets of probability intervals, or bins. Inspired by the Condorcet
Jury Theorem, VfB allows for the derivation of probabilistic assurances
regarding the likelihood of identifying the correct alternative among a
set, assuming the independence of the electorate and given estimates of
the agents’ average competence levels. VfB also facilitates direct compu-
tation of the maximal number of bins, thereby determining the precision
permitted in the voting process. In this work, we compare VfB’s per-
formance, assessed by assigning an epistemic value to each aggregate,
against standard imprecise pooling methods through multi-agent voting
simulations. To the best of our knowledge, this work provides the first em-
pirical comparison of imprecise pooling methods utilizing parameterized
imprecise beliefs generated through a randomized process. Furthermore,
we formally integrate VfB into the probabilistic pooling framework by
examining which desirable properties, identified in the pooling literature,
are satisfied by VfB.
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1 Introduction

When the beliefs of multiple agents are modeled using probabilistic represen-
tations and consensus needs to be reached among these beliefs, the process is
termed probabilistic opinion pooling. In typical real-world scenarios involving
the aggregation of probabilistic beliefs, large groups of experts such as around
50 climate scientists [12] or 140 epidemiologists [16] often hold heterogeneous
opinions that need to be pooled. When events with substantial uncertainty are
involved, it is often times assumed that the agents’ beliefs are best represented
by imprecise probabilities, which are intervals of probability values assigned to
an event.

The aggregation of probabilistic beliefs among a group of agents and the rep-
resentation of beliefs using imprecise probabilities are central topics in the realm



of multi-agent systems. Recent studies on pooling explore the interplay between
direct evidential updating and probability aggregation in multi-agent systems
[14], develop a Bayesian approach to probability pooling, employing copulas to
capture dependencies among agents [13], or delve into consensus formation for
multi-agent systems where agents’ beliefs are both vague and uncertain [4]. Ad-
ditionally, researchers have demonstrated the utility of imprecise probabilities in
model-checking multi-agent systems [18, 19] and in defining a decidable multi-
agent logic [6]. Furthermore, there is emerging interest in imprecise pooling itself
within the context of multi-agent systems [14].

Pooling imprecise probabilistic beliefs represents a relatively novel approach,
and determining the optimal pooling method remains a subject of contention
[17]. Recently, a new method for aggregating imprecise beliefs, known as Voting
for Bins (VfB), has emerged [9]. Inspired by the Condorcet Jury Theorem (CJT)
[3], a fundamental principle in voting theory, VfB strives to provide probabilistic
assurances for selecting the correct option from a set of alternatives under spe-
cific assumptions. Utilizing a generalization of the CJT, VfB operates under the
assumption of independent voters with varying levels of competence [10]. What
distinguishes VfB is its treatment of not only agents’ beliefs as imprecise prob-
abilities, but that also the alternatives themselves form probability intervals.
By assuming that the correct probability for an event lies within one of these
intervals and with an estimate of the average competence levels of the agents,
VfB enables the direct computation of the maximum precision permissible in
the aggregation process. However, it’s important to note that VfB is introduced
primarily as a voting method rather than a direct opinion pooling function.

Our Contribution. In this work, our objective is to establish VfB as an effective
imprecise pooling method. We accomplish this goal by (i) conducting compara-
tive analyses of its performance against established imprecise pooling functions
through multi-agent simulations. To the best of our knowledge, our work presents
the first empirical comparison of imprecise pooling methods based on parameter-
ized imprecise beliefs generated through a randomized process. Additionally, (ii)
we assess the extent to which VfB satisfies a set of desirable properties identified
for pooling functions.

2 Preliminaries

In this section, we introduce the formal framework underlying (i) the representa-
tion of imprecise probabilistic beliefs, (ii) imprecise pooling functions in general,
and (iii) imprecise pooling by Voting for Bins.

Imprecise Probabilistic Beliefs. The standard approach to representing the prob-
abilistic belief of an agent is to utilize a single probability function, P, satisfying
the Kolmogorov axioms which maps events to real numbers between 0 and 1,
reflecting the agent’s confidence in the truth of those propositions: P : A → R.
Here, A represents an algebra of events over the event space Ω, defined as a



set of subsets of Ω that is closed under complement and finite unions [17]. The
value assigned to an event signifies the agent’s degree of belief in that proposition
[12]. However, for certain applications, it may be implausible to expect agents
to maintain precise degrees of belief. Consider, for instance, the event predicting
that the global sea level will rise by at least 1.5 meters by the year 2100, relative
to the 2000 level. To address such events characterized by substantial uncer-
tainty, the standard representation has been extended to encompass so-called
Imprecise Probabilities:

Definition 1 (Imprecise Probabilities). Imprecise probabilities are sets of
probability functions [2].

We denote a specific set of probability functions by P. To represent the set of
values P assigns to a specific proposition more compactly, we define the imprecise
degree of belief in an event as follows:

Definition 2 (Imprecise Degree of Belief). An agent’s imprecise degree of
belief in a proposition A is represented by a function, P(A), where P(A) =
{P(A) : P ∈ P} [1].

Throughout this work, and as is common in the imprecise pooling literature,
we assume the imprecise degree of belief to be convex. In other words, if the set of
probability functions assigns different values to an event, all values between those
are also within the imprecise degree of belief. Thus, the belief in a proposition is
represented by an interval of values of the form [a, b], where a, b ∈ [0, 1], with a
referred to as the lower probability of the interval and b as the upper probability.

Example 1. Suppose, an agent’s belief is represented by three probability func-
tions that assign some event A values from the set {0.4, 0.6, 0.8}. By convexity,
we may represent the agent’s imprecise degree of belief with P(A) = [0.4, 0.8].
Thus, our agent is 40− 80% confident that event A will occur.

Imprecise Pooling. An imprecise pooling function, denoted as F , operates by
taking as input a profile of sets of probability functions, one for each agent,
represented as (P1, ...,Pn), forming a set of sets of probability functions. The
pooling function then maps this profile to a single set of probability functions,
known as the aggregate or pool of F . Typically, profiles are pooled with respect
to a given proposition A. In this case, the input to F consists of sets of imprecise
degrees of belief, intervals of probability values, with the output being a single
such interval. Numerous pooling functions have been defined in the literature. In
this study, we compare the recently proposed Voting for Bins framework to the
three standard pooling functions for imprecise probabilities: convex pooling, lin-
ear pooling, and logarithmic pooling. We formally introduce these three methods
before subsequently presenting the Voting for Bins framework. For each pooling
method, we define a finite set A = {a1, . . . , an} comprising n agents.

Let H denote the convex hull of a set, representing the smallest set that
contains the original set and all elements in between. Convex pooling is defined
as follows:



Definition 3 (Convex Pooling). F(P1, ...,Pn)(A) = H(
⋃n

i=1 Pi(A))[15].

Intuitively, for a given proposition A, convex pooling takes as input n impre-
cise degrees of belief and returns a single interval. The lower probability of the
interval is the lowest endpoint from the input profile, while the upper probability
is the greatest endpoint from the profile.

For linear pooling, the input profile is represented by specifying the lower
and upper probabilities of each imprecise degree of belief. Let λi denote a weight
assigned to the belief of each agent i [11].

Definition 4 (Linear Pooling). F([a1, b1], ..., [an, bn])(A) = [
∑

i λiai,
∑

i λibi].

In other words, linear pooling provides a weighted average of the lower and
upper probabilities of the input profile.

Finally, logarithmic pooling can be understood as the weighted geometric
mean of the lower and upper probabilities of the input profile [12]:

Definition 5 (Logarithmic Pooling).

F([a1, b1], ..., [an, bn])(A) =

[ ∏n
i a

λi
i∏n

i a
λi
i +

∏n
i (1−ai)λi

,
∏n

i b
λi
i∏n

i b
λi
i +

∏n
i (1−bi)λi

]
.

Voting for Bins. The presentation of Voting for Bins (VfB) follows and simpli-
fies the one of Karge (2023) [9]. VfB, being a voting method, assumes a finite set
W = {ω1, . . . , ωm} of m items referred to as alternatives. Among these alterna-
tives, there exists one designated as the correct alternative, denoted by ω∗. The
underlying voting method employed is referred to as approval voting, wherein
each agent is permitted to vote for any number of alternatives from W. The al-
ternative that garners strictly more votes than any other wins the approval vote.
Since the correct alternative is unknown to the agents, each agent i possesses a
certain probability pω∗

i of voting for the correct alternative, along with probabili-
ties of voting for every incorrect alternative p

ω†
i . In order to apply the Condorcet

Jury Theorem (CJT), it is necessary to assume that, on average, agents are more
inclined to vote for the correct alternative than for any incorrect one: Let p̄ωk

denote the average probability across agents to approve a given alternative k
and let ∆p > 0, then for every n and ω† ∈ W \ {ω∗} it must hold that

p̄ω∗ ≥ ∆p+ p̄ω† .

Furthermore, it is necessary to assume the independence of the electorate,
meaning that agents neither influence one another in the voting process nor
are influenced by external factors. In VfB, each alternative is interpreted as a
subinterval of the unit interval of equal length, where each subinterval is referred
to as a bin:

Definition 6 (Bin). Each ωk ∈ W = ω1, . . . , ωm represents a subinterval (bin)
of the form [ak, ak+1), obtained by partitioning the unit interval ensuring that
each ωk has equal Lebesgue measure. The final subinterval is of the form [am, 1].



Note that the Lebesgue measure is the standard method for measuring the
length of an interval: For any closed [a, b], open (a, b), or half-open (a, b] or [a, b)
interval, its Lebesgue measure is defined as the length l = b − a. Moreover, it’s
important to note that the number of bins in the voting process depends on the
desired precision. As the winner of the approval vote is a single bin, the smaller
its Lebesgue measure - indicating more bins - the more precise the outcome of
the election. Next, we explore how agents vote for bins. Inspired by modified
supervaluationism [7, 8], a philosophical theory to address vagueness, intuitively,
each agent votes for the set of bins they are predominantly confident in:

Definition 7 (Predominant Confidence - Bins). Let A be a proposition,
and P(A) = [a, b] represent an agent’s imprecise degree of belief in A. Given
a set of bins, B, we say that an agent is predominantly confident in Bj if the
intersection of P(A) and Bj has a greater Lebesque measure than the intersection
of P(A) and any other bin, Bk, denoted as l(P(A)∩Bj) ≥ maxBk∈B\Bj

l(P(A)∩
Bk) for all Bj , Bk ∈ B.

From this, it is straightforward to define how agents vote in VfB:

Definition 8 (Voting for Bins). We say that an agent ai votes for an alter-
native ωj if she is predominantly confident in that alternative.

Example 2. Let there be two bins for proposition A with B1 = [0, 0.5) and
B2 = [0.5, 1] and two agents with P1(A) = [0.3, 0.9] and P2(A) = [0, 1]. We have
P1(A)∩B1 = [0.3, 0.5) and P(A)1∩B2 = [0.5, 0.9] as well as P2(A)∩B1 = [0, 0.5)
and P2(A) ∩B2 = [0.5, 1]. This yields l(P1(A) ∩B1) = 0.2, l(P1(A) ∩B2) = 0.4
as well as l(P2(A)∩B1) = l(P2(A)∩B2) = 0.5. Thus, agent 1 votes for B2 only,
whereas agent 2 votes for both bins. Hence, B2 wins the approval vote with 2
votes.

Note that when there is a tie among alternatives with no bin having strictly
more votes than any other, VfB(P1, ...,Pn) = ∅. With the direct correspondence
between the alternatives in an election and subintervals of the unit interval (the
bins), we can establish a bound on the maximal number of bins permitted for a
given set of input parameters, as derived in Karge (2023) [9].

Theorem 1. For n independent agents where ∆p ∈ (0, 1), the worst case ap-
proval vote success probability is at least Pmin whenever the number of alterna-
tives is equal or lower than

max( (1−Pmin)

(2e
−
1
2n∆p2

)

+ 1, (1−Pmin)(1+(n−1)∆p2)
2(1−∆p2) + 1). (1)

Finally, this translates straightforwardly into the maximal allowed precision
in percent, denoted by C where we define C to be the proportion of the unit
interval covered by a subinterval given by C = 100

m .

Example 3. Suppose ∆p = 0.3, Pmin = 0.9, and n = 150. Then, we may allow
for 43 bins of equal Lebesque measure. This translates to a precision of 2.23%.



3 Simulations

This section presents a comparative analysis of VfB as a pooling method against
three standard pooling methods through multi-agent simulations. The perfor-
mance of a pooling method is assessed by assigning an epistemic value to its
outcome, defined as V(K,w) = αE(K,w) + (1 − α)T(K,w) [11]. Here, E(K,w)
represents the truth value of belief K at state of world w, set to 1 if the pooled be-
lief contains the correct probability for the event. The informativeness, T(K,w),
is defined as 1 − l(F(P1, ...,Pn)), where l(F(P1, ...,Pn)) denotes the Lebesque
measure of the aggregated belief function, reflecting the principle that smaller
pooled beliefs are more informative. We balance E and T through α.

(a) n = 100, ∆p = 0.4, t = 10% (b) n = 100, ∆p = 0.4, t = 100% (c) n = 750, ∆p = 0.15, t = 10%

(d) n = 25, ∆p = 0.7, t = 50% (e) n = 10, ∆p = 0.9, t = 100% (f) n = 50, ∆p = 0.5, t = 100%

For our simulations, we generate imprecise probabilistic beliefs for a single
proposition using input parameters ∆p, Pmin, l, α, n, and t, along with a ran-
domly generated true probability p∗ ∈ [0, 1] for the event. In the simulations,
∆p represents the margin by which the agents are more likely to have their be-
lief centered around p∗. Pmin denotes the minimal success probability for VfB
to identify p∗. n indicates the number of agents, while l denotes the number
of rounds for a single parameter input, during which new imprecise beliefs are



(g) n = 5000, ∆p = 0.05, t = 50% (h) n = 100, ∆p = 0.3, t = 100% (i) n = 40, ∆p = 0.4, t = 100%

Fig. 3: Plots (a)-(g) show the average epistemic values of the four pooling functions for α = 0.5 and
a high number of voting simulations, plot (h) considers different α-values, and (i) shows epistemic
values for VfB for single voting rounds.

generated and aggregated. α represents the weight assigned to either truth or in-
formativeness in computing the epistemic value, and t represents the percentage
of the maximal number of bins, given by Theorem 2, to be constructed.

We begin by computing the number of bins, representing the desired preci-
sion, for a given set of input parameters, ensuring that p∗ falls within one of
these bins. Subsequently, we construct imprecise beliefs that not only correlate
with ∆p but also allow for heterogeneity, meaning that some beliefs may be un-
likely to include p∗ as long as ∆p remains respected. The construction of these
imprecise beliefs in our algorithm is rather complex; due to space constraints,
we refer readers to the provided code repository3 for a detailed pseudocode de-
scription and the Rust implementation. Once the imprecise beliefs and bins are
established, we conduct a single voting round of VfB and compute the aggregate
for the same beliefs using the three standard pooling functions. Subsequently, we
compute the epistemic value for each aggregate. This process is iterated 1,000
times for each parameter setting, generating new sets of imprecise beliefs in each
round while maintaining p∗ fixed. The average epistemic value of each pooling
function over these rounds is then determined. For linear and logarithmic pool-
ing, we employed equal weights for all beliefs across all simulations to ensure
a fair comparison, although VfB could potentially be extended to weighted ap-
proval voting. The computation of optimal weights based on input beliefs for
each method is left for future investigation. Additionally, to provide a visual
representation of the underlying beliefs and computed pools, we present the av-
erage imprecise degree of belief across all agents and voting rounds alongside the
average aggregate for all pooling functions. These averages are computed by av-
eraging the lower and upper probabilities of all imprecise beliefs and aggregates,
respectively.

Plots (a) through (g) are generated with Pmin = 0.9 and α = 0.5, while
varying n, ∆p, and t, aiming for large and small n as well as high and low ∆p.
3 For a detailed implementation and pseudocode of our algorithm, please refer to the

GitHub repository at https://github.com/lea-bauer/multi-agent-opinion-pooling-
by-voting-for-bins-simulations/tree/main.



The plots consistently demonstrate VfB outperforming the other three pooling
methods, with linear pooling achieving relatively high epistemic values for large
n. In contrast, logarithmic and convex pooling yield epistemic values centered
around 0.5 due to the large aggregates produced by both methods when n is
large, but perform quite well for small number of agents. Plot (h) depicts the
variation in epistemic values across 20 different α values spanning the unit in-
terval, with Pmin = 0.8. Plot (i) focuses solely on VfB in 10 voting rounds with
Pmin = 0.1, showcasing the epistemic value and average aggregate per round.
As expected, when the pool corresponds to the ground truth bin, the epistemic
value approaches 1, indicating a relatively precise aggregate. However, in rounds
3 and 4, a bin excluding p∗ emerges victorious in the approval vote, while round
5 results in a tie, leading VfB to map to the empty set, thereby yielding an
epistemic value of 0.

Despite the promising performance of VfB, it is important to highlight that
it comes with three major drawbacks: (1) it necessitates additional information
about the group of agents, particularly an estimate for ∆p. Moreover, (2) for a
given number of agents, there must be a certain minimal competence threshold
satisfied, as elaborated in [9]. Without meeting this threshold, and for specific
combinations of n, ∆p, and Pmin, fewer than two bins are permissible, rendering
VfB inapplicable. Finally, (3) VfB assumes the agents to be independent.

4 Characterization

In the following section, we explore a set of desirable properties for pooling
functions. Analogous to voting rules in the social choice literature, it has been
demonstrated that not all desirable properties outlined in the literature can be
simultaneously satisfied when pooling precise probabilistic beliefs [12]. This lim-
itation also extends to pooling imprecise beliefs [17]. We adopt the presentation
of a subset of central, desirable properties that can be simultaneously satisfied,
as collected and generalized to imprecise pooling in the work of Quintana [15].

In this study, certain original properties have been adapted to fit into the
imprecise pooling framework while preserving their essence from their original
formulation in the precise setting. We proceed in a similar fashion. Initially, we
acknowledge that these functions typically take as input only a profile. Consid-
ering Voting for Bins as a pooling method, we need to expand the function’s
input to include the number of bins the agents can vote for, which is determined
by ∆p, Pmin, and n. We denote the set of bins by B with B = {B1, ..., Bm} and
include this in the input of the pooling function for each property presentation.
Secondly, some of the original properties are not expected to hold when vot-
ing on probability intervals, but can be salvaged by slight modifications. Those
properties will be highlighted by a superscript ∗.

The first property is known as the Strong Setwise Function Property (SSFP).
It is defined over a common algebra A∗ for all profiles with P(P) denoting the
power set of the set of all probability functions over A∗ [15] and where [0, 1]n is
shorthand notation for taking n values from [0, 1] [17]. It states that:



Definition 9 (SSFP). There exists a function G : (P([0, 1]n),B) → P([0, 1])
such that for every event A ∈ A∗,F(P1, ...,Pn,B)(A) = G(P1(A), ...,Pn(A),B).

Intuitively, this property states that pooling two profiles with respect to a
proposition A depends only on the values these profiles assign to A. For certain
pooling functions, it may occur that two profiles, identical regarding A, produce
different outcomes when their values for A are pooled, simply because they
differ in another event B. In such cases, no such function could exist [17]. We
demonstrate that VfB satisfies SSFP.

Proof. This proof, analogous to the one in [15] for convex pooling, is straight-
forward. Let G be VfB, and observe that VfB solely takes the probabilities for
proposition A as input for a set of bins. Trivially, F = G as F equals VfB by
assumption.

The next desirable property is known as the Zero Preservation Property
(ZPP). Intuitively, it states that when every agent holds a precise belief equal to
0 for a proposition A to be true, the aggregated belief should also be equal to 0.
However, ZPP does not hold for VfB, as the aggregate depends on the number
and width of the bins, which in turn depend on ∆p, Pmin, and n. For example,
consider a scenario with only two bins [0, 0.5) and [0.5, 1]. According to VfB,
[0, 0.5) wins the election when every agent holds a belief of 0 in that proposition,
yet [0, 0.5) ̸= 0. Although ZPP does not hold in general, we can reformulate this
property to align with our voting framework.

Definition 10 (ZPP∗). For any A ∈ A ∗, if Pi(A) = 0 for all i = 1, ..., n, then
F(P1, ...,Pn,B)(A) = [a, b] such that 0 ∈ [a, b].

Proof. Let there be n agents, each agent holding a belief Pi(A) = 0 for a given
proposition A. Then, for any ∆p,Pmin and, thereby, any number of bins, there
exists a leftmost bin of the form B1 = [0, b]. By construction of the bins, 0 /∈ Bk

for Bk ̸= B1. Thus, for all i, k, l(Pi(A) ∩ B1) ≥ l(Pi(A) ∩ Bk). As 0 ∈ B1 and
since n,∆p, Pmin as well as the width and number of bins Bk are arbitrarily
chosen, VfB satisfies ZPP∗.

In a similar vein, the Unanimity Preservation Property (UP) states that if all
agents have the same imprecise belief in a proposition, their pool should exactly
reflect that belief:

Definition 11 (UP). For all (P1, ...,Pn) ∈ Pn, if Pi = Pj for all i, j = 1, ..., n,
then F(P1, ...,Pn) = Pi.

By a similar argument as for ZPP, it is straightforward to show that UP does
not hold in general, as the aggregate depends on the number and width of bins.
Moreover, we cannot define an analogous property to ZPP∗, since not every value
P ∈ Pi is necessarily in the winning bin. For example, consider a setting with
only two bins [0, 0.5), [0.5, 1] and Pi = [0.4, 1]. In that case the pool is [0.5, 1], but
for all elements P ∈ [0.4, 0.5) it holds that they are not in aggregate. Nonetheless,



by the definition of VfB, it can be guaranteed that the largest part of the group
belief will be preserved through aggregation. The following property is known
as Confirmational Irrelevance Preservation (IP) and states intuitively that if
updating each precise probability for an event A within an agent’s imprecise
belief by an event B that is independent of A, then the aggregate of our pooling
function should be equal to conditionalizing the aggregate of our pooling on B.
For this, let FB(P1, ...,Pn,B)(A) denote the result from conditionalizing each
member of the aggregate on B [17]. In the original formalization of IP, it is
assumed that P(A | B) = P(A) for all P ∈

⋃n
i=1 Pi [15]. We slightly alter, but

preserve the essence of, IP by assuming that P(A | B) = P(A) for all conceivable
probability functions, not just the ones actually held by the agents:

Definition 12 (IP∗). If P(A | B) = P(A) for all P, then F(P1, ...,Pn,B)(A) =
FB(P1, ...,Pn,B)(A).

Proof. Let P(A | B) = P(A) for all P. We need to show that VfB(P1, ...,Pn,B)(A)
= VfBB(P1, ...,Pn,B)(A). Let B∗ denote the winning bin with precise probabili-
ties Pi ∈ B∗. As VfBB(P1, ...,Pn,B)(A) results from updating each Pi ∈ B∗ and
since P(A | B) = P(A) for all P, the equality holds.

Observe that the original IP does not hold as the winning bin may contain values
P /∈

⋃n
i=1 Pi such that P(A | B) ̸= P(A). When updating those values within the

winning bin, we can construct a counterexample such that F(P1, ...,Pn,B)(A) ̸=
FB(P1, ...,Pn,B)(A). The next property, External Bayesianity (EB), states that
when a probability function is updated by a likelihood function λ (instead of
an event) before aggregation, it should yield the same result as the aggregate
updated by the same likelihood function.

Definition 13 (EB). For every profile (P1, ...,Pn) in the domain of F and
every likelihood function λ such that (Pλ

1 , ...,Pλ
n) remains in the domain of F ,

F (Pλ
1 , ...,Pλ

n ,B) = Fλ(P1, ...,Pn,B).

Here Pλ
i = {Pλ

j : Pj ∈ Pi}, where updating an imprecise belief by a like-
lihood function involves updating all precise members of that belief according
to the formula Pλ(·) = P(·)λ(·)∑

ω′∈Ω P(ω′)λ(ω′) provided
∑

ω P(ω)λ(ω) > 0 . Updating
a profile of imprecise beliefs by a likelihood function can then be defined as
Fλ(P1, ...,Pn,B) = {Pλ : P ∈ F(P1, ...,Pn,B)} [15]. However, EB does not hold
for VfB.

Counterexample. Suppose, we have a single agent holding the belief P1(A) =
0.5 for the event A = ω1 and that Ω = {ω1, ω2} with ω2 = ¬A. Moreover,
assume that λ(ω1) = 0.6 and λ(ω2) = 0.4. We choose ∆p and Pmin in such a
way that there exists only two bins. Consider F (Pλ

1 , ...,Pλ
n ,B) = VfB(Pλ

1 (A),B).
By definition, Pλ

1 (A) represents the updated belief after applying the likelihood
function λ to all possible outcomes with Pλ

1 (A) = 0.6. This yields VfB(0.6,B) =
[0.5, 1] as the winning bin. Now, consider Fλ(P1, ...,Pn,B) = VfBλ(P1(A),B).
Since P1(A) = 0.5 by assumption, this is equal to VfBλ(0.5,B). Recall that



Fλ(P1, ...,Pn,B) = {Pλ : P ∈ F(P1, ...,Pn,B)}. Since VfB(0.5,B) = [0.5, 1], we
have that VfBλ(P1(A),B) = [0.6, 1] by updating each member of the winning
bin. As [0.5, 1] ̸= [0.6, 1], we conclude that F(Pλ

1 , ...,Pλ
n ,B) ̸= Fλ(P1, ...,Pn,B).

Two additional properties merit consideration in evaluating imprecise pooling
functions [15]: the Weak Setwise Function Property (WSFP) and the Marginal-
ization Property (MP). We delve into these properties on an intuitive level, as
they naturally stem from preceding properties. WSFP, akin to SSFP but incor-
porating an additional input event A, ensures consistency in mapping profiles
of imprecise beliefs to their respective values, regardless of the associated event.
Given that SSFP implies WSFP [17], it follows that VfB adheres to WSFP. Ad-
ditionally, MP dictates that when the relevant algebra for aggregation is reduced
by eliminating irrelevant events, the result of the aggregation remains unchanged.
It has previously been shown that any imprecise pooling function satisfies MP
iff it satisfies WSFP [17]. As VfB upholds WSFP, it inherently satisfies MP.

The following table offers a compari-
son of satisfied and unsatisfied prop-
erties among pooling methods, in-
cluding VfB, Linear Pooling, Loga-
rithmic Pooling (also known as ge-
ometric pooling [5]), and Convex
Pooling. It extends the previously
known characterization of the stan-
dard pooling methods [17] by VfB.
Instances where VfB only fulfills
modified versions of certain proper-
ties are indicated by ∗.

Linear Convex Logarithmic VfB

SSFP ✓ ✓ × ✓
WSFP ✓ ✓ × ✓
ZPP ✓ ✓ ✓ ∗
UP ✓ ✓ ✓ ×
IP × ✓ × ∗
EB × ✓ ✓ ×
MP ✓ ✓ × ✓

5 Summary and Future Work

In this work, we conducted a comparative analysis between VfB and three stan-
dard pooling functions for imprecise probabilistic beliefs using multi-agent sim-
ulations. Assessing their performance through epistemic values, we consistently
observed VfB outperforming the standard pooling functions across all consid-
ered parameter settings. Secondly, we integrated VfB into the imprecise pooling
framework, revealing that its superior performance is accompanied by a trade-
off—it satisfies fewer properties than linear and convex pooling, especially. Ad-
ditionally, VfB necessitates an estimate of agent competencies and assumes an
independent electorate. Moving forward, we plan to extend the comparative anal-
ysis to VfB with weighted approval voting. In this setting, we aim at assigning
optimal weights to each agents based on their beliefs and proceed analogously
for linear and logarithmic pooling.
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6 Appendix

Simulations in Pseudocode. We consider the following set of input parameters:

– n: the number of agents;
– ∆p: the margin by which the agents are on average more likely to include p∗

in their belief;
– Pmin: the minimal success probability required for VfB to identify the correct

bin;
– t: the percentage of the maximal bins constructed;
– α: the weight balancing truth and informativeness when computing the epis-

temic value;
– l: the number of times imprecise beliefs are constructed for one parameter

input.

Moreover, we restate the bound provided on the number of bins and refer to
its outcome for a specific set of input parameters as max :

Theorem 2. For n independent agents where ∆p ∈ (0, 1), the worst case ap-
proval vote success probability is at least Pmin whenever the number of alterna-
tives is equal or lower than

max( (1−pmin)

(2e
−
1
2n∆p2

)

+ 1, (1−pmin)(1+(n−1)∆p2)
2(1−∆p2) + 1). (2)

Algorithm 1. The simulations were conducted as depicted by Algorithm 1. Upon
receiving a predetermined set of input parameters, the algorithm initiates by
computing the number of bins m using theorem 2 and t. These bins, indicative
of the precision achieved by VfB, are crucial for constructing the agents’ beliefs.
Subsequently, a random value p∗ is generated, representing the true probability
for the event under consideration. This probability inevitably falls within a sin-
gle bin, termed the ground truth bin. Subsequently, the algorithm enters a for
loop iterating over the number of simulation rounds. For every agent, the algo-
rithm generates imprecise beliefs (Subroutine 2) based on precise probabilities
generated to reflect the likelihood of their beliefs encompassing values from one
or more bins (Subroutine 1). Further explanations of both subroutines are pro-
vided below. Upon belief construction, Algorithm 1 computes the aggregate of
every considered pooling function along with its corresponding epistemic value.
Ultimately, Algorithm 1 calculates the average epistemic value of each pooling
function across all simulation rounds, alongside an average imprecise belief and
aggregate. The latter two are computed by summing all lower and upper prob-
abilities, respectively, and dividing by the total number of these probabilities
across all agents and simulation rounds.

Subroutine 1, Algorithm 2. The first subroutine is responsible for generating
precise probabilities to ensure that agents include specific bins in their imprecise
beliefs, meeting the ∆p condition. Recall that ∆p represents the margin by



Algorithm 1: Simulations with n agents.
1 Procedure simulations(n,∆p, Pmin, t, α, l)
2 m← ⌊max×t

100
⌋;

3 p⋆ ← value from uniform distribution over [0, 1] choose ground truth bin
ω∗ s.t. p⋆ ∈ ω∗

4 for 1 . . . ℓ do
5 Subroutine 1: Construct precise probabilities p

ωj

i ∀i ∈ A, ∀j ∈ W;
6 Subroutine 2: Construct imprecise beliefs Pi ∀i ∈ A;
7 for VfB, Linear, Log, Convex do
8 Compute Aggregate F(P1, ...,Pn)
9 Compute Epistemic Value V(F(P1, ...,Pn))

10 end
11 end
12 for VfB, Linear, Log, Convex do
13 Compute average V: V̄ ← 1

l

∑l
k=1 Vk

14 Compute average P: Let lp1 and up1 be all lower and upper
probabilities for each l and each Pi:
P̄ ← [ 1

(l×n)

∑(l×n)
k=1 lp1k,

1
(l×n)

∑(l×n)
k=1 up1k]

15 Compute average F(P1, ...,Pn): Let lp2 and up2 be all lower and
upper probabilities for each l and each F(P1, ...,Pn):
F̄(P1, ...,Pn)← [ 1

(l×n)

∑(l×n)
k=1 lp2k,

1
(l×n)

∑(l×n)
k=1 up2k]

16 end

which agents are, on average, more likely to vote for the ground truth bin than
for any other. By construction of our algorithm and the definition of VfB, this is
equivalent to saying that an agent’s belief is centered around the ground truth
bin with a probability meeting the ∆p condition. Beginning with the ground
truth bin containing the correct probability, we initialize a target value, denoted
by E(p̄ω∗), sampled from a uniform distribution ranging between ∆p and 1. Here,
(p̄ω∗) signifies the average probability for the ground truth bin to be the center of
the agent’s belief. Subsequently, we compute the standard deviation σ(E(p̄ω∗)),
setting it as min(E(p̄),1−E(p̄))

3 to ensure that the precise values constructed for
this target probability are centered closely around E(p̄ω∗) with a high likelihood.
Given σ(E(p̄ω∗)), we proceed to generate precise probabilities for each agent,
where each pω∗

i reflects the probability for agent i to include p∗ in their belief,
following a normal distribution centered around E(p̄ω∗).

In the process of constructing these values according to a normal distribution,
it’s possible that some outliers may fall below 0 or exceed 1. To address this,
we implement a clipping mechanism where outliers less than 0 are set to 0 and
those greater than 1 are set to 1. For VfB applicability, we must ensure that p̄ω∗

is at least ∆p. When a significant number of outliers exceeding 1 are clipped, the
average of the generated precise probabilities may fall below E(p̄ω∗), potentially
violating the ∆p condition. Therefore, Algorithm 2 calculates the actual average
value (p̄ω∗) from the precise probabilities and verifies if the ∆p condition holds.



If not, a new set of precise probabilities must be generated until the condition
is satisfied. If the condition is met, the procedure is repeated for all bins except
the ground truth bin and all agents. In this scenario, (E(p̄ω†)) must fall between
0 and p̄ω∗ −∆p to satisfy the ∆p condition. Consequently, (E(p̄ω†)) is set within
these bounds, and a final check ensures that the average of the actual precise
values after clipping, p̄ω† , is less than p̄ω∗ − ∆p. If the condition is not met,
all precise probabilities default to (E(p̄ω†)) to ensure expedited termination, as
(E(p̄ω†)) inherently meets the ∆p condition.

Algorithm 2: Construction of Precise Probabilities for n agents.
1 Procedure simulations(n,∆p, Pmin, t, α, l)
2 E(p̄ω∗)← value from uniform distribution over [∆p, 1]

3 σ(E(p̄ω∗))← min(E(p̄ω∗ ),1−E(p̄ω∗ ))
3

4 generate pω∗
1 , ..., pω∗

n following normal distribution with σ(E(p̄ω∗))
5 s.t ∀pω∗

i < 0→ 0 and ∀pω∗
i > 1→ 1;

6 p̄ω∗ ← 1
n

∑n
1 pω∗

i ;
7 If p̄ω∗ ≥ ∆p proceed, otherwise redo lines 2-6
8 for ∀ω† ∈ W \ ω∗ do
9 E(p̄ω†)← value from uniform distribution over [0, p̄ω∗ −∆p]

10 generate p
ω†
1 , ..., p

ω†
n following normal distribution with σ(E(p̄ω†)) s.t

∀pω†
i < 0→ 0, ∀pω†

i > 1→ 1 and σ(E(p̄ω†))← min(E(p̄
ω† ),1−E(p̄

ω† ))
3

;
11 Compute p̄ω† ← 1

n

∑n
1 p

ω†
i ;

12 If p̄ω† ≤ (p̄ω∗ −∆p) proceed,
13 otherwise ∀pω†

i = E(p̄ω†)

14 end

Subroutine 2, Algorithm 3. In this second subroutine, we generate imprecise
beliefs based on the outcomes of the first subroutine. Initially, we ensure the
∆p condition is met. For each agent, a random number a is generated within
the range of 0 to 1. We validate if a lies within the interval of 0 to the agent’s
precise probability for the ground truth bin. If affirmative, the imprecise belief is
centered around the ground truth bin. Otherwise, if a falls outside this interval,
the imprecise degree must be constructed from a bin other than the ground truth
bin. To determine the belief center, we establish intervals for each bin, wider for
bins with higher precise probabilities for the respective agent. These intervals
form an ordered chain s1, ..., sm, where each interval’s upper probability is the
lower probability of the next, and the new upper probability is the sum of the
previous upper probability and the precise value for the current bin, except that
the precise value for the ground truth bin is substituted by 0. Subsequently, a
random number b is generated between 0 and the sum of all precise beliefs of
the agent for all bins except the ground truth bin. The interval containing b is
designated as the center of the agent’s imprecise belief.



Algorithm 3: Construction of Imprecise Beliefs.
1 Procedure simulations(n,∆p, Pmin, t, α, l)
2 for 1 . . . n do
3 Generate random number a following uniform distribution over [0, 1]
4 If a ∈ [0, pω∗

i ], then construct belief center of Pi from ω∗, otherwise
5 ∀ω† ∈ W form intervals of the form
6 [0, pω1

i ], [pω1
i , pω1

i + pω2
i ], ..., [

∑ωm−1
ω1

,
∑ωm

ω1
] = s1, ..., sj , ..., sm with

pω∗
i

!
= 0.

7 generate random number b from [0,
∑ωm−1

ω1
]

8 if b ∈ sj then
9 Construct belief center of Pi from ωj

10 end
11 Fix ωj as belief center.
12 for ∀ωl ∈ W \ ωj do
13 Generate random number from c from [0, 1].
14 if c ∈ [0, p

ωl
i ] then

15 Save (ai, ωl)
16 end
17 if there exists a path from ωj to ωl such that ∀ωt in between j, l, we

have (ai, ωt) then
18 P = [ωjl , ωjr ] otherwise P = ωj = [aj , aj+1].
19 end
20 end
21 end

In the second part of Algorithm 3, we designate the bin determined as the
belief center and denote it as ωj . The algorithm then iterates over all bins ωl

other than ωj and generates a random number c from the unit interval. For each
bin, it checks if c falls into the interval [0, pωl

i ]. If affirmative, it records (ai, ωl),
indicating that if the imprecise degree of belief were not convex, values from this
bin would be included in the agent’s imprecise belief. Considering the convexity
requirement, the algorithm proceeds to verify if a path of bins exists from ωj to
its left and right, where each bin ωt along this path satisfies (ai, ωt). Should such
a path exist, the agent’s imprecise belief is the interval [ωjl, ωjr], where ωjl is the
lower probability of the leftmost included bin and ωjr is the upper probability of
the rightmost included bin. If no such path exists, the imprecise belief defaults
to the whole width of the center bin.


