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Abstract. We describe OntoComP, a Protégé 4 plugin that sup-
ports knowledge engineers in completing DL-based ontologies. More pre-
cisely, OntoComP supports a knowledge engineer in checking whether
an ontology contains all the relevant information about the application
domain, and in extending the ontology appropriately if this is not the
case. It acquires complete knowledge about the application domain ef-
ficiently by asking successive questions to the knowledge engineer. By
using novel techniques from Formal Concept Analysis, it ensures that,
on the one hand, the interaction with the knowledge engineer is kept to
a minimum, and, on the other hand, the resulting ontology is complete
in a certain well-defined sense.

1 Introduction

Since the standardization of OWL as the ontology language for the Seman-
tic Web [9], several ontology editors now support OWL [12, 11], and ontologies
written in OWL are employed in more and more applications in various domains.
As the number and size of these ontologies grow, tools that support improving
and maintaining their quality become more important. The tools available un-
til now mostly deal with detecting inconsistencies and inferring consequences,
i.e., implicit knowledge that can be deduced from the knowledge explicitly rep-
resented in the ontology. There are also promising approaches that allow to
pinpoint the reasons for inconsistencies and for certain unwanted consequences.
These approaches address the quality dimension of soundness of an ontology,
both within itself (consistency) and w.r.t. the intended application domain (no
unwanted consequences). In our previous work [2, 15], we have considered a dif-
ferent quality dimension, namely completeness of the knowledge in an ontology.
We have provided a formally well-founded technique called ontology completion,
that supports the ontology engineer in checking whether an ontology contains
all the relevant information about the application domain, and in extending the
ontology appropriately if this is not the case. In ontology completion, given an
application domain and a DL-based ontology describing it, we are interested in
checking whether all relevant constraints that hold between concepts in the do-
main are captured by the TBox, and whether all relevant individuals existing in
the domain are represented in the ABox.
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Clearly, these questions cannot be answered by an automated tool alone. In
order to check whether a given relationship between concepts—which does not
already follow from the TBox—holds in the domain, one needs to ask a domain
expert, and the same is true for questions regarding the existence of individuals
not described in the ABox. The role of the ontology completion tool here is
to ensure that the expert is asked as few questions as possible; in particular,
she should not be asked trivial questions, i.e., questions that could actually be
answered based on the represented knowledge.

2 Motivating example

As an example of how ontology completion supports the ontology engineer in
practice, consider the OWL ontology for human protein phosphatases that has
been described and used in [21]. This ontology was developed based on infor-
mation from peer-reviewed publications. The human protein phosphatase family
has been well characterised experimentally, and detailed knowledge about dif-
ferent classes of such proteins is available. This knowledge is represented in the
terminological part of the ontology. Moreover, a large set of human phosphatases
has been identified and documented by expert biologists. These are described
as individuals in the assertional part of the ontology. One can now ask whether
the information about protein phosphatases contained in this ontology is com-
plete. That is, are all the relationships that hold among the introduced classes of
phosphatases captured by the constraints in the TBox, or are there relationships
that hold in the domain, but do not follow from the TBox? Are all possible kinds
of human protein phosphatases represented by individuals in the ABox, or are
there phosphatases that have not yet been included in the ontology or even not
yet been identified?

Clearly, these questions need to be answered by a biologist. In this exam-
ple, answering a non-trivial question regarding human protein phosphatases
may require the biologist to study the relevant literature, query existing pro-
tein databases, or even to carry out new experiments. Thus, the expert may be
prompted to acquire new biological knowledge.

3 Ontology Completion

The key technologies lying under ontology completion are Description Logic
reasoning, and the attribute exploration method developed in Formal Concept
Analysis (FCA) [7]. FCA is a field of applied mathematics that aims to formalize
the notions of a concept and a conceptual hierarchy by means of mathematical
tools. It is used for conceptual data analysis and knowledge processing. Attribute
exploration is a knowledge acquisition method of FCA that is used to acquire
complete knowledge about an application domain by asking successive questions
to a domain expert. In [2, 15] we have presented an adaptation of this method
for completing a DL knowledge base w.r.t. a fixed model. It assumes the exis-
tence of a domain expert that has (or can obtain) enough information about an



Fig. 1. Ontology completion process

application domain I to be able to answer implication questions of the form “Is
L→ R refuted by I?”, where L and R are sets of concept names from the given
ontology. We say that an individual refutes such an implication question if it is
an instance of all concepts in L, and it is an instance of the complement of at
least one concept in R. Accordingly, we say that a domain (an ABox) refutes an
implication if it contains an individual (instance) that refutes this implication
question. Given a DL knowledge base (T0,A0), and a model I of this knowledge
base that is a formal representation of the application domain, our completion
algorithm successively asks questions of the above form. If the expert answers
“no”, then L → R is not refuted by I according to the expert’s opinion, and
thus the GCI uL v uR is added to the current TBox, and the knowledge base is



reclassified. Since L→ R is not refuted by I, the interpretation I is still a model
of the new TBox obtained this way. If the expert answers “yes”, then according
to the expert’s opinion there exists an individual that refutes this question. The
expert is asked to extend the current ABox (by adding appropriate assertions on
either old or new individual names) such that the extended ABox refutes L→ R
and I is still a model of this ABox. Upon extension of the ABox, the knowledge
base is reclassified and the process continues with the next implication question
that does not follow from T and that is not refuted by A. Once all such questions
are answered in this way the knowledge base is complete in a certain well-defined
sense [2].

It is possible to optimize this algorithm by employing DL reasoning. Before
actually asking the expert whether the implication L → R is refuted by I, we
can first check whether uL v uR already follows from the current TBox. If this
is the case, then we know that L → R cannot be refuted by I. Similarly, there
are also cases where an implication can be rejected without asking the expert
because accepting it would make the knowledge base inconsistent. However, in
this case the expert still needs to extend the ABox such that the implication is
refuted. The following example illustrates this case, which was not taken into
account in the original version of the completion algorithm in [2].

Example 1. Consider the knowledge base (T ,A) with the empty TBox T = ∅,
and the ABox A = {(∃r.A u ∀r.¬B)(a)}. Clearly, the implication {A} → {B}
does not follow from T . Moreover, it is not refuted by A because this ABox does
not explicitly contain a named individual that is an instance of both A and ¬B.
That is, the implication {A} → {B} will be asked to the expert at some step
during the execution of the algorithm. If the user accepts this implication, and
thus the GCI A v B is added to T , the knowledge base will become inconsistent
since the assertion in A enforces the existence of an implicit individual that
belongs to both A and ¬B. This shows that this GCI cannot hold in the intended
model I of (T ,A).

An improved version of the completion algorithm that takes this case into ac-
count has been given in [4]. Whenever a new implication question L → R that
does not already follow from the TBox is generated, before asking the expert
this algorithm checks whether addition of the GCI uL v uR will make the TBox
inconsistent. If this is the case, it directly asks the expert to provide a counterex-
ample to L→ R. For details of this algorithm the reader is referred to [4]. In the
following we demonstrate the execution of this algorithm on a small knowledge
base about countries and some of their properties where the intended model I
is the “real world”.

Example 2. Assume our knowledge base defines a coastal country as a country
that has a border to a sea or an ocean; a Mediterranean country as a country that
has border to the Mediterranean Sea; a German-speaking country as a country
that has the language German as an official language; and an EU member as a



Acountries Coastal Mediterranean EUmember GermanSpeaking

Italy + + + −
India + − − −

Germany + − + +
Austria − − + ?

Table 1. The ABox before completion

country that is a member of the EU.

Tcountries := { Coastal ≡ Country u ∃hasBorderTo.(Ocean t Sea)
EUmember ≡ Country u ∃isMemberOf.{EU}

Mediterranean ≡ Country u ∃hasBorderTo.{MediterraneanSea}
GermanSpeaking ≡ Country u ∃hasOfficialLanguage.{German} }

Table 1 demonstrates the assertions in our ABox Acountries where a + for a con-
cept name C and an individual i means that i is an instance of C, − means that i
is an instance of ¬C, and a ? means that nothing follows from our knowledge base
about membership of i in C. Given this ABox and the TBox, the first implica-
tion question posed to the expert is {GermanSpeaking} → {EUmember, Coastal}.
The answer is “no” because in our intended model, which is the real world,
Austria is German-speaking, but it is not a coastal country. Assume that the
expert turns Austria into a counterexample by asserting that it is a German-
speaking country. The second question is then whether {GermanSpeaking} →
{EUmember} holds. The answer is again “no” since Switzerland is a German-
speaking country, and it is not an EU member. Assume that the expert adds
the new individual Switzerland to the ABox, and asserts that it is an instance
of GermanSpeaking and ¬EUmember. The next question is {Mediterranean} →
{EUmember, Coastal}. The answer is again “no” because Turkey is a Mediter-
ranean country, but it is not an EU member. Assume that the expert adds the
individual Turkey to the ABox, and asserts that it is an instance of ¬EUmember.
The next question {Mediterranean} → {Coastal} follows from the TBox. Thus,
it is not posed to the expert, and the algorithm continues with the last question
{Coastal, GermanSpeaking} → {EUmember}. The answer to this question is “yes”
because the only countries that are both coastal and German-speaking (Germany
and Belgium) are also EU members. Thus the GCI CoastaluGermanSpeaking v
EUmember is added to the TBox, and the completion process is finished. The
completion yields the final context displayed in Table 2.

In [20, 19] Völker and Rudolph have worked on a method that is similar to
our method. They have also combined DL reasoning with FCA for ontology
refinement, and developed a tool for this purpose. The difference of this work to
ours is that, there the main aim is acquiring domain-range restrictions.



Coastal Mediterranean EUmember GermanSpeaking

Italy + + + −
India + − − −

Germany + − + +
Austria − − + +

Switzerland − − − +
Turkey + + − −

Table 2. The ABox after completion

4 Detecting errors and recovery from errors

Based on the approach described in the previous section, we had implemented
a first experimental version of a DL knowledge base completion tool. Our ex-
periments with this tool showed that during completion the expert sometimes
makes errors. For better usability of the completion procedure, it is important
to support the expert in detecting and correcting these errors.

Detecting Errors

We say that the expert makes an error if he extends the knowledge base such
that it no longer has the intended model I as its model. Since the procedure
has no direct access to I, in general it cannot detect such errors without help
from the expert. The only case where the procedure can automatically detect
that an error has occurred is when the knowledge base becomes inconsistent.
Obviously, the intended model I cannot be a model of an inconsistent KB.
However, when an inconsistency is detected by DL reasoning, then it is not
clear at which stage the actual error was made. In fact, although only the last
extension of the knowledge base has made it inconsistent, the deviation from
what holds in I may have occurred in a previous step. Pinpointing [14, 10, 13, 3,
5] can be used to compute all minimal subsets of the knowledge base that are
already inconsistent, and thus help the expert to find the place where the error
was made. But in the end, the expert needs to tell the completion tool which
are the erroneous assertions and/or GCIs.

The expert may also be alerted by DL reasoning to errors in cases where the
knowledge base is not inconsistent. In fact, after each extension of the KB, the
DL reasoner re-classifies it, i.e., computes the implied subsumption and instance
relationships. If one of them contradicts the experts knowledge about I, she
also knows that an error has occurred. Again, pinpointing can show all minimal
subsets of the knowledge base from which this unintended consequence already
follows.

Recovery from Errors

Once the sources of the error are found, the next task is to correct it without
producing unnecessary extra work for the expert. Of course, one can just go back



to the step where the first error was made, and continue the completion process
from there, this time with a correct answer. The problem with this simple ap-
proach is that it throws away all the information about I that the expert has
added (by answering implication queries) after the first error had occurred. Con-
sequently, the completion procedure may again pose implication queries whose
answer actually follows from this information. On the DL side, it is no prob-
lem to keep those assertions and GCIs that really hold in I. More precisely, the
completion procedure can keep the GCIs and assertions for which the expert has
stated that they are not erroneous. In fact, our completion procedure allows for
arbitrary extensions of the KB as long as the KB stays a model of I.

On the FCA side, it is less clear whether one can keep the implications that
have been added after the first error had been made. In fact, since the new (cor-
rect) answer differs from the previous incorrect one, the completion procedure
may actually produce different implication questions. The proof of correctness of
the procedure, as given in [1], strongly depends on the fact that implications are
enumerated in some specific lexicographic order. Thus, if we change this order
the correctness of the completion algorithm will not be guaranteed any more.
In [4] we have overcome this problem by using the previous answers of the expert
as “background knowledge” as mentioned in [17], and shown that in this setting
the correctness of the algorithm is still guaranteed.

5 OntoComP

Based on our results in [2, 15, 4], we have implemented an open-source ontology
completion tool called OntoComP1, which stands for Ontology Completion
Plugin. It is written in the Java programming language as a plugin for the
Protégé 4 ontology editor [8]. It communicates with the underlying DL reasoner
over the OWL API [6]. OntoComP can easily be installed by just copying
the jar file provided on the project web page into the plugins directory of
an existing Protégé 4 installation. Upon a new start Protégé will find the
OntoComP plugin and open a new tab for it.

In order to complete an ontology with OntoComP, the user first classi-
fies the ontology with a reasoner that is supported by Protégé 4, namely
FaCT++ [18] or Pellet [16]. Once the ontology is classified, the OntoComP
tab displays the class hierarchy on the left. At this point the user can drag “in-
teresting” class names, which she wants to have in the completion process, from
this hierarchy and drop them into the Context tab on the right. Simultaneously,
the instances of these classes will also be displayed in a table in the Context tab.
In this table a + in row a and column C means that the individual a is an intance
of the class C, a - means that a is an instance of the complement of C, and a
? means that nothing is known about the membership of a in class C. When
the user is done with selecting the relevant classes, she starts the completion by
hitting the Start button and sees the first question in the Messages tab. If she

1 available under http://ontocomp.googlecode.com



Fig. 2. OntoComP window during completion

confirms the question by hitting the Yes button, OntoComP comes up with
the next question. If she rejects the question by hitting No button OntoComP
opens the Counterexample editor tab where the user can generate a coun-
terexample to the rejected question. The process continues until all questions
have been answered by the user. During completion, at any time the user can
suspend the completion process and see her answering history. If she thinks she
has made an error at some point, she can repair it by undoing that particular
erroneous answer and can continue completion.

5.1 Counterexample Generation.

OntoComP has a counterexample editor for supporting the user during coun-
terexample generation. When the user rejects an implication, OntoComP opens
a counterexample editor in a new tab, and displays those individuals from the
ABox that can potentially be turned into a counterexample by adding asser-
tions for them. Alternatively, the user can introduce a new individual together
with assertions that make it a counterexample. During counterexample genera-
tion, OntoComP guides the user and notifies her once she has created a valid
counterexample to the implication question.



5.2 Error Recovery.

At any point during knowledge base completion, if the user notices that he has
made a mistake in one of the previous steps, he can stop the completion and
can request to see the history of all answers he has given. OntoComP displays
all the questions asked in previous steps, the answers that were given to these
questions, and the counterexamples accompanying negative answers. The user
can browse the answering history, correct the wrong answers he has given in
the previous steps, and can then continue completion. OntoComP keeps all
GCIs and counterexamples that were not marked as incorrect in the knowledge
base, i.e., after an error recovery it does not ask the user questions that he has
already answered. Pinpointing reasons for consequences (such as inconsistency or
unintended subsumption or instance relationships) is not directly integrated into
the current version of OntoComP. However, the user could use the pinpointing
facilities provided by Protégé 4.

6 Concluding remarks and future work

We have recalled ontology completion, a method which we have introduced pre-
viously in [2, 15], and described extensions of it for better usability. We have also
described an implementation of it, namely OntoComP, which is a plugin for
the Protégé 4 ontology editor. We have described key technologies underlying
OntoComP, and discussed how OntoComP makes use of DL reasoning. We
have introduced further optimizations that have not taken place originally in [2].

Currently, our method only works for languages that allow for negation.
Negation is required while producing counterexamples. Due to increasing pop-
ularity of lightweigt DLs like EL and EL+, in the future we want to support
knowledge bases written in these languages as well. In order to express that an
individual is a counterexample to an implication like L→ R, we need to say that
this individual is an instance of the negation of at least one concept in R. We can
overcome this limitation by introducing an additional concept name A for every
concept name A that takes part in completion, and making A and A disjoint.
While generating a counterexample, whever the user says that an individual is
an intance of ¬A, we assert that this individual is an instance of A.

One other limitation of our method is that after each answer of the expert,
the knowlege base has to be reclassified, which can be time consuming for a big
real world ontology. In fact, when an expert wants to complete an ontology, she
is usually interested in a small fragment of it, and her answers do not necessarily
affect the subsumption relations in other fragments of the ontology. Thus, before
completion one could in principle extract a module and work on it with our
completion method, and after completion “re-plug” this extended module into
the original ontology. As future work we are going to investigate this approach
and whether it leads to any improvement.

On the practical side we are going to improve our implementation, especially
its user interface. Moreover, we are going to test and evaluate OntoComP on
large scale ontologies from real world applications.
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3. F. Baader, R. Peñaloza, and B. Suntisrivaraporn. Pinpointing in the description
logic EL+. In J. Hertzberg, M. Beetz, and R. Englert, editors, Proceedings of
the 30th German Conference on Artificial Intelligence (KI2007), volume 4667 of
Lecture Notes in Artificial Intelligence, pages 52–67. Springer-Verlag, 2007.

4. F. Baader and B. Sertkaya. Usability issues in description logic knowledge base
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