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Abduction in Logic Programming

as Second-Order Quantifier Elimination

Christoph Wernhard

Technische Universität Dresden

Abstract. It is known that skeptical abductive explanations with re-
spect to classical logic can be characterized semantically in a natural
way as formulas with second-order quantifiers. Computing explanations
is then just elimination of the second-order quantifiers. By using appli-
cation patterns and generalizations of second-order quantification, like
literal projection, the globally weakest sufficient condition and circum-
scription, we transfer these principles in a unifying framework to ab-
duction with three non-classical semantics of logic programming: stable
model, partial stable model and well-founded semantics. New insights
are revealed about abduction with the partial stable model semantics.

1 Introduction

An abductive explanation is basically a formula X such that for given formu-
las F , the “background knowledge base”, and G, the “observation”, it holds
that F and X together entail G and, in addition, X satisfies application specific
further properties, for example, that it only contains symbols from a given vo-
cabulary and that it is as weak as possible. For classical logic, the semantics of
an abductive explanation in this sense can be characterized by a second-order
formula as follows:

X ≡ ∀SymbolsNotAllowedInTheExplanation (F → G). (i)

An explanation X can then be computed by performing second-order quantifier
elimination on the second-order formula, that is, computing a formula which is
equivalent to the given second-order formula but does not involve second-order
quantifiers. If explanations are constrained to be minimal conjunctions of lit-
erals, this scheme also applies, but indirectly: the actual explanations are then
obtained as the prime implicants of X. Variants of this understanding of ab-
ductive explanations are present in a number of works, e.g., [15, p312ff.],[24,7],
but the relationship to second-order quantifier elimination seems to have been
made explicit first in [5]. Abduction plays several important roles in logic pro-
gramming, an area where it has been investigated extensively between the late
80s and the early 2000s [19,3]. Many of these approaches are oriented at de-
riving methods for computing explanations from methods for evaluating logic
programs. Semantic characterizations, e.g., [20,8,25,1], are usually placed aside
of methods, related to them by correctness properties and complexity results.
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In contrast, the objective of the present work is to combine the second-order
elimination approach with non-monotonic semantics of logic programming, re-
sulting in a characterization of abductive explanations for logic programming
semantics that is “constructive” in the sense that it maps the computation of
explanations to problems of second-order quantifier elimination. As logic pro-
gramming semantics we consider the popular stable model semantics and two
related three-valued semantics, the well-founded and the partial stable model se-
mantics1. We work with representations of these logic programming semantics in
classical logic extended by second-order operators, based on known translations
[23, Section 3.4.1][18]. Under this view, the stable model semantics appears as
circumscription that is applied only to certain occurrences of predicates – those
that are not subjected to negation as failure. Accordingly, a logic program can
be represented by a classical formula where these occurrences are distinguished
by special predicate names. A logic programming semantics then corresponds to
a logical operator sem that is wrapped around a classical representation F of a
program, such that sem(F ) expands into a formula of classical logic extended
by second-order operators. The discrimination between different logic program-
ming semantics is expressed by different such wrapping operators, allowing to
embed programs considered under different semantics within a single classical
formula. With respect to abduction, only a single entailment relation – classical
entailment – is required, in contrast to other generic formalizations such as [8],
where the discrimination is done “globally” by specific inference operators.

The link between the inherently classical second-order characterization of
abductive explanations displayed above as (i) and the non-classical logic pro-
gramming semantics will be provided by a lemma that states requirements under
which the operators sem expressing non-monotonic context are “transparent” for
explanations E, that is, it holds that sem(F )∧E ≡ sem(F∧E). In the case of the
investigated three-valued semantics, two related versions E,E′ of the explanation
are required, such that the established relationship is sem(F )∧E ≡ sem(F ∧E′).
To determine explanations with respect to a logic program, the abducibles, that
is, the atoms that are allowed in explanations should not be submitted to the
closed-world assumption, since, unless they occur in rule heads, they would then
be just set to false by the non-monotonic semantics. We take this into account
by using generalizations of the considered logic programming semantics that
allow to specify a set of ground atoms as open, that is, not subjected to the
closed-world assumption. These generalizations are quite straightforward: In the
underlying representations of these semantics by circumscription, the open atoms
just correspond to fixed – in contrast to minimized – predicate instances.

The entailment based notion of abductive explanation sketched at the begin-
ning is called skeptical or cautious. In contrast, credulous or brave explanations,
are constrained by the requirement that the background knowledge base com-
bined with the explanation is consistent with observation. For the well-founded
semantics every normal logic program has exactly a single model and thus both

1 In the sense of [28,18], in contrast to contemporary work by Saccà and Zaniolo where
partial stable model has been used for a related semantics. See [30, Introduction].
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notions coincide. In this paper, we focus on the skeptical view for the other se-
mantics. We consider finite normal ground programs, but the material should
generalize to programs with disjunctive heads, negation as failure in the head,
and first-order quantification, as indicated in [35,37].

As basic second-order operator we use literal projection [33], a generaliza-
tion of predicate quantification. Its arguments make those symbols explicit that
are “not quantified” and it allows, so-to-speak, to quantify just upon predicate
occurrences with a specific polarity. The latter feature is used to model the con-
sidered three-valued logic programming semantics. The application pattern of
second-order quantification in (i) is called globally weakest sufficient condition
(GWSC) and specified in terms of projection. It is closely related to weakest suf-
ficient condition [24,5]. Predicate quantification can be applied to express predi-
cate circumscription [4]. We express circumscription by a dedicated second-order
operator with a syntax analogous to projection [37]. We will develop the “con-
structive” characterizations of abductive explanations for the three considered
logic programming semantics in parallel. This framework leads to clear formal
conceptualizations of various subtle issues in abduction, such as notions of min-
imality and handling of negative facts in explanations. For abduction with the
partial stable model semantics, the author is not aware of another thorough
formal treatment. A distinguishing feature of that semantics is that it can be
applied to deliver meaningful explanations for facts being observed as undefined.

This paper is an extended version of [38]. The rest of the main part is orga-
nized as follows: In Sect. 2 the background framework of classical propositional
logic extended by certain second-order operators is specified. This is applied in
Sect. 3 to characterize the considered logic programming semantics. In Sect. 4
definitions of abductive explanation and related concepts are given and in Sect. 5
the central concept of globally weakest sufficient condition is summarized. On
this basis, the main results of the paper are developed in Sect. 6: Character-
izations of abductive explanations and related concepts with respect to logic
programming semantics as formulas with second-order operators. Related works
are reviewed in Sect. 7 and possible ways to realize the approach in practice are
sketched in the conclusion, Sect. 8. Proofs of the results in the main part of the
paper and further investigations are provided in appendix sections.

2 Notation and Semantic Framework

Formulas, Literals, Scopes and Predicate Groups. We consider formulas
of classical propositional logic, extended by operators for projection and circum-
scription. They are constructed from propositional atoms, truth value constants
⊤,⊥, the unary connective ¬, binary connectives ∧,∨,→,←,↔, as usual, and
the two operators project and circ to express projection and circumscription. As
meta-level notation we use n-ary versions of ∧ and ∨. Based on the premise
that the material developed here does in principle generalize to a first-order set-
ting, we speak of propositional atoms, or synonymously Boolean variables, also
as 0-ary predicates. A literal is a pair of an atom and a sign, where we write
the positive (negative) literal with atom A as +A (−A). The complement of a
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literal L is denoted by L. If S is a set of literals, then S denotes the set of
the complements of the members of S. We call a formula that is an atom or a
negated atom a literal formula, or, if no ambiguity arises, also briefly a literal.
A scope is a set of literals. We assume a fixed propositional signature whose
set of atoms is denoted by ATOMS. The sets of all literals, all positive literals,
and all negative literals w.r.t. ATOMS are denoted by ALL, POS, NEG, respec-
tively. An atom scope S is a scope such that S = S. Since a literal is a member
of an atom scope if and only if its complement is a member, as a shorthand,
we represent an atom scope also just by the set of atoms of its members. To
express logic programs and three-valued formulas by classical formulas we use
a signature where each “original” predicate is available in different “copies”,
indicating whether an occurrence is subject to negation as failure or how it
contributes to the three-valued reading. These “copies” are gathered into so-
called predicate groups : In addition to the set of propositional atoms ATOMS,
we assume a set of source atoms that play the role of atoms in other logics
that we will represent in our classical framework. Each source atom A is as-
sociated with a number of corresponding atoms A0, . . . , An ∈ ATOMS, where
the superscripts indicate their predicate group. More precisely: We assume that
ATOMS can be arranged as {A0

1, A
1
1, . . . , A

n
1 , A

0
2, A

1
2, . . . , A

n
2 , A

1
3, . . . , A

n
3 , . . .} for

some n ≥ 1. For k ∈ {0, . . . , n}, we call the set of all literals whose atom
has superscript k the predicate group k, written just as the number k. An
atom Ak

i is called the correspondent from group k of any atom A
j
i . Analo-

gously we speak of correspondents of literals. An ungrouped scope is a scope
that contains for each of its members all their correspondents. If no ambiguity
arises, we write an ungrouped scope like a scope but with omitting the predicate
group superscripts. For example, let ATOMS = {p0, p1, q0, q1, r0, r1}. Then 1 =
{+p1,+q1,+r1,−p1,−q1,−r1} is a predicate group, and 1∩POS = {+p1,+q1,+r1}.
The correspondent of p1 from group 0 is p0. An example for an ungrouped atom
scope is {+p0,+q0,+p1,+q1,−p0,−q0,−p1,−q1}, which can be written as {p, q}.
The atom scope {+p1,+q1,−p1,−q1} can be written as 1 ∩ {p, q}.

Classical Semantics, Projection and Circumscription. An interpretation
is a set of literals that contains for all atoms A ∈ ATOMS exactly one of +A or
−A. The satisfaction relation |= between interpretations and formulas is defined
with a clause for atoms and for each logical operator. For instance, for all in-
terpretations I, scopes S, atoms A, and formulas F,G it holds that: I |= A iff
+A ∈ I; I |= ¬F iff I 6|= F ; I |= F ∧G iff I |= F and I |= G; I |= projectS(F ) iff
there is an interpretation J s.t. J |= F and J ∩ S ⊆ I; I |= circS(F ) iff I |= F

and there is no interpretation J s.t. J |= F and J ∩ S ⊂ I ∩ S. Entailment and
equivalence are then defined as usual: F |= G iff for all interpretations I it holds
that if I |= F then I |= G; F ≡ G iff F |= G and G |= F .

The formula projectS(F ) whose semantics has just been defined with the |=
relationship is called the literal projection, or briefly projection, of formula F

onto scope S. The forgetting in F about S is a notational variant where the
scope is considered complementary [33,21]:

forgetS(F ) def= projectALL−S(F ). (ii)
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Combined with first-order logic, projection generalizes second-order quantifica-
tion, with respect to propositional logic quantified Boolean formulas (QBFs):
A QBF ∃pF can be expressed as forget{+p,−p}(F ) or as projectALL−{+p,−p}(F ).
If S is an atom scope, the semantic definition of projection is equivalent to:
I |= projectS(F ) iff there is an interpretation J s.t. J |= F and J ∩ S = I ∩ S.
Literal projection also allows to express, so-to-speak, quantification upon just
the positive or negative occurrences of a Boolean variable in a formula. Intu-
itively, the projection of a formula F onto scope S is a formula that expresses
about members of S the same as F , but expresses nothing about other literals.
A projection of a propositional formula is equivalent to a formula in negation
normal form in which only literals in the projection scope do occur. The lat-
ter formula is a uniform interpolant of the original formula with respect to the
scope. A naive way to construct such a uniform interpolant – or to eliminate the
projection operator – is indicated by the following equivalences, where F [p\⊤]
(F [p\⊥]) denotes formula F with all occurrences of atom p replaced by ⊤ (⊥):
(1.) forget{+p,−p}(F ) ≡ F [p\⊤]∨F [p\⊥]. (2.) forget{+p}(F ) ≡ F [p\⊤]∨ (¬p∧F ).

(3.) forget{−p}(F ) ≡ (p ∧ F ) ∨ F [p\⊥]. For formulas F and scopes S we define

F ⋐ S iff F ≡ projectS(F ). (iii)

We use the symbol ⋐ also when introducing variables, e.g., “let F ⋐ S be
a formula” for “let F be a formula such that F ⋐ S”. Projection provides
a semantic account for systematically replacing atoms from a given predicate
group to their correspondents from another one. Let i, j be different predicate
groups. We define

renamei\j(F ) def= forgeti(F ∧
∧

Ai∈ATOMS(A
j ↔ Ai)). (iv)

If F is a propositional formula, then renamei\j(F ) is equivalent to F with all oc-
currences of atoms from group i replaced by their correspondents from j. We de-
fine rename[i1\j1, ..., in\jn](F ) as shorthand for renamein\jn(...(renamei1\j1(F ))...).

The circ operator has the same argument types as project and has also been
semantically defined above. It allows to express variants of parallel predicate
circumscription where the effects on each atom are controlled by a scope argu-
ment [37]. Atoms that occur just in a positive literal in the scope are minimized,
atoms that occur just in a negative literal are maximized, atoms that occur in
both polarities are fixed and atoms that do not at all occur in the scope are
varying. Thus, if F is a formula whose atoms are in disjoint sets P , Q and Z,
then the parallel predicate circumscription of P in F with fixed Q and varied Z,
traditionally written as CIRC[F ;P ;Z], can be expressed as circ(P∩POS)∪Q(F ).

3 Classically Represented Logic Programming Semantics

We consider finite normal logic programs that are ground, that is, finite sets of
rules of the form

p � q1, . . . , qm, not r1, . . . , not rn, (v)
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where m,n ≥ 0 and p, qi, ri are source atoms. The classical representation of
a normal logic program is a classical propositional sentence, obtained from the
program by forming the conjunction of its members and replacing each source
atom by its representative from the indicated group as well as replacing the
connectives with classical ones, according to the following schema:

p0 ← q01 ∧ . . . ∧ q0m ∧ ¬r
1
1 ∧ . . . ∧ ¬r1n. (vi)

Information that was expressed in (v) by the positioning of an atom in a rule
head versus the negative body is now captured instead by the predicate group.

Stable Model Semantics. For abductive reasoning we consider generalizations
of the established logic programming semantics that allow to specify atoms as
open, that is, not subjected to the closed world assumption. To this end, the
operators that express the logic programming semantics have aside of a classical
representation of a logic program also an ungrouped atom scope as argument
that specifies the open atoms.2 The logical operator stable renders the stable
model semantics: For ungrouped atom scopes O and formulas F define

stableO(F ) def= rename1\0(circ(0∩POS)∪1∪O(F )). (vii)

The circumscription scope in this definition specifies that all atoms from group 1
as well as all open atoms are fixed, while the remaining atoms from group 0 are
minimized. This characterization of stable models in terms of circumscription
originates from [23, Section 3.4.1] (see also [22,35]). It is expressed here not as
a formula transformation but as a logical operator that expands into a classical
formula with projection (for the renaming) and circumscription. The stable op-
erator represents the stable model semantics in the following sense: If F is the
classical representation of a normal logic program and O is an ungrouped atom
scope, then the stable models of the program w.r.t. O are exactly the sets of
atoms obtained by taking the set of the positive literals that are from group 0
in some model of stableO(F ), followed by dropping their signs and group super-
scripts. For example, the program {p � not q} has {p} as its single stable model,
which can be obtained from the models of stable{}(p

0 ← ¬q1) ≡ (p0 ∧ ¬q0) as
described. With respect to O = {q}, the program has the two stable models {p}
and {q}, corresponding to stable{q}(p

0 ← ¬q1) ≡ (p0 ∧ ¬q0) ∨ (¬p0 ∧ q0).

Partial Stable Model Semantics. Partial stable model and well-founded se-
mantics associate three-valued models with a logic program. Predicate groups
can be applied to express the three truth values F,U,T in terms of two truth
values: An interpretation I over at least all atoms of groups 0 and 1 is said to
assign to a source atom p the three-valued truth value F iff I |= (¬p0∧¬p1), U iff
I |= (¬p0∧p1), and T iff I |= (p0∧p1). The remaining possibility I |= (p0∧¬p1)
does not correspond to a three-valued truth value and models with this combi-
nation can be excluded with the axiom

cons def=
∧

A0∈ATOMS(A
1 ← A0), (viii)

2 It is well-know that specifying atoms as open in this sense can also be encoded in
the standard versions of these semantics (see discussion of [17] in Sect. 7).
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assuming ATOMS is finite. The logical operator pstable defined below renders
the partial stable model semantics [29] by combining the translation of [18] into
programs with stable models semantics with the translation of the stable model
semantics shown above. Each of the two translations involves discrimination be-
tween two predicate groups, yielding four groups 0, 1, 2, 3 in combination, which
are reduced in the final value of pstable by renaming to groups 0 and 1. The mod-
els of pstableO(F ) represent the three-valued partial stable models by combining
the values of atoms for predicate groups 0 and 1. In the definition of pstable we
write the numbers denoting predicate groups in binary notation to indicate how
the two involved translations are combined: The right digit corresponds to the
group discrimination required by the translation into stable models, the left digit
to the discrimination required by expressing the stable model semantics with cir-
cumscription. The arguments of pstable are like those of stable. For ungrouped
atom scopes O and formulas F define

pstableO(F ) def= rename[10\00,11\01](circM (cons ∧ rename[01\11](F ) ∧

rename[01\10,00\01](F ))),
(ix)

whereM = ((00∪01)∩POS)∪10∪11∪O. To represent values of pstable, we write a
conjunction C of literal formulas that contains for each atom p ∈ ATOMS∩(0∪1)
either p or ¬p as conjunct and is consistent with cons as pair 〈T ,F〉 of two sets
of source atoms, analogous to common notation for three-valued interpretations:
T is the set of all p such that p0 is a conjunct in C, and F is the set of all p such
that ¬p1 is a conjunct in C. For example, (p0 ∧ p1 ∧¬q0 ∧¬q1 ∧¬r0 ∧ r1) would
be written as 〈{p}, {q}〉. Compared to the stable model semantics, the partial
stable model semantics yields additional models, caused, e.g., by atoms that are
“undefined” since they are exempt from the closed world assumption or since
they occur “paradoxically” in the head and negated in the body of some rule.

Example 1 (Partial Stable Model Semantics). Let F = (p0 ← q0) and let
O = {q}. Then (1) stableO(F ) ≡ (p0 ∧ q0) ∨ (¬p0 ∧ ¬q0) and (2) pstableO(F ) ≡
〈{}, {}〉 ∨ 〈{p, q}, {}〉 ∨ 〈{}, {p, q}〉. The first disjunct in (2), that is, 〈{}, {}〉,
does not correspond to any disjunct in (1). As an example for a “paradoxical”
occurrence consider F ′ = (p0 ← ¬p1 ∧ ¬q1). Then stable{}(F

′) ≡ ⊥, that is, F ′

has no stable model. However, pstable{}(F
′) ≡ 〈{}, {q}〉.

Well-Founded Semantics. An interpretation is called informationally less-or-
equal-than a second one if and only if each atom whose three-valued truth value
assigned by the first interpretation is T or F has the same truth value assigned
by the second one. Models that are minimal with respect to this relation can be
characterized by circumscription upon the scope

imin-scope def= (0 ∩ POS) ∪ (1 ∩ NEG). (x)

If the models of a formula F satisfy cons, then the informationally minimal
models of F are the models of circimin-scope(F ). If cons is used together with
circumscription upon imin-scope, it can equivalently be placed inside or outside
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of the circumscription operator: circimin-scope(cons ∧ F ) ≡ cons ∧ circimin-scope(F ).
Now, well-founded models are exactly the informationally minimal partial stable
models [28], allowing to characterize the well-founded semantics as

wfO(F ) def= circimin-scope(pstableO(F )). (xi)

An attractive feature of the well-founded semantics is that each normal logic
program has exactly a single model. This property applies also to the general-
ized variant wfO with specified open atoms. By the following proposition, the
consequences G for which it holds that G ⋐ imin-scope are for the well-founded
semantics exactly the same as for the partial stable model semantics:

Proposition 2 (Consequences under Well-Founded and Partial Stable
Model Semantics). If O is a set of ungrouped atoms, and F,G are formulas
such that G ⋐ imin-scope, then wfO(F ) |= G if and only if pstableO(F ) |= G.

The precondition G ⋐ imin-scope of Prop. 2 is met for example by formulas
G = p0 and G = ¬p1, which express that the truth value assigned to p is T

and F, respectively, since (cons ∧ p0) ≡ (cons ∧ p0 ∧ p1) and (cons ∧ ¬p1) ≡
(cons ∧ ¬p0 ∧ ¬p1). The precondition fails for G = (¬p0 ∧ p1), which expresses
that the value assigned to p is U.

4 Basic Concepts of Abduction

An abductive setting gathers the parameters of abductive reasoning problems:

Definition 3 (Abductive Setting). An abductive setting is a tuple A=〈sem,

O, S, F,G〉 of (1.) a logical operator sem with two arguments (an ungrouped
atom scope and a formula), the programming semantics, (2.) an ungrouped atom
scope O, the open scope, (3.) an ungrouped scope S ⊆ O, the explanation scope,
(4.) a formula F , the background, and (5.) a formula G, the observation.

This is similar to abductive framework [19], but here also the observation is
included. The programming semantics is an operator like stable that specifies
the logic programming semantics to be used. The open scope specifies the atoms
that are to be considered open with respect to the logic programming semantics.
The explanation scope specifies the vocabulary along with associated polarities
that is available for explanations. It is equal to or a subset of the open scope, and
thus must not necessarily be an atom scope, that is, it can contain literals but
not their complements. Background and observation are formulas representing
the background theory presentation and the observation, respectively.

Since we will focus on explanations that are conjunctions of literals, we pro-
vide convenient notation for these: A conjunctive clause is a consistent conjunc-
tion of literal formulas, with the empty conjunction ⊤ as special case. Let C,D
be conjunctive clauses. We write C |= D as D ⊆ C, and (C |= D and C 6≡ D)
as D ⊂ C. A conjunctive clause C is called positive (negative, resp.) if and only
if C ⋐ POS (C ⋐ NEG, resp.). In this paper we adhere to the skeptical view of
explanations, rendered in the following definition:
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Definition 4 (Explanation, Factual Explanation). Let A=〈sem,O,S,F,G〉
be an abductive setting. An explanation for A is a formula H ⋐ S ∩ 0 such that
semO(F ∧H) |= G. An explanation that is a conjunctive clause is called factual.

A positive factual explanation can be combined in a particularly simple way with
a logic program: If F is the classical representation of a normal logic program and
C is a positive factual explanation, then (F∧C) is again a classical representation
of a normal logic program, the original program with the positive literals of
the explanation added as facts. Different ways to combine negative literals in
explanations with programs are discussed in Sect. D. Certain abductive settings
have the property that conjunctive clauses which extend a factual explanation
and are in the explanation scope are also explanations, formally:

Definition 5 (Factual Explanation Monotonicity). An abductive setting
A = 〈sem, O, S, F,G〉 is called factual explanation monotonic if and only if when-
ever C is a factual explanation for A, then any conjunctive clause D ⋐ S ∩ 0
such that C ⊆ D is also a factual explanation for A.

This property justifies to represent all factual explanations of some abductive
setting compactly just by the set of minimal factual explanations, that is, those
factual explanations that do not properly extend some other explanation:

Definition 6 (Minimal Factual Explanation). Let A be an abductive set-
ting. A minimal factual explanation for A is a factual explanation C for A such
that there does not exist another factual explanation D for A with D ⊂ C.

A further notion of “minimality” for factual explanations is obtained by con-
sidering just complete explanations, explanations that contain for each atom A0

occurring in of the explanation scope either A0 or ¬A0, and compare them
with respect to their positive member literals: C ≤ D iff projectPOS(D) |=
projectPOS(C). We call factual explanations that are minimal in this sense small-
est. There is a one-one correspondence of the smallest explanations to a certain
subset of the minimal explanations (Prop. C27). Smallest explanations can be
combined with the background by adding their positive literals as facts, which
yields a normal logic program, and removing from the open scope all members
whose atom occurs in the explanation scope, independently of the particular
explanation (see Sect. C and D).

In the literature, it is often required that the combination of explanation and
background is consistent. For reasons explicated in Sect. Bthis is specified here
as a separate property:

Definition 7 (Background Consistent Explanation). An explanation H

for an abductive setting with semantics sem, open scope O and background F

is called background consistent if and only if semO(F ∧H) is satisfiable.

Integrity constraints, that is, rules with empty head, are in the literature on
abduction in logic programming often assigned a special role. We consider here
just normal logic programs, which, however, allow to encode constraints with
respect to the consistency view [19] by rules with a head atom that indicates
failure and is added negated to the observation [8, Sect. 3].
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5 The Globally Weakest Sufficient Condition

The globally weakest sufficient condition (GWSC) [37] is the application pattern
of second-order quantification by which explanations with respect to classical
logic are characterized as in (i) in the introduction. We specify it formally in
terms of literal projection, such that also polarity can be constrained:

Definition 8 (Globally Weakest Sufficient Condition). The globally weak-
est sufficient condition (GWSC) of formula G on scope S within formula F , in
symbols gwscS(F,G), is defined as gwscS(F,G) def= ¬projectS(F ∧ ¬G).

The following alternate characterization provides intuition on the relationship to
abductive explanations: The GWSC of G on S within F is the weakest formula
H ⋐ S such that F ∧H |= G. More precisely:

Proposition 9 (Alternate Characterization of the GWSC). For all for-
mulas F,G,H and scopes S it holds that H ≡ gwscS(F,G) if and only if: (1.)
H ⋐ S, (2.) H |= G, and (3.) for all formulas H ′

⋐ S such that F ∧H ′ |= G it
holds that H ′ |= H.

The following property implies that a GWSC on scope S can be expressed as a
propositional formula in negation normal form that only involves literals from S:

Proposition 10 (Scope Closedness of the GWSC). For all formulas F,G

and scopes S it holds that gwscS(F,G)⋐S.

The GWSC is closely related to weakest sufficient conditions (WSCs), devised
in [24] for propositional logic and adapted to first-order logic in [5]. Aside of the
consideration of polarity, GWSCs differ from WSCs in the sense of [24] in that
for a given formula and scope only GWSCs are unique up to equivalence [37].

6 Abduction with Logic Programming Semantics

The GWSC basically relates to classical semantics. How can it be applied with
non-classical logic programming semantics? Lemma 11 below, about “extension
transparency”, provides the required link. It states requirements that allow a
formula to be moved between the context of the non-classical semantics in the
argument of the sem operator – where the formula “extends” a logic program –
and a classical context outside the sem operator. Based on this lemma, we then
develop characterizations of abductive explanations in terms of the GWSC for
the considered logic programming semantics.

The involved lemma, theorem and propositions will be expressed in a generic
way, where the differences relating to the particular semantics are factorized out
into three auxiliary concepts that expand differently, depending on the semantics
indicated by their first argument. The first of these concepts, CF, represents the
circumscribed formulas in the definitions of stable and pstable. It is thus defined for
formulas F as CF(stable, F ) def= F and CF(pstable, F ) def= (cons∧rename[01\11](F )∧
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rename[01\11,00\01](F )). The second concept, IG, is used to project intermedi-

ate results onto specific predicate groups and is defined as IG(stable) def= 0 and
IG(pstable) def= imin-scope = (0 ∩ POS) ∪ (1 ∩ NEG). The third concept, IC, is
required for three-valued semantics to express a polarity dependent mapping
between the predicate groups in conjunctive clauses of explanations and of in-
termediate results. For stable the value of IC is the unaltered argument, for
pstable it is obtained by switching the group of all negative literals to 1: IC is
defined for conjunctive clauses C = (

∧m

i=1 A
0
i ∧

∧n

i=1 ¬B
0
i ), where m,n ≥ 0 and

C ⋐ 0, as IC(stable, C) def= C and IC(pstable, C) def= (
∧m

i=1 A
0
i ∧

∧n

i=1 ¬B
1
i ).

Lemma 11 (Extension Transparency). Let sem ∈ {stable, pstable}, let F

be a formula, let O be an atom scope, and let G be a formula such that G ⋐

(0 ∩ (O ∪ NEG)) ∪ 1. Then semO(F ∧G) ≡ semO(F ) ∧ CF(sem, G).

We apply this lemma mostly to formulas G satisfying the stronger condition
G ⋐ 0 ∩ O, which means that G can be expressed in terms of open atoms from
group 0. The weaker precondition in the lemma results in the course of the proof
(Sec. A). It will be used in Sect. 8 to justify a way in which stable model com-
putation invoked on the background combined with the negated observation can
be applied to compute explanations. Based on Lemma 11, Theorem 12 below
can be proven. It shows for the stable model and the partial stable model se-
mantics that factual explanations are – modulo conversion by IC – exactly the
conjunctive clauses in the explanation scope that imply the GWSC of the pro-
gram representation wrapped in the semantics operator and of the observation.
For the well-founded semantics, the equivalence to the partial stable model se-
mantics with respect to explanations for “defined” observations is stated, which
follows from Prop. 2.

Theorem 12 (Factual Explanation in Terms of GWSC). Let A = 〈sem, O,

S, F,G〉 be an abductive setting. Let C ⋐ 0 be a conjunctive clause. If sem ∈
{stable, pstable}, then the following two statements are equivalent:
1. C is a factual explanation for A.
2. C ⋐ S and IC(sem, C) |= gwscS∩IG(sem)(semO(F ), G).

If sem = wf and G ⋐ imin-scope, then (1.) is equivalent to:
3. C is a factual explanation for 〈pstable, O, S, F,G〉.

Since gwscS(pstable(F ), G) ≡ gwscS(pstable(F ), cons ∧G), in abductive settings
with pstable the observation G can be equivalently replaced by any formula G′

such that (cons ∧ G′) ≡ (cons ∧ G). In particular, an observation (p0 ∧ p1),
which expresses that p is T, can be replaced by just p0, and (¬p0 ∧ ¬p1), which
expresses that p is F, by just ¬p1. The following example illustrates a case where
the factual explanations with stable differ from those with pstable and wf.

Example 13 (Abduction with Different Semantics I). Let A = 〈sem, O,

S, F,G〉 be an abductive setting, where O = S = {a, b}, F = (p0 ← a0 ∧
b0) ∧ (p0 ← a0 ∧ ¬b1), and G = p0. If sem = stable, there is a single minimal
factual explanation for A, namely a0. If sem ∈ {pstable,wf}, there are two: First,
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(a0 ∧ b0), second (a0 ∧ ¬b0). To see that a0 is then not an explanation, consider
that pstable{a,b}(F ∧ a0) ≡ 〈{a}, {}〉 ∨ 〈{a, b, p}, {}〉 ∨ 〈{a, p}, {b}〉.

The following comprehensive example demonstrates further differences of the
three considered logic programming semantics with respect to abduction, in
particular a case where a meaningful explanation for a fact being observed as
undefined is only obtained with the partial stable model semantics.

Example 14 (Abduction with Different Semantics II). Assume a domain
with two persons a, b, one of them, b, being “the barber”. For x, y ∈ {a, b} let
sxy stand for “x shaves y”, let mx , fx stand for “x is male” and “x is female”,
respectively. In addition let ss stand for “barbers are self-shavers”. The following
program F expresses: “a person that is male and does not shave himself is shaved
by b”, “if barbers are self-shavers, then b shaves himself”, and “all persons are
either female or male”: F = (sba0 ← ma0 ∧ ¬saa1) ∧ (sbb0 ← mb0 ∧ ¬sbb1) ∧
(sbb0 ← ss0) ∧ (fa0 ← ¬ma1) ∧ (ma0 ← ¬fa1) ∧ (fb0 ← ¬mb1) ∧ (mb0 ← ¬fb1).
Let A = 〈sem, O, S, F,G〉 be an abductive setting, where O = S = {ma,mb, ss}.
Let us first consider the partial stable model semantics, i.e., assume sem =
pstable. A distinguishing feature of this semantics is that it allows to compute
explanations for the undefinedness of observations: Let G = (¬sbb0∧sbb1). Then
G 6⋐ imin-scope and G expresses that “sbb is U”. As the single minimal factual
explanation for A we then obtain (mb0 ∧ ¬ss0). Since the well-founded model
is a partial stable model, this is also an explanation w.r.t. the well-founded
semantics. However, there are explanations w.r.t. the well-founded semantics
that are not explanations w.r.t. the partial stable model semantics. Here for
example the “empty” explanation ⊤, since the well-founded model of F w.r.t. O
is 〈{}, {saa}〉, where the value of sbb is U. Notice that in the example only
the explanation w.r.t. the partial stable model semantics provides the desired
information about the reasons for sbb being undefined, i.e., that the barber is
male and that “barbers are self-shavers” is false. For “defined” observations G,
i.e., if G ⋐ imin-scope, explanations w.r.t. the partial stable model semantics
and the well-founded semantics coincide. In the case G = sbb0, expressing that
the value of sbb is T, we obtain ss0 as single minimal factual explanation. In the
case G = ¬sbb1, expressing that the value of sbb is F, we obtain (¬mb0 ∧¬ss0).
Let us now consider the stable model semantics, i.e., assume sem = stable.
For the observation G = sbb0, the minimal factual explanations then are ss0

and mb0, the first one coinciding with the partial stable model semantics. For
the observation G = ¬sbb0, the only minimal factual explanation is just ¬ss0.
The dependency of ¬mb0 in the explanation obtained for the partial stable model
semantics, introduced through the “paradoxical” rule (sbb0 ← mb0 ∧ ¬sbb1), is
not taken into account by the stable model semantics.

All the three considered logic programming semantics are factual explanation
monotonic, which follows from Theorem 12:

Proposition 15 (Factual Explanation Monotonicity of Considered Logic
Programming Semantics). An abductive setting A = 〈sem, O, S, F,G〉 where
sem ∈ {stable, pstable,wf} is factual explanation monotonic.
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Theorem 12 gives a characterization of factual explanations in terms of conjunc-
tive clausal implicants of some particular GWSC. A straightforward consequence
is that minimal factual explanations correspond to prime implicants of that
GWSC, as stated in the following proposition. Recall that a prime implicant of
a formula F is a conjunctive clause C such that C |= F and there does not exist
another conjunctive clause D such that D |= F and D ⊂ C.

Proposition 16 (Minimal Factual Explanations and Prime Implicants).
Let A = 〈sem, O, S, F,G〉 be an abductive setting. Let C ⋐ 0 be a conjunctive
clause. Then the following two statements are equivalent for sem ∈ {stable, pstable}:
1. C is a minimal factual explanation for A.
2. IC(sem, C) is a prime implicant of gwscS∩IG(sem)(semO(F ), G).

If sem = wf and G ⋐ imin-scope, then (1.) is equivalent to:
3. C is a minimal factual explanation for 〈pstable, O, S, F,G〉.

From Prop. 10 it follows that gwscS∩IG(sem)(semO(F ), G) ⋐ S ∩ IG(sem), and

thus, if sem = pstable, then gwscS∩IG(sem)(semO(F ), G) is equivalent to a for-
mula in DNF with only consistent disjuncts, where the positive literal formulas
are from group 0 and the negative ones from group 1. To convert such a DNF into
prime implicants form, i.e., the disjunction of all its prime implicants, it suffices
to remove subsumed conjunctive clauses. The following example illustrates the
relationship of prime implicants and minimal explanations for the partial stable
model semantics.

Example 17 (Prime Implicants Form with Partial Stable Models).
Consider the setting of Examp. 13. Then gwscS∩IG(pstable)(pstableO(F ), G) ≡

(a0∧b0)∨(a0∧¬a1)∨(a0∧¬b1)∨(b0∧¬b1), where the latter formula is in prime
implicants form. To obtain the minimal factual explanations, we remove the two
disjuncts (a0 ∧ ¬a1) and (b0 ∧ ¬b1), which would become inconsistent after re-
naming from group 1 to group 0. This requirement of consistency is implicit in
Prop. 16 with the precondition that C ⋐ 0 is a conjunctive clause.

7 Related Work

As indicated in the introduction in the context of the second-order characteriza-
tion (i) of classical abductive explanations, similar characterizations have been
formulated in a number of works. With respect to non-monotonic semantics, the
author is only aware of a second-order characterization for default logic in [32],
where a translation of default abduction problems into QBFs is specified such
that the models of the resulting QBF correspond to the explanations. The rela-
tionship to second-order quantifier elimination is not made explicit there. In [7] a
QBF characterization of the existence of consistent abductive explanations with
respect to classical propositional logic is shown. Only positive explanations, that
is, sets of atoms, are permitted. To achieve this, literal projection is encoded as
Boolean quantification in [7]. Otherwise, the presented schema is essentially (i)
conjoined with a condition that ensures background consistency. In [7] also a
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QBF representation of the stable model semantics is given, but its interplay
with abduction is not considered there. In [8] abduction for stable model and
well-founded semantics is formalized and complexity results for associated de-
cision problems are given. The role of QBFs there is that hardness results are
proven with translations from decision problems for QBFs with certain quantifier
prefixes into the abductive decision problems. Negative literals in explanations
are not considered in [8].

Several works on computing credulous abductive explanations with respect
to the stable model semantics are based on the approach of [20]. Similarities
to the present work include the consideration of open abducibles and the rela-
tionship of minimal explanations to prime implicants. Computation of skeptical
explanations can be performed with the credulous approach in a trivial way:
Computing all stable models of the background and possible explanations, inde-
pendently of the observation, and inspecting these afterwards. In [17] it is shown
how the computation of credulous explanations with respect to the stable model
semantics can be expressed as computation of stable models of programs with
integrity rules. The knowledge base is a normal logic program. To encode that
abducibles are open, for each abducible p rules (p � not p′) and (p′ � not p)
are added, where p′ is a fresh symbol. Finally, the observation q is added as
an integrity constraint (⊥ � not q). There is a one-one correspondence between
stable models of the resulting program and explanations of q. As noted in [25], a
major drawback of this method is that it involves the actual computation of all
explanations, not taking into account that the minimal ones provide a succinct
representation of them. A variant of [17] is described in [16], where a generaliza-
tion of the stable model semantics to rules with literals instead of just atoms,
as well as disjunctive heads and negation as failure in the head is considered.
Computation of explanations is there encoded similarly to [17], except that the
openness of abducibles p is expressed by rules (p | not p � ⊤). Minimality with
respect to the set of abducibles is taken into account [16, Corollary 3.3], but
in a way that just suggests to compute first the models and only afterwards
extract explanations and compare them with respect to minimality. In [25], the
approach of [20] is improved by discerning redundant explanations. Explana-
tions correspond to sets of literals. It is shown that the set of all explanations
can be represented by the set of minimal explanations, and that minimal expla-
nations to correspond to prime implicants. Again, only credulous explanations
are considered.

A characterization of stable models in terms of circumscription is presented
in [10] as a transformation SM(F ) on classical formulas F . In contrast to the
stable operator, based on [23], the predicate occurrences that are affected by cir-
cumscription are identified in [10] by their syntactic position within the formula,
such that classically equivalent formulas are not necessarily equivalent with re-
spect to the logic programming semantics. Interestingly, an analog to Lemma 11
is shown in [10, Sect. 5.1]: SM(F ∧G) ≡ SM(F ) ∧G whenever G has no strictly
positive occurrences [read: each occurrence is negative, i.e. is in NEG, or is sub-
jected to negation as failure, i.e., is from group 1] of intensional predicates [read:
predicates that are not open, i.e., are not in O]. Observe that if 0 and 1 are the
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only predicate groups, then NEG∪1∪O = (0∩ (O∪NEG))∪1, matching exactly
the precondition upon G of Lemma 11.

Abduction with respect the well-founded semantics has been elaborated in
[1] for programs with a second type of negation, so-called explicit negation, and
integrity constraints. A semantic characterization of explanations is specified,
and a computation method is described and proven correct. Explicit negation
and “coherency” in [1] at least superficially correspond to predicate group 1
and the cons axiom, although a detailed comparison still needs to be done.
Concerning abduction with respect to the partial stable model semantics, the
present author is not aware of a thorough previous investigation.

8 Conclusion

We have seen that abductive explanations with respect to different logic pro-
gramming semantics can be characterized semantically as formulas with second-
order operators. This provides a solid basis for subtle issues such as abduction
with the partial stable model semantics, and, as further described in the appen-
dices, alternate kinds of minimality, the handling of negative facts in explana-
tions, and abductive consequences. A distinguishing feature of such characteri-
zations is that they can be directly processed by elimination of the second-order
operators, that is, computing for a given formula with these operators an equiv-
alent formula without them. Approaches to second-order quantifier elimination
include, with respect to first-order and modal logics, the resolution-based SCAN
[12,14] and the direct methods [4,11]. Of course, with respect to full first-order
logic, these methods are inherently incomplete. Further relevant techniques stem
from knowledge compilation [34] and SAT solving, where Boolean variable elim-
ination is an important preprocessing technique [6,27].

From an algorithmic point of view, the elimination approach suggests two
possible ways to divide the computation of explanations into subtasks. Con-
sider the computation of all minimal background consistent factual explana-
tions with respect to the stable model semantics. According to Prop. 16, the
core expression then is gwscS∩0(stableO(F ), G). Explanations can be computed
by expanding the gwsc and stable operators, eliminating the resulting second-
order quantifiers, and postprocessing the result by computing prime implicants
and removing explanations that are not background consistent. A naive imple-
mentation that proceeds in this way and allows small experiments is provided
with [36]3. The second way to divide the computation begins with computing
stableO(F ) with a dedicated system for stable models. Lemma 11 justifies to take
positive observations into account at this stage: If G contains only positive atoms
from group 0, then gwscS∩0(stableO(F ), G) ≡ ¬projectS∩0(stableO(F ) ∧ ¬G) ≡
¬projectS∩0(stableO(F ∧ ¬G)). Combinations of stable model computation with
second-order quantifier elimination have been developed [9,13], but it needs to
be investigated whether they can be used for the computations suggested here.

3 Available at http://cs.christophwernhard.com/toyelim/

http://cs.christophwernhard.com/toyelim/


16 Section 8

On the agenda for future work are also further applications of the semantic
aspects of the characterizations. For example, relationships to concepts of equiv-
alence of logic programs, in particular abductive equivalence [31] and uniform
equivalence. Can complexity results be read-off from the characterizations? Are
there useful relationships between abduction with respect to non-monotonic se-
mantics and the many other applications of GWSC and WSCs [24,5,37] as well
as the further similar concept of perfect rewriting [2]?

Acknowledgments. The author wishes to thank anonymous reviewers for
bringing related work to attention.
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The following appendix sections contain proofs of Lemma 11 and Theorem 12
(Sect. A), and discussions of background consistency (Sect. B), smallest factual
explanations (Sect. C), the possibilities to incorporate negative facts in expla-
nations into programs (Sect. D) and abductive consequences (Sect. E).

A Proofs

This appendix section contains proofs of Lemma 11 and Theorem 12. In the
proof of Lemma 11 properties of circumscription are applied, for which we need
some auxiliary definitions and propositions. We define scope-determined circum-
scription equivalently to the definition in Sect. 2 but in terms of an auxiliary
intermediate operator raise [37].

Definition A18 (Raising and Scope-Determined Circumscription). For
interpretations I, scopes S and formulas F , define:

(i) I |= raiseS(F ) iffdef there exists an interpretation J such that
J |= F and J ∩ S ⊂ I ∩ S.

(ii) I |= circS(F ) iffdef I |= F ∧ ¬raiseS(F ).

Proposition A20.ii below provides an alternate characterization of raising that
refers to the biscope and uniscope of a scope, two disjoint subsets into which
a scope can be partitioned: The biscope contains those members of the scope
whose complement is also a member of the scope (thus they are “bi-polar” mem-
bers). The uniscope contains the remaining members of the scope, that is, those
whose complement is not also a member of the scope (thus they are “uni-polar”
members). The following definitions provide formal notation for this:

Definition A19 (Biscope and Uniscope Partitions of a Scope). For scopes
S define:

(i) bsc(S) def= S ∩ S.
(ii) usc(S) def= S − S.

Proposition A20 (Properties of Raising). Let S be a scope, let F,G be
formulas and let I be an interpretation. It then holds that:

(i) If F |= G, then raiseS(F ) |= raiseS(G).
(ii) I |= raiseS(F ) if and only if there exists an interpretation J such that

I |= F , J ∩ bsc(S) = I ∩ bsc(S), and J ∩ usc(S) ⊂ I ∩ usc(S).

Lemma 11 (Extension Transparency) Let sem ∈ {stable, pstable}, let F

be a formula, let O be an atom scope, and let G be a formula such that G ⋐

(0 ∩ (O ∪ NEG)) ∪ 1. Then semO(F ∧G) ≡ semO(F ) ∧ CF(sem, G).

Proof. We show the lemma separately for the two cases that sem is stable and
pstable. The essential difference of the two proofs is that formulas “extending”
the logic program can be moved directly outside the stable operator, while they
have to be subjected to a systematic renaming of negative literals to predicate
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group 1 for the partial stable model semantics. Thus, the proofs differ essentially
just in that in the case of pstable these renaming transformations are woven in.

Case sem = stable. Define SC as shorthand for the circumscription scope in the
definition of stable, that is, +0∪ 1∪ (O ∩ 0). We first show that the precondition
G ⋐ (0 ∩ (O ∪ NEG)) ∪ 1 implies the following equivalence:

raise
SC

(F ∧G) ∧G ≡ raise
SC

(F ) ∧G. (xii)

The left-to-right direction of equivalence (xii) follows from Prop. A20.i. The
right-to-left direction is shown in the following table. Assume (1), the precondi-
tion of the proposition. Let I be a model of the right side of equivalence (xii),
that is, assume (2) and (3). We derive with step (10) that I is also a model of
the left side.

(1) G ⋐ (0 ∩ (O ∪ NEG)) ∪ 1. assumption
(2) I |= raise

SC
(F ). assumption

(3) I |= G. assumption
(4) There exists a J such that
(5) J |= F ,
(6) J ∩ 1 = I ∩ 1,
(7) J ∩O ∩ 0 = I ∩O ∩ 0, and
(8) J ∩ 0 ∩ POS ⊂ I ∩ 0 ∩ POS. by (2), Prop. A20.ii
(9) J |= G. by (6)–(8), (3), (1)

(10) I |= raise
SC

(F ∧G). by (6)–(9), Prop. A20.ii

Now, the proposition can be shown with the following equivalences, obtained by
expanding or contracting operators and applying the equivalence (xii):

(11) stableO(F ∧G)
(12) ≡ rename[0\1](circSC (F ∧G))

(13) ≡ rename[0\1](F ∧ ¬raiseSC (F ∧G) ∧G) by equiv. (xii)

(14) ≡ rename[0\1](F ∧ ¬raiseSC (F ) ∧G)

(15) ≡ rename[0\1](circSC (F )) ∧G

(16) ≡ stableO(F ) ∧G

(17) ≡ stableO(F ) ∧ CF(stable, G).

Case sem = pstable. Define SCP as shorthand for the circumscription scope in
the definition of pstable, that is, ((0 ∪ 1) ∩ POS) ∪ 2 ∪ 3 ∪O. We first show that
the precondition G ⋐ (0 ∩ (O ∪ NEG)) ∪ 1 implies the following equivalence:

raise
SCP

(CF(pstable, F ∧G)) ∧ CF(pstable, G)
≡ raise

SCP
(CF(pstable, F )) ∧ CF(pstable, G).

(xiii)

Since clearly CF(pstable, F ∧ G) |= CF(pstable, F ), the left-to-right direction of
equivalence (xiii) follows from Prop. A20.i. The right-to-left direction is shown
in the following table. Assume (1), the precondition of the proposition. Let G′ as
specified in (2). Steps (3) and (4) then follow from (2) and (1). Let I be a model
of the right side of equivalence (xiii), that is, assume (4) and (5). We derive with
step (18) that I is also a model of the left side.
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(1) G ⋐ 0 ∩ (O ∪ NEG)) ∪ 1. assumption
(2) G′ def= rename[1\3](G) ∧ rename[1\2,0\1](G). definition

(3) CF(pstable, G) ≡ cons ∧G′. by (2), (1)
(4) G′

⋐ (((0 ∪ 1) ∩ (O ∪ NEG)) ∪ 2 ∪ 3. by (2), (1)
(5) I |= raise

SCP
(CF(pstable, F )). assumption

(6) I |= CF(pstable, G). assumption
(7) I |= G′. by (6), (3)
(8) There is a J such that
(9) J |= CF(pstable, F ),

(10) J ∩ 2 = I ∩ 2,
(11) J ∩ 3 = I ∩ 3,
(12) J ∩O ∩ (0 ∪ 1) = I ∩O ∩ (0 ∪ 1),
(13) J ∩ (0 ∪ 1) ∩ POS ⊂ I ∩ (0 ∪ 1) ∩ POS. by (5), Prop. A20.ii
(14) J |= G′. by (10)–(13), (7), (4)
(15) J |= cons. by (9)
(16) J |= CF(pstable, G). by (15), (14), (3)
(17) J |= CF(pstable, F ∧G). by (16), (9)
(18) I |= raise

SCP
(CF(pstable, F ∧G)). by (17), (10)–(14), Prop. A20.ii

To derive step (14) we applied that for all formulas F , scopes S and interpreta-
tions I, J it holds that if F ⋐ S, I |= F and I ∩ S ⊆ J , then J |= F . Now, the
proposition can be shown with the following equivalences, obtained by expand-
ing or contracting operators and, to obtain the equivalence of (23) to (22), by
equivalence (xiii).

(19) pstableO(F ∧G)
(20) ≡ rename[2\0,3\1](circSCP

(CF(pstable, F ∧G)))

(21) ≡ rename[2\0,3\1](CF(pstable, F ∧G) ∧ ¬raise
SCP

(CF(pstable, F ∧G)))

(22) ≡ rename[2\0,3\1](CF(pstable, F ) ∧ ¬raise
SCP

(CF(pstable, F ∧G)) ∧ CF(pstable, G))

(23) ≡ rename[2\0,3\1](CF(pstable, F ) ∧ ¬raise
SCP

(CF(pstable, F )) ∧ CF(pstable, G))

(24) ≡ rename[2\0,3\1](circSCP
(CF(pstable, F ))) ∧ CF(pstable, G)

(25) ≡ pstableO(F ) ∧ CF(pstable, G).

In the proofs of the cases of Theorems 12 and E29 that apply to the partial stable
model semantics we will represent the systematic polarity dependent renaming
of predicate groups in conjunctive clauses with a shorthand as follows: Let

C = (

m∧

i=1

A0
i ∧

n∧

i=1

¬B0
i ),

be a conjunctive clause, where m,n ≥ 0. We then write C also as C[+0,−0], and
write C with the negated atoms replaced by their correspondents from group 1,
that is,

(

m∧

i=1

A0
i ∧

n∧

i=1

¬B1
i ),

as C[+0,−1]. The other combinations, C[+1,−0] and C[+1,−1], are understood
analogously. The following proposition shows conversions from CF and conjunc-
tive clauses C[+0,−0], C[+0,−1], C[+1,−1] in the presence of cons.
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Proposition A21 (Properties of Conjunctive Clauses over Group Set-
tings). For all conjunctive clauses C[+0,−0] it holds that: cons ∧ C[+0,−1] ≡
cons ∧ C[+0,−0] ∧ C[+1,−1] ≡ CF(pstable, C[+0,−0]).

Theorem 12 (Factual Explanation in Terms of GWSC) Let A = 〈sem, O,

S, F,G〉 be an abductive setting. Let C ⋐ 0 be a conjunctive clause. If sem ∈
{stable, pstable}, then the following two statements are equivalent:
1. C is a factual explanation for A.
2. C ⋐ S and IC(sem, C) |= gwscS∩IG(sem)(semO(F ), G).

If sem = wf and G ⋐ imin-scope, then (1.) is equivalent to:
3. C is a factual explanation for 〈pstable, O, S, F,G〉.

Proof. We show the proposition separately for the three cases that sem is stable,
pstable and wf.

Case sem = stable. For this case we show the theorem generalized to arbitrary
explanations instead of just factual explanations. We prove that under the pre-
condition that S ⊆ O, which holds by the definition of abductive setting (Def. 3),
the following two statements are equivalent for all formulas H:

H is an explanation for A, and (xiv)

H ⋐ S ∩ 0 and H |= gwscS∩0(stableO(F ), G). (xv)

This equivalence implies the theorem since for all conjunctive clauses C it holds
that IC(stable, C) = C and IG(stable) = 0. Consider the following table. We
assume as step (1) the precondition S ⊆ O, ensured by Def. 3. In addition,
we assume as step (2) that H ⋐ S ∩ 0. For the right side of the theorem this
condition is explicitly stated, for the left side it follow from the definition of
explanation (Def. 4). Step (3) follows from these assumptions.

(1) S ⊆ O. assumption
(2) H ⋐ S ∩ 0. assumption
(3) H ⋐ O ∩ 0. by (1), (2)

Equivalence of (xiv) and (xv) now follows since under the assumptions just made
H is an explanation for A if and only if H |= gwscS∩0(stableO(F ), G):

(4) H is an explanation for A
(5) iff stableO(F ∧H) |= G by (2), Def. 4
(6) iff stableO(F ) ∧H |= G by (3), Lem. 11
(7) iff H |= gwscS∩0(stableO(F ), G). by (2), Prop. 9

Case sem = pstable. Let C = C[+0,−0] be a conjunctive clause. Recall that by
definition IC(pstable, C[+0,−0]) = C[+0,−1]. Thus statement (1.) in the theorem
expands into

C[+0,−0] is a factual explanation for A,

and statement (2.) expands into

C[+0,−1] |= gwscS∩IG(pstable)(pstableO(F ), G).



22 Section B

Consider the following table. We assume as step (1) the precondition S ⊆ O,
ensured by Def. 3. In addition, we assume as steps (2) and (3) that C[+0,−0]
is a conjunctive clause and that C[+0,−0] ⋐ S ∩ 0. For the right side of the
theorem these conditions are explicitly stated, for the left side they follow from
the definition of factual explanation (Def. 4). Steps (4) and (5) follow from these
assumptions.

(1) S ⊆ O. assumption
(2) C[+0,−0] is a conjunctive clause. assumption
(3) C[+0,−0] ⋐ S ∩ 0. assumption
(4) C[+0,−0] ⋐ O ∩ 0. by (1), (3)
(5) C[+0,−1] ⋐ S ∩ IG(pstable). by (3), since IG(pstable) = imin-scope

= (0 ∩ POS) ∪ (1 ∩ NEG)

We conclude the proof for the case of sem = pstable by showing that under the
assumptions just made the following equivalences hold:

(6) C[+0,−0] is a factual explanation for A
(7) iff pstable(F ∧ C[+0,−0]) |= G by (2), (3), Def. 4
(8) iff pstable(F ) ∧ C[+0,−1] |= G by (4), Lem. 11, Prop. A21
(9) iff C[+0,−1] |= gwscS∩IG(pstable)(pstableO(F ), G). by (5), Prop. 9

To derive step (8) we applied that for all formulas F and ungrouped atom
scopes O it holds that pstableO(F ) |= cons.

Case sem = wf. This case follows easily from the case sem = pstable, the
definition of factual explanation and Prop. 2.

B Background Consistency as a Separate Property

Background consistency is in the literature on abduction often required as an in-
herent property of explanations. Our specification as a separate property (Def. 7)
is motivated by the follwing rationales: In a classical setting, the GWSC is the
unique weakest explanation. From that point of view, requiring background con-
sistency from explanations is redundant, since explanations fail to have this
property only if no other explanations exist. A second rationale is that in ex-
planation monotonic settings background consistency can be straightforwardly
ensured with a “postprocessing” operation applied to the GWSC, as justified by
the following proposition:

Proposition B22 (Picking Background Consistent Explanations). Let
A = 〈sem, O, S, F,G〉 be an abductive setting. If 〈sem, O, S, F,⊥〉 is factual ex-
planation monotonic, then the following statements are equivalent:
1. C is a background consistent factual explanation for A and there does not exist
another background consistent factual explanation D for A such that D ⊂ C.
(2.) C is a background consistent minimal factual explanation for A.

Proposition B22 can be applied to ensure that the factual explanations which
are background consistent and minimal compared to the other background con-
sistent factual explanations – i.e., those explanations which are typically desired
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as final output of the explanation computation – can be obtained by picking
the background consistent explanations from the minimal (but not necessarily
background consistent) factual explanations obtained, e.g., as prime implicants
from the GWSC according to Prop. 16.

C Smallest Factual Explanations

As already indicated in Sect. 4, aside of the concept of minimal factual expla-
nation (Def. 6), that is, “minimality” with respect to a set of literals, another
concept of “minimality” can be associated with factual explanations: “minimal-
ity” with respect to the set of positive literals. We call factual explanations
that are “minimal” in the latter sense smallest factual explanations. The precise
definition is based on the concept of complete conjunctive clause:

Definition C23 (Complete Conjunctive Clause). A conjunctive clause C

is called complete for an abductive setting with explanation scope S if and only
if C ⋐ S∩0 and there is no other conjunctive clause D ⋐ S∩0 such that C ⊂ D.

Definition C24 (Smallest Factual Explanation). A smallest factual expla-
nation for an abductive setting A is a complete factual explanation C for A

such that there does not exists a complete factual explanation D for A with
projectPOS(D) ⊂ projectPOS(C).

Example C25 (Smallest and Minimal Factual Explanations). Let A =
〈stable, O, S, F, p0〉, where O def= S def= {a, b, c, d} and

F def= p0 ← a0 ∧ ¬b1 ∧
p0 ← a0 ∧ ¬c1 ∧
p0 ← a0 ∧ d0.

Then there are three minimal factual explanations for A: (a0 ∧¬b0), (a0 ∧¬c0),
and (a0 ∧ d0). There is only a single smallest factual explanation for A: (a0 ∧
¬b0 ∧ ¬c0 ∧ ¬d0).

Clearly, the set of all factual explanations for some abductive setting can be de-
termined from the set of the minimal factual explanations, and vice versa. The
smallest factual explanations can be determined from all factual explanations
(and thus also from the minimal factual explanations). However, it is not in
general possible to determine all factual explanations from the smallest factual
explanations. There is a one-one correspondence of the smallest factual expla-
nations to just to a subset of the minimal factual explanations. Proposition C27
below makes this precise. It is preceded by an auxiliary definition, the notation
fillneg(A, C) for the conjunctive clause that is complete for A and obtained by
extending C with negative literals:

Definition C26 (Fillneg). Let A be an abductive setting with explanation
scope S. For conjunctive clauses C ⋐ S ∩ 0,

fillneg(A, C) def= C ∧
∧

{A0 | −A0∈S∩0 and A0 is not a positive literal in C} ¬A
0.
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Proposition C27 (Smallest and Minimal Factual Explanations). Let A
be a factual explanation monotonic abductive setting. Then the following state-
ments are equivalent:

1. C is a smallest factual explanation for A.

2. There is a minimal factual explanation D for A such that C = fillneg(A, D)
and there does not exist another minimal factual explanation E for A with
projectPOS(E) ⊂ projectPOS(D).

D Representing Negative Facts by Closing Atoms

The definition of explanation (Def. 4) involves the conjunction (F ∧ H) of the
explanation H with the classical representation of the logic program F . If H is
a factual explanation A0

1 ∧ . . . ∧ A0
m ∧ ¬B

0
1 ∧ . . . ∧ ¬B0

n, then positive as well
as negative literals in group 0 are conjoined. The positive literals can be viewed
as positive facts, rules with empty body, matching the syntactic restrictions for
a normal logic program. If the negative literals are conjoined in the same way,
they represent unary constraints, that is, rules with empty head and a single
positive body literal, breaking the restrictions for a normal logic program.

The following property allows to express the negative literals in explanations
in another way, by removing them from the open scope, such that the syntactic
constraints of normal logic programs can be preserved:

semO(F ∧ ¬A
0) ≡ semO−{A}(F ). (xvi)

This property holds for the stable and partial stable model semantics if A does
not occur in the head of a rule of the program represented by F , which can be
expressed semantically as F ≡ forget{+A0}(F ).

A disadvantage of applying equivalence (xvi) to represent negative facts by
altering the open scope is that the respective open scope then depends on the
particular explanation. The following property, which again holds for the stable
as well as the partial stable model semantics, justifies that also positive facts
can be removed from the open scope:

semO(F ∧A0) = semO−{A}(F ∧A0). (xvii)

By equivalences (xvi) and (xvii), for all complete factual explanations, their
conjunction with the background can be represented as a normal logic program
with respect to the same open scope, the open scope that is obtained from
the original open scope by subtracting the explanation scope. If the original
open scope and the explanation scope are identical, the open scope obtained by
subtracting is empty, corresponding to the “standard” variant of the respective
logic programming semantics, with no open predicates.
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E Abductive Consequences

Consider the following example from [26]: Let A = 〈stable, O, S, F,G〉, where
O = S = {rainedLastNight},

F = grass is wet0 ← rained last night0 ∧
do not bike to work0 ← rained last night0,

and G = grassIsWet0. Then rainedLastNight0 is the only minimal factual expla-
nation for A. When added to the background, this explanation has aside of the
observation also doNotBikeToWork0 as a consequence. The notion of abductive
consequence [26] takes account of such “collateral” consequences of the back-
ground when it is combined with explanations of some observation. We consider
here a specific variant of this concept: A formula is an factual-skeptical abductive
consequence of some observation if and only if for all factual explanations of the
observation the formula is a consequence of the background combined with the
explanation. More precisely:

Definition E28 (Factual-Skeptical Abductive Consequence). Let A =
〈sem, O, S, F,G〉 be an abductive setting. A formula H is a factual-skeptical
abductive consequence of A if and only if for all factual explanations C for A it
holds that semO(F ∧ C) |= H.

The following theorem shows how factual-abductive consequences can be char-
acterized with the GWSC. It follows from Theorem 12, Lemma 11 and for the
well-founded semantics from Prop. 2.

Theorem E29 (Abductive Consequences). Let A = 〈sem, O, S, F,G〉 be an
abductive setting. If sem ∈ {stable, pstable}, then the following two statements
are equivalent:
1. H is a factual-skeptical abductive consequence of A.
2. semO(F ) ∧ gwscS∩IG(sem)(semO(F ), G) |= H.

If sem = wf, G ⋐ imin-scope and H ⋐ imin-scope, then (1.) is equivalent to:
3. H is a factual-skeptical abductive consequence of 〈pstable, O, S, F,G〉.

Proof. We show the proposition separately for the three cases that sem is stable,
pstable and wf.

Case sem = stable. Recall that IG(stable) = 0, thus statement (2.) of the theorem
expands into

stableO(F ) ∧ gwscS∩0(stableO(F ), G) |= H.

Let W be a shorthand for gwscS∩0(stableO(F ), G). Assume the precondition of
the theorem:

(1) S ⊆ O by Def. 3

We reformulate the left side of the theorem by expanding definitions and applying
Theorem 12 and Lemma 11 and then show the equivalence to the right side:
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(2) H is a factual-skeptical abductive consequence of A
(3) iff For all factual explanations E for A it holds that

stableO(F ∧ E) |= H

(4) iff For all conjunctive clauses E ⋐ S ∩ 0 such that
E |= W it holds that stableO(F ∧ E) |= H by (1), Thm. 12

(5) iff For all conjunctive clauses E ⋐ S ∩ 0 such that
E |= W it holds that stableO(F ) ∧ E |= H. by (1), Lem. 11

(6) iff (stableO(F ) ∧W ) |= H.

Clearly (6) implies (5). It remains to show that also (5) implies (6). Assume (5).
Let (W1 ∨ . . . ∨Wn) be a formula that is equivalent to W and in disjunctive
normal form with conjunctive clauses W1, . . . ,Wn ⋐ S∩0. The existence of such
a formula follows from Prop. 10. Then, by (5), for each i ∈ {1, . . . , n} it follows
that (stableO(F ) ∧Wi) |= H, which implies (6).

Case sem = pstable. Let W be a shorthand for gwscS∩IG(pstable)(pstableO(F ), G).
Assume the precondition of the theorem:

(1) S ⊆ O by Def. 3

We reformulate the left side of the theorem by expanding definitions and applying
Theorem 12 and Lemma 11 and then show the equivalence to the right side:

(2) H is a factual-skeptical abductive consequence of A
(3) iff For all factual explanations E[+0,−0] for A it holds that

pstableO(F ∧ E[+0,−0]) |= H

(4) iff For all conjunctive clauses E[+0,−0] ⋐ S ∩ 0 such that
E[+0,−1] |= W it holds that pstableO(F ∧ E[+0,−0]) |= H by (1), Thm. 12

(5) iff For all conjunctive clauses E[+0,−0] in S ∩ 0 such that
E[+0,−1] |= W it holds that pstableO(F ) ∧ E[+0,−1] |= H. by (1), Lem. 11

(6) iff pstableO(F ) ∧W |= H.

Clearly (6) implies (5). It remains to show that also (5) implies (6). Assume (5).
Let

W1[+0,−1] ∨ . . . ∨Wm[+0,−1] ∨Wm+1[+0,−1] ∨ . . . ∨Wn[+0,−1],

where n ≥ m ≥ 0, be a formula that is equivalent to W and is in disjunctive nor-
mal form with conjunctive clauses W1[+0,−1], . . . ,Wn[+0,−1] ⋐ S ∩ IG(pstable),
such that the conjunctions

W1[+0,−0], . . . ,Wm[+0,−0]

are conjunctive clauses (hence consistent) and

Wm+1[+0,−0] . . . ,Wn[+0,−0]

are inconsistent conjunctions of literal formulas. The existence of such a DNF
follows from Prop. 10 since any projection of a propositional formula is equiv-
alent to a propositional formula in negation normal form whose literals are all
in the projection scope. Then, by (5), for each i ∈ {1, . . . ,m} it follows that
pstableO(F ) ∧Wi[+0,−1] |= H. Step (6) then follows since cons ∧ (W1[+0,−1] ∨
. . .∨Wn[+0,−1]) ≡ cons∧(W1[+0,−1]∨. . .∨Wm[+0,−1]) and pstableO(F ) |= cons.
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Case sem = wf. Assume the preconditions of the theorem:

(1) S ⊆ O. by Def. 3
(2) G ⋐ imin-scope. assumption
(3) H ⋐ imin-scope. assumption

We show the equivalence of both sides of the proposition by expanding and
contracting the definition of factual-skeptical abductive consequence, and by
applying Prop. 2 and Theorem 12:

(4) H is a factual-skeptical abductive consequence of A
(5) iff For all factual explanations E for A it holds that

wfO(F ∧ E) |= H

(6) iff For all factual explanations E for A
it holds that pstableO(F ∧ E) |= H by (3), Prop. 2

(7) iff For all factual explanations E for 〈pstable, O, S, F,G〉
it holds that pstableO(F ∧ E) |= H by (2), (1), Prop. 12

(8) iff H is a factual-skeptical abductive consequence of
〈pstable, O, S, F,G〉.

The following example shows a case where the abductive explanations and con-
sequences differ, depending on whether the stable model or the partial stable
model/well-founded semantics is used.

Example E30 (Abductive Consequences). Let A = 〈sem, O, S, F,G〉 be
an abductive setting, where O = S = {a, b}, F = (p0 ← s0 ∧ a0) ∧ (p0 ←
b0) ∧ (q0 ← b0) ∧ (r0 ← ¬s1) ∧ (s0 ← ¬r1) ∧ (t0 ← ¬t1 ∧ r0), and G = p0.
Intuitively, the rules (r0 ← ¬s1) and (s0 ← ¬r1) express that s or r must hold,
and (t0 ← ¬t1∧r0) that r leads to inconsistency with the stable model semantics,
or to undefinedness with the partial stable model semantics, respectively. It
holds that gwscS∩IG(stable)(F,G) ≡ (a0 ∨ b0). Thus, if sem = stable, then a0

and b0 are the two minimal factual explanations for A. Since stable{a,b}(F ) ∧
(a0 ∨ b0) 6|= q0 it does not hold that q0 is an abductive consequence of A. With
partial stable model and well-founded semantics this is different. It holds that
gwscS∩IG(pstable)(F,G) ≡ ((a0 ∧ ¬a1) ∨ b0). If sem ∈ {pstable.wf}, then, since

(a0∧¬a0) is inconsistent and thus not a conjunctive clause, b0 is the only minimal
factual abductive explanation for A. Since pstable{a,b}(F ) |= cons, it holds that

pstable{a,b}(F ) ∧ ((a0 ∧ ¬a1) ∨ b0) ≡ pstable{a,b}(F ) ∧ b0 |= q0, and thus q0 is a
factual abductive consequence of A.
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