
COMPLEXITY THEORY

Lecture 13: Space Hierarchy and Gaps

Markus Krötzsch

Knowledge-Based Systems

TU Dresden, 3 Dec 2024

More recent versions of this slide deck might be available.
For the most current version of this course, see
https://iccl.inf.tu-dresden.de/web/Complexity_Theory/en

https://iccl.inf.tu-dresden.de/web/Complexity_Theory_(WS2024)
https://iccl.inf.tu-dresden.de/web/Markus_Kr%C3%B6tzsch/en
https://iccl.inf.tu-dresden.de/web/Complexity_Theory/en

Review

Markus Krötzsch; 3 Dec 2024 Complexity Theory slide 2 of 19

Review: Time Hierarchy Theorems

Time Hierarchy Theorem 12.12 If f , g : N → N are such that f is time-
constructible, and g · log g ∈ o(f), then

DTime∗(g) ⊊ DTime∗(f)

Nondeterministic Time Hierarchy Theorem 12.14 If f , g : N → N are such that f
is time-constructible, and g(n + 1) ∈ o(f (n)), then

NTime∗(g) ⊊ NTime∗(f)

In particular, we find that P , ExpTime and NP , NExpTime:

L ⊆ NL ⊆ P ⊆ NP ⊆ PSpace ⊆ ExpTime ⊆ NExpTime ⊆ ExpSpace

,

,

Markus Krötzsch; 3 Dec 2024 Complexity Theory slide 3 of 19

A Hierarchy for Space

Markus Krötzsch; 3 Dec 2024 Complexity Theory slide 4 of 19

Space Hierarchy

For space, we can always assume a single working tape:

• Tape reduction leads to a constant-factor increase in space

• Constant factors can be eliminated by space compression

Therefore, DSpacek(f) = DSpace1(f).

Space turns out to be easier to separate – we get:

Space Hierarchy Theorem 13.1: If f , g : N → N are such that f is space-
constructible, and g ∈ o(f), then

DSpace(g) ⊊ DSpace(f)

Challenge: TMs can run forever even within bounded space.

Markus Krötzsch; 3 Dec 2024 Complexity Theory slide 5 of 19

Proving the Space Hierarchy Theorem (1)

Space Hierarchy Theorem 13.1: If f , g : N → N are such that f is space-
constructible, and g ∈ o(f), then

DSpace(g) ⊊ DSpace(f)

Proof: Again, we construct a diagonalisation machine D. We define a multi-tape TM D
for inputs of the form ⟨M, w⟩ (other cases do not matter), with abbreviation n = |⟨M, w⟩|:
• Compute f (n) in unary to mark the available space on the working tape
• Initialise a separate countdown tape with the largest binary number that can be

written in f (n) space
• SimulateM on ⟨M, w⟩, making sure that only previously marked tape cells are

used
• Time-bound the simulation using the content of the countdown tape by

decrementing the counter in each simulated step
• IfM rejects (in this space bound) or if the time bound is reached withoutM

halting, then accept; otherwise, ifM accepts or uses unmarked space, reject
Markus Krötzsch; 3 Dec 2024 Complexity Theory slide 6 of 19

Proving the Space Hierarchy Theorem (1)

Proof (continued): It remains to show that D implements diagonalisation:

L(D) ∈ DSpace(f):
• f is space-constructible, so both the marking of tape symbols and the initialisation

of the counter are possible in DSpace(f)
• The simulation is performed so that the marked O(f)-space is not left

There is w such that ⟨M, w⟩ ∈ L(D) iff ⟨M, w⟩ < L(M):
• As for time, we argue that some w is long enough to ensure that f is sufficiently

larger than g, so D’s simulation can finish.
• The countdown measures 2f (n) steps. The number of possible distinct

configurations ofM on w is |Q| · n · g(n) · |Γ|g(n) ∈ 2O(g(n)+log n), and due to f (n) ≥ log n
and g ∈ o(f), this number is smaller than 2f (n) for large enough n.

• IfM has d tape symbols, then D can encode each in log d space, and due toM’s
space bound D’s simulation needs at most log d · g(n) ∈ o(f (n)) cells.

Therefore, there is w for which D simulatesM long enough to obtain (and flip) its
output, or to detect that it is not terminating (and to accept, flipping again). □
Markus Krötzsch; 3 Dec 2024 Complexity Theory slide 7 of 19

Space Hierarchies

Like for time, we get some useful corollaries:

Corollary 13.2: PSpace ⊊ ExpSpace

Proof: As for time, but easier. □

Corollary 13.3: NL ⊊ PSpace

Proof: Savitch tells us that NL ⊆ DSpace(log2 n). We can apply the Space Hierarchy
Theorem since log2 n ∈ o(n). □

Corollary 13.4: For all real numbers 0 < a < b, we have DSpace(na) ⊊
DSpace(nb).

In other words: The hierarchy of distinct space classes is very fine-grained.

Markus Krötzsch; 3 Dec 2024 Complexity Theory slide 8 of 19

The Gap Theorem

Markus Krötzsch; 3 Dec 2024 Complexity Theory slide 9 of 19

Why Constructibility?

The hierarchy theorems require that resource limits are given by constructible functions

Do we really need this?

Yes. The following theorem shows why (for time):

Special Gap Theorem 13.5: There is a computable function f : N → N such that
DTime(f (n)) = DTime(2f (n)).

This has been shown independently by Boris Trakhtenbrot (1964) and Allan Borodin
(1972).

Reminder: For this we continue to use the strict definition of DTime(f) where no
constant factors are included (no hidden O(f)). This simplifes proofs; the factors
are easy to add back.

Markus Krötzsch; 3 Dec 2024 Complexity Theory slide 10 of 19

Proving the Gap Theorem

Special Gap Theorem 13.5: There is a computable function f : N → N such that
DTime(f (n)) = DTime(2f (n)).

Proof idea: We divide time into exponentially long intervals of the form:

[0, n], [n + 1, 2n], [2n + 1, 22n
], [22n

+ 1, 222n

], · · ·

(for some appropriate starting value n)

We are looking for gaps of time where no TM halts, since:

• for every finite set of TMs,

• and every finite set of inputs to these TMs,

• there is some interval of the above form [m + 1, 2m]

such that none of the TMs halts in between m + 1 and 2m steps on any of the inputs.

The task of f is to find the start m of such a gap for a suitable set of TMs and words

Markus Krötzsch; 3 Dec 2024 Complexity Theory slide 11 of 19

Gaps in Time

We consider an (effectively computable) enumeration of all Turing machines:

M0,M1,M2, . . .

Definition 13.6: For arbitrary numbers i, a, b ∈ N with a ≤ b, we say that
Gapi(a, b) is true if:

• Given any TM Mj with 0 ≤ j ≤ i,

• and any input string w for Mj of length |w| = i,

Mj on input w will halt in less than a steps, in more than b steps, or not at all.

Lemma 13.7: Given i, a, b ≥ 0 with a ≤ b, it is decidable if Gapi(a, b) holds.

Proof: We just need to ensure that none of the finitely many TMsM0, . . . ,Mi will halt
after a to b steps on any of the finitely many inputs of length i. This can be checked by
simulating TM runs for at most b steps. □

Markus Krötzsch; 3 Dec 2024 Complexity Theory slide 12 of 19

Find the Gap

We can now define the value f (n) of f for some n ≥ 0:

Let in(n) denote the number of runs of TMsM0, . . . ,Mn on words of length n, i.e.,

in(n) = |Σ0|
n + · · · + |Σn|

n where Σi is the input alphabet ofMi

We recursively define a series of numbers k0, k1, k2, . . . by setting k0 = 2n and ki+1 = 2ki

for i ≥ 0, and we consider the following list of intervals:

[k0 + 1, k1], [k1 + 1, k2], · · · , [kin(n) + 1, kin(n)+1]

= = =

[2n + 1, 22n], [22n + 1, 222n
], · · · , [2·

··
2n

+ 1, 22·
··
2n

]

Let f (n) be the least number ki with 0 ≤ i ≤ in(n) such that Gapn(ki +1, ki+1) is true.

Markus Krötzsch; 3 Dec 2024 Complexity Theory slide 13 of 19

Properties of f

We first establish some basic properties of our definition of f :

Claim: The function f is well-defined.

Proof: For finding f (n), we consider in(n) + 1 intervals. Since there are only in(n) runs of
TMsM0, . . .Mn, at least one interval remains a “gap” where no TM run halts. □

Claim: The function f is computable.

Proof: We can compute in(n) and ki for any i, and we can decide Gapn(ki + 1, ki+1). □

Papadimitriou: “notice the fantastically fast growth, as well as the decidedly unnatural
definition of this function.”

Markus Krötzsch; 3 Dec 2024 Complexity Theory slide 14 of 19

Finishing the Proof
We can now complete the proof of the theorem:

Claim: DTime(f (n)) = DTime(2f (n)).

Consider any L ∈ DTime(2f (n)).
Then there is a 2f (n)-time bounded TMMj with L = L(Mj).

For any input w with |w| ≥ j:
• The definition of f (|w|) took the run ofMj on w into account
• Mj on w halts after less than f (|w|) steps, or not until after 2f (|w|) steps (maybe never)
• SinceMj runs in time DTime(2f (n)), it must halt in DTime(f (n)) on w

For the finitely many inputs w with |w| < j:
• We can augment the state space ofMj to run a finite automaton to decide these

cases
• This will work in DTime(f (n))

Therefore we have L ∈ DTime(f (n)). □
Markus Krötzsch; 3 Dec 2024 Complexity Theory slide 15 of 19

Discussion: The case |w| < j
Borodin says: It is meaningful to state complexity results if they hold for “almost every”
input (i.e., for all but a finite number)

Papadimitriou says: These words can be handled since we can check the length and
then recognise the word in less than 2j steps

Really?
• If we do these < 2j steps before runningMj, the modified TM runs in DTime(f (n) + 2j)
• This does not show L ∈ DTime(f (n))

A more detailed argument:
• Make the intervals larger: [ki + 1, 2ki+2n + 2n], that is ki+1 = 2ki+2n + 2n.
• Select f (n) to be ki + 2n + 1 if the least gap starts at ki + 1.

The same pigeon hole argument as before ensures that an empty interval is found.

But now the f (n) time bounded machineMj from the proof will be sure to stop after
f (n) − 2n − 1 steps, so a shift of 2j ≤ 2n to account for the finitely many cases will not
make it use more than f (n) steps either
Markus Krötzsch; 3 Dec 2024 Complexity Theory slide 16 of 19

Discussion: Generalising the Gap Theorem

• Our proof uses the function n 7→ 2n to define intervals

• Any other computable function could be used without affecting the argument

This leads to a generalised Gap Theorem:

Gap Theorem 13.8: For every computable function g : N→ N with g(n) ≥ n, there
is a computable function f : N→ N such that DTime(f (n)) = DTime(g(f (n))).

Example 13.9: There is a function f such that

DTime(f (n)) = DTime

 22·
··
2︸︷︷︸

f (n) times

Moreover, the Gap Theorem can also be shown for space (and for other resources) in a
similar fashion (space is a bit easier since the case of short words |w| < j is easy to handle in very little space)

Markus Krötzsch; 3 Dec 2024 Complexity Theory slide 17 of 19

Discussion: Significance of the Gap Theorem

What have we learned?

• More time (or space) does not always increase computational power

• However, this only works for extremely fast-growing, very unnatural functions

“Fortunately, the gap phenomenon cannot happen for time bounds t
that anyone would ever be interested in”1

Main insight: better stick to constructible functions

1Allender, Loui, Reagan: Complexity Theory. In Computing Handbook, 3rd ed., CRC Press, 2014
Markus Krötzsch; 3 Dec 2024 Complexity Theory slide 18 of 19

Summary and Outlook
Hierarchy theorems tell us that more time/space leads to more power:

L ⊆ NL ⊆ P ⊆ NP ⊆ PSpace ⊆ ExpTime ⊆ NExpTime ⊆ ExpSpace

,

,

,

,

However, they don’t help us in comparing different resources and machine types
(P vs. NP, or PSpace vs. ExpTime)

With non-constructible functions as time/space bounds, arbitrary (constructible or not)
boosts in resources do not lead to more power

What’s next?

• The inner structure of NP revisited

• Computing with oracles (reprise)

• The limits of diagonalisation, proved by diagonalisation
Markus Krötzsch; 3 Dec 2024 Complexity Theory slide 19 of 19

	Space Hierarchy and Gaps
	Review
	A Hierarchy for Space
	The Gap Theorem

