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Abstract. Argumentation games, which model reasoning as adversarial dialogue,
offer intuitive and explainable mechanisms for decision-making in AI. However,
their implementation has lagged behind inference-focused approaches, particu-
larly in structured argumentation frameworks like assumption-based argumenta-
tion (ABA). This work presents, to our knowledge, the first application of multi-
shot answer set programming (ASP) for implementing argument games, focus-
ing on ABA dispute derivations. Leveraging a recent rule-based representation
of ABA disputes, our method combines a declarative program with lightweight
script-based control of multi-shot aspects, yielding a modular and adaptable sys-
tem. We extend this core approach to support alternative games and show how it
can also be used to implement argument games for Dung’s abstract argumentation
formalism. Empirical results show that our implementation outperforms existing
ABA dispute systems. We also introduce an approximate variant that further im-
proves efficiency – reaching the level of the best current inference-focused ABA
system – while maintaining perfect specificity (i.e. true negative rate), demon-
strating the practical value of multi-shot ASP, particularly in interactive settings
where explainability is key.

Keywords: Assumption-based argumentation · Abstract argumentation · Argu-
ment games · Dispute derivations · Multi-shot answer set programming.

1 Introduction

Argumentation plays a crucial role in human decision-making, especially in complex
situations without clear-cut answers. Formal models of argumentation, rooted in re-
search in non-monotonic reasoning, offer argumentation approaches to knowledge rep-
resentation and reasoning in AI. These models underpin a wide range of applications
including in law, medicine, and e-governance [1].

Models of argumentation range from highly abstract to more detailed, structured
approaches. Abstract models focus on the relationships between arguments – most no-
tably, attacks – without considering their internal content. In contrast, structured mod-
els represent the internal composition of arguments, including premises and inference
steps. Structured models are often viewed as concrete instantiations of their abstract
counterparts [8].

On the reasoning side, a key distinction is between approaches that treat argumenta-
tion as inference – focusing on selecting acceptable arguments under various semantics



2 Martin Diller and Piotr Gorczyca

– and those that also consider the argumentation process itself [34]. Among the latter,
argument-game approaches are prominent, modeling reasoning as an adversarial dia-
logue between a proponent, who defends a claim, and an opponent, who challenges
it [7]. These models are closely linked to broader dialogical frameworks [33,21,3] and
have been recognized as particularly suitable for explainable AI, given their ability to
dialectically justify claims in interactive settings [38].

Research on efficient implementation methods in argumentation has largely focused
on abstract models, though structured models – despite their greater complexity – are
gaining increasing attention. In contrast, game approaches have received relatively little
attention in this regard. A likely reason is that the reduction techniques successful in
implementing argumentation-as-inference (as evidenced by top-performing systems in
the recent main argumentation competition-ICCMA’23 [28]) are less readily applicable
to game approaches, due to their iterative and potentially interactive nature.

Among reduction-based methods, those targeting answer set programming (ASP)
are particularly popular [12]. ASP is a declarative programming paradigm for knowl-
edge representation and reasoning, offering a concise, expressive rule-based language
and efficient solvers. Its strengths in modularity and succinctness make it a power-
ful tool for modeling complex problems, with growing use in academia and indus-
try [19,20].

In the standard approach to problem solving with ASP, valid solutions are specified
through logic rules such that the answer sets of a program correspond to the solutions of
the problem. A major computational bottleneck is the grounding phase [2], where vari-
ables are instantiated with constants to produce variable-free programs. This becomes
especially costly in iterative scenarios, where similar but slightly modified programs
must be re-grounded from scratch at each step.

Multi-shot ASP is a recent advancement that enables modifying and re-solving logic
programs across iterations, significantly reducing grounding and solving overhead [23].
This approach has proven beneficial in various domains (e.g. [15,18,9,35,6,17]), includ-
ing the implementation of games [24,4].

This paper presents, to our knowledge, the first study of multi-shot ASP for argu-
mentation, in particular, for implementing argument games. Specifically, we focus on
dispute derivations in assumption-based argumentation (ABA) [11], a key rule-based
framework that is also closely related to ASPIC+ [32] and that is the first structured
formalism featured at ICCMA (since 2023). Our main contributions are:

– We present a multi-shot ASP-based approach for implementing ABA dispute deriva-
tions, targeting the latest rule-based dispute representation [13]. This version is the
only one with a participating system at the most recent ICCMA and has outper-
formed other dispute-based systems in empirical evaluations [14]. Importantly, it
nevertheless also clearly builds on earlier argument- and graph-based ABA dispute
variants [37,10].

– Compared to previous implementations of ABA disputes, our multi-shot approach
is more declarative. It closely mirrors the formal definitions, delegating execution
to the ASP engine, with a lightweight Python script managing multi-shot control.
Thanks to its declarative and modular design, the approach is easily adaptable. We
demonstrate this by extending it to support alternative games (e.g. complete and
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stable semantics), and by implementing similar games for Dung’s AFs [16], the
most fundamental of the many abstract argumentation formalisms. We also provide
a simple interactive as well as visual interface to our implementation, proving that
such aspects can also easily be accommodated.

– Our systematic empirical evaluation shows that, despite being substantially more
concise and interpretable, the multi-shot implementation clearly outperforms the
most efficient ABA dispute system on the ABA track ICCMA’23 benchmarks.

– Moreover, we introduce and evaluate an approximate variant that halts after a fixed
number of iterations. It guarantees no false positives, yet frequently identifies dis-
putes where the proponent wins. This variant achieves efficiency on par with the
best existing inference-focused one-shot ASP-based ABA system. While it sacri-
fices accuracy to obtain this efficiency, it demonstrates that the multi-shot approach
offers a strong alternative – especially when the advantages of game-based meth-
ods, such as support for interactivity and explainability, are needed.

– Finally, we propose our approach as a general methodology for implementing and
comparing argument games, extending also to formalisms beyond those explicitly
considered in this work, namely ABA and Dung’s AFs.

2 Background

We begin by briefly introducing Dung’s AFs, ABA, and ASP programs, focusing on the
syntax. We explain the aspects most relevant to our work in more detail (and provide
examples) when turning to the core ideas behind our approach in Section 3.

An abstract argumentation framework (AF) is a tuple F = (A,R), where A is a
set of (abstract) arguments and R ⊆ A × A denotes the attack relation. We say that
a1 attacks a2 if (a1, a2) ∈ R. A set of arguments S ⊆ A is said to be conflict-free if
for no pair of arguments a1, a2 ∈ S, a1 attacks a2. An argument a1 ∈ A is said to be
defended from a2 ∈ A by S ⊆ A, if a2 attacks a1 and there is an argument a3 ∈ S
that, in turn, attacks a2. Finally, a set S ⊆ A is admissible if S is conflict-free and S
defends every argument a ∈ S from any argument attacking a. All classical semantics
introduced in [16] are admissibility-based; i.e. they return sets of arguments that are
admissible (commonly also called extensions).

ABA frameworks add further structure to AFs. Concretely, an ABA framework F
consists of a tuple (L,A, ,R). Here, L is the language underlying the framework. As
in most work on implementations for ABA (see [31] for an exception) we restrict our
attention to what is arguably also the most common instance of ABA: those frameworks
for which L is a finite set of propositional atoms. A ⊆ L are the set of assumptions.
is the contrary relation associating to each α ∈ A its set of contraries (α) ⊆ L. R is
a set of rules of the form h ← B, where B ⊆ L and h ∈ L. B is the body, while h is
the head of the rule. Again, following most work on implementations for ABA, we also
restrict our attention to flat ABA, i.e. frameworks for which assumptions cannot appear
in the heads of rules. This is also the instance of ABA which has been featured at the
ICCMA competition since 2023.

Arguments in ABA are built by deriving claims from facts via the rules. I.e. the head
h of any rule h← ∅ with empty body is an argument with conclusion h (such h can be
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considered facts). Moreover, if a1, . . . , am are arguments with conclusions h1, . . . , hm

and r = h ← {h1, . . . , hm} ∈ R, then the composition of a1, . . . , am with r is an
argument with conclusion h. Arguments are, thus, commonly represented as proof trees
with nodes labelled by atoms, and the parent-child relation in the tree indicating that
the atom labelling the parent node is in the body of a rule used to derive the child node.
One argument attacks another if the first argument has as conclusion an atom which is
a contrary of an assumption that is used in the second argument.

As explained in the introduction, disputes are a procedural means of deciding ac-
ceptance of an atom (the goal claim) modelled after argumentation: the proponent must
find an argument deriving the goal claim and defend itself from the opponent by finding
jointly consistent arguments attacking the counter-arguments constructed by the oppo-
nent. The opponents role, on the other hand, is precisely to find counter-arguments to
any argument constructed by the proponent. Whoever has the last word in the dispute
wins: i.e. if the opponent builds a counter-argument which the proponent cannot defend
against then the opponent wins, while the proponent wins if it finds defending argu-
ments against all counter-arguments of the opponent and the opponent cannot find any
further counter-arguments. The goal claim is deemed acceptable whenever there is a
dispute for it which the proponent wins; otherwise the goal claim is unacceptable. As
we also indicated in the introduction, different versions of disputes exist differing in
the way arguments are represented and the semantics that they cover. In this work we
make use of the rule-based representation of disputes defined in [13] (which further
simplifies the graph-based representation of [10], which in turn builds on [37]), where
the proponent and opponent directly exchange rules rather than arguments (although
the argument representation can be reconstructed from the rules).

For ASP we make use of the syntax of clingo [22]. ASP programs consist in a finite
collection of rules of the form a0 :- a1, . . . , am, not am+1, . . . , not am+l. where the ais
(0 ≤ i ≤ m + l) are atoms. The latter are expressions of the form p(t1, . . . , tn) where
p is a predicate and the tis are terms. Terms can be either constants or variables. The
latter must be written starting with uppercase letters (e.g. X or Var ), while constants
cannot begin with uppercase letters. Positive (of the form a) and negative (of the form
not a) atoms are also called literals.

Rules without variables are called ground. Rules with variables are shorthand for the
set of ground rules obtained by uniformly replacing the variables in the (non-ground)
rule with all constants occurring in the ASP program. If the rule is ground then it can
informally be interpreted to mean that a0 must be derived, i.e. be part of a solution of
the program, if a1, . . . , am are derived and am+1, . . . , am+l are not derived. Rules with
empty bodies (of the form a0 :- .) are facts, while those with empty heads (of the form
:- a1, . . . , am, not am+1, . . . , not am+l.) are integrity constraints. The first indicate that
a0 must be a part of all solutions, the second that solutions that satisfy the body of the
rule are not allowed. Formally, solutions to ASP programs, so called answer-sets, are
distinguished sets of (ground) atoms given by the stable-model semantics [26].

To ease ASP programming, several extensions of the basic syntax have been de-
fined [25]. For instance, arithmetic expressions can be used in bodies of rules. Also,
numbers and strings (enclosed in quotation marks) can be used as constants, while
"_" represents an anonymous variable: an unnamed fresh variable whose scope is that
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of the rule where it is used. More significantly, conditional literals are extensions of
literals and are written as a:b1, . . . , bm where a and the bis are positive or negated
atoms. These express that a should be included (e.g. in the body of a rule) whenever
b1, . . . , bm are derived. They are particularly useful when combined with variables: for
instance, a(X):b(X) denotes all instances of a(X) for which b(X) is derived. Another
construct we make use of are cardinality constraints of the form {c1; . . . ; cm} = k
expressing that exactly k of the ci conditional literals must be derived. For instance,
{a(X) : b(X)} = 1 means that from all of the instances of a(X) for which b(X) is
derived, exactly one must be selected.

In multi-shot ASP [23], the #program directive is used to partition an ASP program
into multiple parameterizable subprograms. Each subprogram is identified by a predi-
cate name and can take parameters, which are constants that influence its instantiation.
Multi-shot solving is enabled by integrating ASP with an imperative host language,
such as Python, through the clingo API. This integration allows dynamic interaction
with the ASP solver via an imperative script. Specifically, a clingo.Control object is
created within the host language, and subprograms are added to it. Through the API,
grounding and solving can then be interleaved using dedicated ground and solve meth-
ods. Unlike static, one-shot solving, this interleaving enables grounding only the parts
of the program that are relevant at a given stage, based on the evolving problem context.
The solve method accepts optional arguments, such as assumptions, which are central
to our approach. Assumptions are lists of (atom/truth value) pairs that constrain the
solver by specifying which literals are to be treated as true or false during a particular
solve call, enabling fine-grained control over successive solving phases.

3 Multi-shot ASP encodings of disputes

In this section, we present our proposal for using multi-shot ASP to implement disputes.
For ease of understanding and also show the flexibility of our approach, we first con-
sider the simpler case of Dung’s AFs in Section 3.1, and subsequently apply the same
methodology to implement ABA disputes in Section 3.2.

3.1 Abstract argumentation

For Dung AFs we make use of the fact that these can also be captured in ABA [36] and,
thus, tackle a specialization of ABA disputes for AFs. Our multi-shot implementation
comprises two components shown in Figure 1: the ASP encoding, and the Python script
controlling multi-shot solving via the clingo API. The latter forms the backbone of our
approach and will also be reused in the ABA implementation described in Section 3.2.

The implementation assumes an input AF instance and a designated argument whose
acceptance is to be evaluated, both encoded as ASP facts. Given an argumentation
framework F = (A,R), its ASP encoding is:

en(F) := {arg(a) | a ∈ A} ∪ {att(a, b) | (a, b) ∈ R}

The designated argument a ∈ A, referred to as the goal argument, is encoded as g(a).
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1 #program base.
2 % initialize
3 m(0,p,G) :- g(G), not att(G,G), arg(G).
4

5 #program updateState(t).
6 defeat(t,C) :- m(_,p,P), att(P,C). % defeated
7 pm(t,p,P) :- m(_,o,O), att(P,O), not defeat(_,P),
8 not m(_,p,P), not att(P,P),
9 not att(P,D1) : m(_,p,D1). % possible p. move

10 pm(t,o,O) :- m(_,p,P), att(O,P), not defeat(_,O),
11 not m(_,o,O). % possible o. move
12 end(t,p) :- g(G), m(_,p,G), not pm(t,o,_),
13 defeat(_,O1) : m(_,o,O1). % p. won
14 end(t,o) :- not pm(t,p,_), m(_,o,O),
15 not defeat(_, O). % opp. won
16

17 #program step(t).
18 m(t,o,A) :- pm(t-1,o,A).
19 { m(t,p,A) : pm(t-1,p,A) } = 1 :- not pm(t-1,o,_).
20

21 #show m/3.

1 from clingo import Control , Number as N
2 Function as F
3 def main(instance , base_code , encoding ):
4 ctl = Control ()
5 ctl.load(instance)
6 ctl.load(encoding)
7 ctl.add("base", [], base_code)
8 ctl.ground ([("base", ())])
9 t = 0

10 while True:
11 ctl.ground ([("updateState",[N(t)])])
12 p_win = (F("end",[N(t),F("p")]),True)
13 res = ctl.solve(assumptions =[p_win],
14 on_model=print)
15 if res.satisfiable:
16 return True
17 o_win = (F("end",[N(t),F("o")]), False)
18 res = ctl.solve(assumptions =[o_win])
19 if res.unsatisfiable:
20 return False
21 t += 1
22 ctl.ground ([("step",[N(t)])])

Fig. 1: Multi-shot ASP encoding of AF disputes (left) and main control Python script (right).

The ASP encoding in Figure 1 is divided into three subprograms via lines 1, 5
and 17: 1) base: for initialization, 2) updateState(t): to update the internal state at
each step, and 3) step(t): to select the next move. The updateState(t) and step(t)
subprograms take the current dispute step number as a parameter.

At an abstract level, a dispute is a sequence of moves. For AFs, each move consists
of a player – proponent or opponent, represented by constants p and o (the colors are for
ease of reading) – choosing an argument to play. The key predicate is m/3, representing
a move with parameters: step number, player, and chosen argument. The predicate pm/3,
on the other hand, indicates available moves at a given step.

The base subprogram is grounded at the start, initiating the dispute with the propo-
nent playing the goal argument at step 0, if it is consistent (does not attack itself).

The updateState(t) subprogram updates the internal state at each step t using
auxiliary predicates. The predicate defeat/2 collects all arguments attacked by the
proponent so far (the "defeated" arguments). In Line 7, possible proponent moves are
determined. A valid proponent move must (i) counter an opponent’s argument, (ii) not
be defeated, (iii) not have been used before by the proponent, (iv) be consistent, and (v)
not attack other proponent arguments. In Line 10, opponent moves are derived. These
must (i) attack a proponent’s argument, (ii) not be defeated, and (iii) not have been used
already by the opponent.

The rules in Line 12 and Line 14 define the end/2 predicate, indicating whether the
game has been won. The proponent wins if (i) the goal is among their arguments, (ii)
the opponent has no more available moves, and (iii) all opponent arguments have been
defeated. It is easy to see that if the proponent wins, their argument set corresponds to
an admissible extension as per Section 2. The opponent wins if (i) the proponent has no
available moves and (ii) at least one undefeated opponent argument remains.
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Fig. 2: Representation of two steps of a dispute for the argumentation framework F = (A,R)
and goal d, where A = {a, b, c, d, e} and R = {(a, e) , (d, a) , (c, d) , (b, c) , (e, b) , (e, c)}.
The left figure depicts the dispute state after a proponent move m(0,p,d) and opponent move
m(1,o,c); the right figure depicts the state in which the proponent has won after making a
m(2,p,e) move. The numbers above the arguments indicate the step at which their status is
determined. The status is shown via colors: green – put forward by the proponent (e.g., e at step 2
via m(2,p,e)), yellow – put forward by the opponent, red – defeated unplayed arguments (e.g.,
a via defeat(0,a)), blue – possible moves at a step (e.g., pm(1,p,b), pm(1,p,e)).

The step(t) subprogram selects the next move. Disputes branch only at proponent
moves, as admissibility requires the opponent to play all possible counter-attacks to a
proponent’s argument. Conversely, for each opponent move, the proponent must select
one counter-argument. For efficiency (though this is easy to adapt), the encoding prior-
itizes opponent moves, performing all available opponent moves at each step (Line 18).
A proponent move is selected only when no opponent moves are possible (Line 19).

The #show directive at the end of Figure 1 (left) indicates which atoms are shown
when printing the answer-sets. Concretely, the atoms indicating the moves are shown.

We now turn to the Python control script presented in Figure 1 (right). The main
function (Line 3) takes three arguments: the ASP encoding of the input AF, a base pro-
gram for initialization, and the main encoding for the argumentation formalism (e.g., the
ASP code in Figure 1, left). The base program offers additional flexibility and control.
For Dung’s AFs, for instance, it is used to specify the goal argument of the dispute in a
short ASP program, such as that containing the fact g(a) for a given goal argument a.

Once the encodings are loaded, the base subprogram is grounded – this includes
grounding the input framework as well as the goal directive. The step counter t is then
initialized to 0.

The main loop begins in Line 10, where the subprogram updateState(t) is
grounded for the current step t. In Line 12, an assumption is constructed – this is a
pair consisting of a literal and a truth value. For a given step t = n, the assumption
(end(n,p), True) is created, asserting that the proponent has won at step n. This as-
sumption is passed to the solver to constrain answer sets accordingly. If the solve is
successful, this indicates that a dispute of length n exists in which the proponent wins.

If the solve fails, the script proceeds to Line 17, where the assumption (end(n, o),
False) is created. This assumption asserts that the opponent has not won at step n (i.e.,
there is at least one answer set which does not contain end(n, o), meaning also that the
proponent has not yet lost and the dispute may continue). If this second solve also fails,
it implies that - regardless of the move the proponent makes at step n - they will loose
to the opponent and, hence, the procedure can terminate.

If neither condition holds, the search proceeds: t is incremented, a new move is
selected via the step(t) subprogram (Line 22), and the next iteration begins. Figure 2
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provides the visualisation of a dispute for an exemplary AF generated by our system
MS-DIS3 (using the listings from Figure 1).

3.2 Assumption-based argumentation

To implement ABA disputes our approach is the same as that presented in Section 3.1.
In particular, Figure 1 (right) continues to serve as the Python script controlling the
multi-shot execution. The only difference lies in the inputs provided to this script.

Given an ABA instance F = (L,A, ,R), its encoding as a set of ASP facts is
defined as follows:

en(F) := {assumption(a) | a ∈ A} ∪ {contrary(a, b) | (a, b) ∈ }

∪
⋃

r=h←B∈R

{head(r, h)} ∪ {body(r, b) | b ∈ B}

The goal of the dispute is a statement s ∈ L that is to be justified dialectically. This
is encoded as g(s). For ABA, further inputs (which we will explain shortly) are facts
encoding the termination condition and the advancement type. For the dispute for the
admissible semantics these are "tt(ta)." and "at(dabf)." respectively.

The multi-shot ASP encoding for ABA disputes is shown in Figure 3. As with
the encoding for AF disputes, the program is divided into three sub-programs: base,
updateState(t), and step(t), each fulfilling the same roles as in the AF encoding.

At the most abstract level, ABA disputes also consist of a sequence of moves. The
main difference compared to disputes for AFs is that each move now involves one of
the players – the proponent or the opponent (represented by the constants p and o as
in the AF encoding) – putting forward either an assumption or a rule from the ABA
framework. Thus, what is explicitly constructed is a rule set for each player, consisting
of the assumptions and rules they have played. When a rule is played by a player, each
statement in the rule’s body and head is also considered as played by that player. For the
proponent, this amounts to committing to the rule and its associated statements; for the
opponent, it reflects an exploration of a possible line of attack against the proponent’s
commitments. To avoid redundancy, the proponent’s rule set is considered a subset of
the opponent’s rule set.

The rule sets determine, in an implicit manner, the arguments available to each
player: these are exactly the arguments that can be constructed from the rules and claims
contained in their rule set. Hence, the proponent’s arguments are those derivable from
the proponent’s rule set, while the opponent’s arguments include all arguments derivable
from their own rule set, which subsumes that of the proponent.

The fact that players in ABA disputes put forward both rules and assumptions allows
us to distinguish between different types of moves. In the encoding given in Figure 3,
we distinguish between eight move types, represented by the constants pb1, pb2, pf1,
pf2, ob1, ob2, of1 and of2. Proponent move types begin with p, and opponent move
types begin with o. The letters b and f stand for "backward" and "forward", respectively.

3 https://github.com/gorczyca/MS-DIS

https://github.com/gorczyca/MS-DIS


ABA Disputes in ASP: Advancing Argument Games through Multi-Shot Solving 9

1 #program base.
2 rMT(pb1;pb2;pf1;ob1;ob2;of1). % rule move types
3 branchMT(pb1;pb2;pf2). % branching (br.) move types
4 plr(p;o). % players; proponent (p.) and opponent (o.)
5 rS(R,S) :- head(R,S). % rule’s statements from rule heads
6 rS(R,S) :- body(R,S). % rule’s statements from rule bodies
7 stS(0,S,P) :- g(S), not contrary(S,S), plr(P). % goal - initial statement
8 remBloR(0,R,H,p) :- head(R,H), rS(R,S1), rS(R,S2), contrary(S1,S2). % blocked, inconsistent rules
9

10 #program updateState(t).
11 def(t,D) :- stS(_,D,p), assumption(D). % defence
12 cul(t,C) :- stS(_,S,p), contrary(C,S). % culprit
13 defCtr(t,DC) :- def(_,D), contrary(D,DC). % defence contrary
14 culCtr(t,CC) :- cul(_,C), contrary(C,CC). % culprit contrary
15

16 remR(t,R,H,P) :- not stR(_,R,H,P), head(R,H), plr(P). % remaining player’s rule
17 remBloR(t,R,H,P) :- remR(t,R,H,P), body(R,B), cul(_,B), plr(P). % blocked remaining player P.’s rule
18 remBloR(t,R,H,p) :- remR(t,R,H,p), rS(R,S), defCtr(_,S). % blocked remaining p.’s rule
19

20 unexpS(t,H,p) :- stS(_,H,p), not stR(_,_,H,p). % unexpanded statement
21 stExpS(t,H,o) :- stS(_,H,o), remBloR(_,R,H,o) : remR(t,R,H,o). % fully expanded statement
22 stBloS(t,S,o) :- stS(_,S,o), cul(_,S). % state blocked statement
23 stBloS(t,S,o) :- stExpS(t,S,o), not assumption(S), stBloR(t,R,S,o) : stR(_,R,S,o).
24 stBloR(t,R,H,o) :- stR(_,R,H,o), body(R,B), stBloS(t,B,o). % state blocked rule
25

26 comS(t,S,p) :- def(_,D). % complete statement
27 comS(t,H,p) :- stR(_,R,H,p), comS(t,S,p) : body(R, S).
28 unbloComS(t,S,o) :- stS(_,S,o), assumption(S), not cul(_,S). % unblocked complete (unb. com.) statement
29 unbloComS(t,H,o) :- stS(_,H,o), not stBloS(t,H,o), unbloComR(t,_,H,o).
30 unbloComR(t,R,H,o) :- stR(_,R,H,o), not stBloR(t,R,H,o), unbloComS(t,B,o) : body(R, B).% unb. com. rule
31 unbloSupSS(t,S,o) :- stS(_,S,o), contrary(D,S), def(t,D), not stBloS(t,S,o).% unb. statements support. S
32 unbloSupSS(t,S,o) :- stS(_,S,o), not stBloS(t,S,o), unbloSupSR(t,R,_,o), body(R, S).
33 unbloSupSR(t,R,H,o) :- stR(_,R,H,o), not stBloR(t,R,H,o), unbloSupSS(t,H,o).% unb. rules supporting S
34 culCan(t,C) :- assumption(C), unbloSupSS(t,C,o). % culprit candidate
35

36 pm(t,p,pb1,R) :- remR(t,R,H,p), not remBloR(_,R,H,p), unexpS(t,H,p). % possible move (pm) "PB1"
37 pm(t,p,pb2,R) :- remR(t,R,H,p), not remBloR(_,R,H,p), culCan(t,C), contrary(C, H), not stS(_,H,p),
38 not contrary(D, H) : def(_,D). % pm "PB2"
39 pm(t,p,pf1,R) :- remR(t,R,H,p), not remBloR(_,R,H,p), comS(t,B,p) : body(R, B). % pm "PF1"
40 pm(t,p,pf2,A) :- culCan(t,C), contrary(C,A), assumption(A), not stS(_,A,p), not contrary(A,A),
41 not cul(_,A), not contrary(D,A) : def(_,D). % pm "PF2"
42 pm(t,o,ob1,R) :- remR(t,R,H,o), not remBloR(_,R,H,o), unbloSupSS(t,H,o). % pm "OB1"
43 pm(t,o,ob2,R) :- remR(t,R,H,o), not remBloR(_,R,H,o), contrary(D, H), def(_,D). % pm "OB2"
44 pm(t,o,of1,R) :- remR(t,R,H,o), not remBloR(_,R,H,o), unbloComS(t,B,o) : body(R, B). % pm "OF1"
45 pm(t,o,of2,A) :- contrary(D,A), def(_,D), assumption(A), not stS(_,A,o). % pm "OF2"
46

47 stS(t,S,P) :- m(_,p,T,R), rMT(T), rS(R,S), plr(P). % new state statement
48 stS(t,A,P) :- m(_,p,T,A), not rMT(T), plr(P).
49 stS(t,S,o) :- m(_,o,T,R), rMT(T), rS(R,S).
50 stS(t,A,o) :- m(_,o,T,A), not rMT(T).
51 stR(t,R,H,P) :- m(_,p,T,R), head(R,H), rMT(T), plr(P). % new state rule
52 stR(t,R,H,o) :- m(_,o,T,R), head(R,H), rMT(T).
53

54 term(t) :- tt(ta), g(G), comS(_,G,p), comS(_,CC,p) : culCtr(_,CC);
55 not unbloComS(t,DC,o) : defCtr(_,DC).
56 end(t,p) :- term(t), not pm(t,o,_,_). % p. won; termination condition satisfied and o. cannot move
57 end(t,o) :- not term(t), not pm(t,p,_,_). % o won; term. cond. not satisfied and p. cannot move
58

59 #program step(t).
60 m(t,P,T,X) :- pm(t-1,P,T,X), not branchMT(T), t > 0. % proceed with non-br. move type
61 { m(t,P,T,X) : pm(t-1,P,T,X) } = 1 :- t > 0, branchMT(T) : pm(t-1,_,T,_). % choose one br. move
62

63 #show m/4.

Fig. 3: Multi-shot ASP encoding of ABA disputes for the admissible semantics.



10 Martin Diller and Piotr Gorczyca

The backward moves pb1 and ob1 are used to justify a claim s already in the player’s
rule set by introducing a rule h ← B such that h = s. Conversely, the forward moves
pf1 and of1 add a rule h← B when its body B is in the player’s current claim set.

The backward moves pb2 and ob2 are used to attack an assumption a of the oppos-
ing player by introducing a rule h← B such that h ∈ (a). Finally, the forward moves
pf2 and of2 introduce an assumption a1 ∈ (a2), provided that a2 is an assumption in
the opposing players claim set.

We refer to all move types that involve rules (i.e., all except pf2 and of2) as rule
move types, and they are declared using the predicate rMT/1. Among the proponent’s
moves, all except pf1 are considered branching, and are denoted using the branchMT/1
predicate. As in the case of AF disputes, only the proponent can introduce branching in
the search for a winning dispute. The reason why pf1 is not branching is that it simply
derives consequences from claims the proponent has already committed to. Therefore,
pf1 does not introduce a choice point, but rather derives consequences that follow from
previous choices.

Moves in ABA disputes are encoded via the predicate m/4, which now takes four
arguments to represent (i) the dispute step, (ii) the player, (iii) the move type, and (iv)
the rule or assumption involved in the move. Specifically, m(t,P,T,X) encodes a move
made at turn t, by player P, of type T. If T is a rule move type (i.e., rMT(T) holds), then
X refers to the rule’s identifier; otherwise, it refers to the assumption introduced.

As in the AF encoding, possible moves are defined via the predicate pm/4, which
also now has arity 4. To track the evolving rule sets of each player, we use the auxiliary
predicates stS/3 and stR/4. The predicate stS(t,S,P) denotes that statement S has
been used by player P at step t. Similarly, stR(t,P,h,r) records that a rule r = h← B
has been used by player P at step t.

Turning now from the predicates used to the encoding itself, as in the encoding for
AFs, the base and updateState(t) subprograms define various auxiliary predicates
that are used to constrain the possible moves available to the proponent and opponent
at each step. The actual move to perform is selected by the step(t) subprogram.

The base subprogram, which is grounded at the start, defines in lines 2 to 4 the rule
move types and branching move types, as well as the players (via the plr/1 predicate).
In lines 5 and 6, all statements appearing in rules are collected using the rS/2 predicate.
In Line 7, the dispute is initialised by adding the goal statement to both the proponent
and opponent rule sets, provided the goal is not an inconsistent assumption. In Line 8,
the remBloR/4 predicate – encoding rules that are initially blocked for the proponent –
is populated with those rules that are inconsistent.

The updateState(t) subprogram, as in the AF case, updates the internal state of
the dispute at each step. Lines 11 and 12 define the so-called defences and culprits:
defences are assumptions to which the proponent is committed, while culprits are as-
sumptions contrary to some claim in the proponent’s rule set (i.e. these are attacked by
the proponent). Lines 13 and 14 then define the contraries of defences and culprits.

In Line 16, the predicate remR/4 gathers the remaining rules for each player, i.e.,
rules not yet used. The subsequent lines define the subset of these that are blocked. For
both players (Line 17), rules are blocked if they contain a culprit in the body – i.e.,
assumptions that are attacked by the proponent. Additionally, for the proponent, rules
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Fig. 4: Two dispute states - 4 (top) and 5 (bottom) - for the ABA framework F = (L,A, ,R),
where A = {a, b, c, d, e, xe}, (τ) = {xτ} for τ ∈ {a, b, c, d, e} (there are no fur-
ther contraries), andR = s← d, p, a; p← xc;xc← f ;xd← e;xa← b, t; t← c. The dispute
state on the top has been obtained via the sequence of moves: m(1,p,pb1,s← p, d, a),
m(2,o,ob2,xa← b, t), m(3,o,ob2,xd← e), m(4,p,pb1,p← xc). At step 4, the propo-
nent has two possible moves: pm(4,p,pf2,xe) and pm(4,p,pb1,xc← f). Performing the
latter gives rise to the move m(5,p,pb1,xc← f) and the dispute state shown at the bottom.
Green pieces are introduced by the proponent, yellow ones by the opponent. Black arrows de-
pict rules, while blue arrows represent attacks. Dashed arrows show dependencies between rules
as well as between assumptions and rules. Assumptions are shown in boldface. Red rules are
blocked, dark red statements are culprits and light red blocked opponents statements. Blue indi-
cates possible moves. Numbers in squares next to a rule or assumption indicate the step at which
they obtain their current status. For example, a “4” next to p ← xc indicates that this rule was
introduced by the proponent at step 4, which is also when t← c became blocked (shown in red)
due to c becoming a culprit (because attacked by xc). Additional information can be retrieved:
e.g. statement s becomes a proponent’s complete piece at step 5 (indicated by the number above
it), represented by comS(5,s,p); c becomes a culprit at step 4 (cul(4,c)); or e and b become
culprit candidates at steps 3 and 2, respectively (culCan(3,e) and culCan(2,b)).

that contain the contrary of a defence in their body are also blocked, as they would
render the proponent’s rule set inconsistent.

In Line 20, the predicate unexpS/3 identifies unexpanded statements within the
proponent’s rule set: statements for which no rule has yet been introduced that justifies
them. Conversely, in Line 21, the predicate stExpS/3 identifies fully expanded state-
ments in the opponent’s rule set – those for which all matching-head rules are blocked.
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Fig. 5: Argument-based representation of the dispute states from Figure 4 (left corresponding to
top, right to bottom), with similar symbols and coloring scheme. The green rectangles represent
the proponent’s arguments; the yellow the opponent’s.

The next lines then define the opponent’s blocked statements: either culprits (Line 22),
or non-assumption statements for which all rules with a matching head are blocked
(Line 23). A blocked rule (stBloS/4), defined in Line 24, is any rule that contains a
blocked statement in its body.

Lines 26 and 27 define the complete statements of the proponent: every defence is
a complete statement, as is any statement derivable via rules whose body is composed
entirely of other complete statements. These capture the statements for which the propo-
nent has complete arguments. The opponent’s analogous notions – unblocked complete
statements (unbloComS/3) and unblocked complete rules (unbloComR/4) – are defined
in Line 28-30. These represent statements and rules that are part of complete arguments
of the opponent and that are not attacked by the proponent.

Lines 31-33 identify unblocked supporting statements and rules of the opponent
(unbloSupSS/3, unbloSupSR/4), i.e. those that contribute to justifying a contrary of a
defence. These support the identification of culprit candidates in Line 34 – assumptions
that appear in such justifications. Since these assumptions are part of a potential attack
on the proponent, they become potential targets for counter-attack.

Lines 36-45 define the possible moves to choose from at step t. These are:

– pb1 – the proponent introduces a rule h← B with head h = s to justify a currently
unexpanded statement s in their rule set, provided h ← B is non-blocked and
unused.

– pb2 – the proponent introduces a rule h ← B whose head is contrary to a culprit
candidate, such that h← B is consistent, non-blocked, unused, and does not attack
any defences.

– pf1 – the proponent introduces an unblocked rule h ← B whose body consists of
complete statements, thus allowing the derivation of the new claim h.

– pf2 – the proponent introduces an assumption ā that is the contrary of a culprit
candidate a and ā is consistent, unused, not itself a culprit, and does not attack any
defences.

– ob1 – the opponent introduces a rule h ← B with head h = s, where s is a
statement contributing to an argument attacking a defence, and h ← B is non-
blocked and unused.

– ob2 – the opponent introduces a rule h ← B whose head is contrary to a defence,
provided h← B is non-blocked and unused.
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1 #program updateState(t).
2 . . .
3 % add another option to perform "PF2" move
4 pm(t,p,pf2,A) :- at(ds), assumption(A), not cul(_,A), not stS(_,A,p), not contrary(A,A),
5 not contrary(D,A) : def(_,D).
6 % define: remaining assumptions - neither defences, nor culprits
7 remA(t,A) :- tt(ts), assumption(A), not def(_,A), not cul(_,A).
8 % modify termination criteria: require no assumption be remaining
9 term(t) :- tt(ts), g(G), comS(_,G,p), comS(_,CC,p) : culCtr(_,CC);

10 not unbloComS(t,DC,o) : defCtr(_,DC); not remA(t,A) : assumption(A).

Fig. 6: Multi-shot ASP encoding of ABA disputes for the stable semantics.

– of1 – the opponent introduces a rule h ← B whose body is composed solely of
unblocked complete statements, thereby reinforcing or extending attacks on the
proponent.

– of2 – the opponent introduces an assumption ā, provided it is the contrary of a
defence a and has not yet been used.

Lines 47-52 then extract the statements and rules used in the selected move and add
them to the respective player’s rule set, ensuring that the opponent also has access to
any rule or statement used by the proponent.

Finally, Line 54 defines the termination condition for admissible semantics (ta): the
dispute terminates successfully if (i) the goal is a complete statement of the proponent
(i.e. the proponent has a complete argument for the goal), (ii) all culprits are complete
statements (the proponent has complete arguments for all statements used to attack the
opponent), and (iii) no contrary of a defence is an unblocked complete statement (all
arguments of the opponent attacking the proponent are blocked, i.e. in turn attacked by
the proponent). If this condition holds and no further opponent moves are possible, the
proponent wins (Line 56); if the condition fails and the proponent has no remaining
moves, the opponent wins (Line 57).

As in the encoding for AFs, the step(t) subprogram selects the next move, giving
precedence to non-branching moves. Only if no such move is applicable will a single
branching move among the available branching types be selected. Finally, the #show
directive indicates that when printing the answer sets only the atoms encoding selected
moves at each step are shown.

Two steps of a dispute as generated by our system MS-DIS for an exemplary ABA
framework is shown in Figure 4. This shows the rule-based representation which con-
sists in the graph of dependencies and attacks among rules, together with labels (via col-
ors) indicating the status of statements and rules at the dispute state. The corresponding
argument-based representation is shown in Figure 5.

Stable semantics. To demonstrate how easily the multi-shot ASP encoding can be ex-
tended to support additional semantics, Figure 6 shows a small code fragment extending
Figure 3 to implement ABA disputes to determine acceptance of claims under the stable
semantics.

Figure 6 specifically extends the updateState subprogram from Figure 3 with two
small additions. First (Line 4) introduces the option for the proponent to make forward
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moves (of type pf2) to propose an assumption even if it does not attack a culprit. The
conditions are: the assumption (i) is not a culprit, (ii) is not already in the claim set,
(iii) is consistent, and (iv) does not attack any current defences. Second, the termina-
tion condition is extended for the stable semantics (Line 9), triggered by tt(ts). In
addition to the admissible criteria, it requires that all assumptions be either culprits or
defences, i.e. all non-proponent arguments are attacked by the proponent. Remaining
assumptions are identified via the remA predicate (Line 7). To enable the stable seman-
tics, the advancement and termination types at(ds) and tt(ts) are passed as the base
code parameter to the main solve call in Figure 1 (right).

4 Implementation and evaluation

4.1 System

The code listings in Section 3 are part of our system MS-DIS, which implements dispute
derivations for both AFs and ABA. The system supports both automatic and interactive
modes and includes a visualization component. In automatic mode, given a claim and
an ABA framework (or an argument and an AF), the system attempts to construct a
winning dispute for the proponent. In interactive mode, the user is guided through the
dispute process, with the system presenting available moves at each step and updating
the dispute state based on the selected move. The visualization component, which gen-
erated figures 2 and 4 in Section 3, is implemented declaratively using the ASP-based
library clingraph [27]. Further details can be found on the GitHub page.

4.2 Experimental setup

In our experiments, we focus on the implementation of MS-DIS (version 1.0) for ABA
and, specifically, on the efficiency of its automatic mode. Since the automatic and in-
teractive modes can also be interleaved, the results are relevant beyond the purely auto-
matic setting.

We consider four distinct aspects in our evaluation: (1) the performance benefit
of the multi-shot approach; (2) comparison with previous implementations of ABA
disputes; (3) comparison with the most efficient inference-oriented (i.e. also not dispute-
based) system for ABA; and (4) the use of approximation within MS-DIS.

As to (1), we compare the multi-shot variant of MS-DIS – our main approach – with
a naïve one-shot iterative version that restarts grounding and solving from scratch at
each step. For a given step number n, the first solver call checks whether the propo-
nent can win within n steps, and the second whether the search should continue. These
correspond to lines 13 and 18 in Figure 1 (right).

As to (2), we compare MS-DIS with flexABle (version 1.0), which implements rule-
based dispute derivations for ABA as proposed in [14]. The system flexABle has been
shown to outperform earlier ABA systems [37,10] and was the only ABA dispute solver
to participate in the latest ICCMA competition [28].

As to (3), we compare MS-DIS to aspforaba [30]4, which uses static one-shot
ASP encodings. As the top-performing ABA solver in ICCMA’23, aspforaba offers

4 There is no version information. We downloaded it on 4.6.25.
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an upper bound for performance. While we consider the comparison of MS-DIS and
aspforaba informative, we did not expect MS-DIS to outperform aspforaba, given
that the latter is optimized for decision problems, whereas MS-DIS aims to simulate
a dispute justifying a claim. In particular, to decide acceptance of claims aspforaba
requires a single call to an ASP solver, while MS-DIS requires multiple calls (albeit
making use of multi-shot capabilities).

As to (4), we evaluate a step-bounded approximation mode of MS-DIS, where a win-
ning dispute is returned only if found within a fixed step limit; otherwise, the instance
is deemed unsatisfiable. We test bounds of 5, 10, and 25 steps. This ensures 100%
specificity (true negative rate), allowing a fair comparison with an approximate mode
of flexABle offering similar guarantees. In flexABle, approximation is achieved by
restricting the opponent to a randomly selected subframework [14]. In our setup, the
proponent sees the full framework, while the opponent is limited to 5%, 25%, or 50%
of it, maintaining the specificity guarantee.

For our experiments, we use the ICCMA’23 ABA benchmarks [28], which comprise
400 instances containing between 25 and 5000 atoms. Each instance includes a query
requiring solvers to determine credulous acceptance under admissible semantics. The
benchmarks span all combinations of the following parameters: assumptions set at 10%
or 30% of atoms; rule counts of up to 5 or 10 per atom; and rule body sizes capped at
5 or 10. Solvers were given a 600-second timeout per instance, with any run exceeding
this limit recorded as a timeout. Notably, the correct outcome for 19 instances remains
unknown, as no participant in ICCMA’23 produced a result for them.

The experiments for both MS-DIS and aspforaba were conducted using the ASP
solver clingo [23] version 5.6.2. All experiments used a high-performance computing
cluster, with 64 GB of RAM allocated to each task.

4.3 Results

The results of our experiments are summarized in Figure 7. MS-DIS, in the exact (i.e.
non-approximate), multi-shot variant was capable of solving 36 more instances than
flexABle and took 5 hours less of total solving time. Interestingly, even the naïve iter-
ative MS-DIS variant performs slightly better than flexABle.

Regarding approximate methods, we find MS-DIS to outperform flexABle across
nearly all metrics. For instance, an approximation with an upper bound of 10 steps in
MS-DIS results in significantly fewer timeouts compared to flexABle with 25% sam-
pling (81 timeouts for MS-DIS versus 146 for flexABle in the instances in the bottom
half of the table). Additionally, MS-DIS achieves greater accuracy (90% compared to
71%, excluding timeouts; 71% compared to 44%, including timeouts) and a shorter
total solving time (19 hours versus 25 hours). Notably, setting the upper bound to 25
steps guarantees 100% accuracy (excluding timeouts), suggesting that successful dis-
putes rarely require more than 25 steps, regardless of the framework size.

By sacrificing accuracy, MS-DIS approaches the performance of aspforaba, and
with a 5-step bound, it can even surpass aspforaba– albeit with an approximate ac-
curacy of 60%. This highlights a potential niche for dispute-based systems, even when
the primary goal is merely to determine the acceptance of claims. In particularly hard
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aspforaba MS-DIS flexABle

naïve approx. approx.
– – – 5 10 25 – .05 .25 .5

# t-out. 22 233 260 0 91 164 269 47 160 217
time [h] 4 41 45 3 21 31 46 8 27 37

# t-out. 3 214 241 0 81 145 250 43 146 203
# inc. 0 0 0 153 30 0 0 114 69 34
time [h] 1 38 42 2 19 28 43 8 25 35
% acc. 100 100 100 60 90 100 100 66 71 81
% acc. t 99 44 37 60 71 62 34 59 44 38
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Fig. 7: Table on the left shows solving results for all 400 instances (top part) and for the 381 with
known correct answers (bottom part). “–” indicates the exact solver; “naïve” denotes MS-DIS
in the naïve iterative mode; “approx.” denotes approximate setup. Approximate setups compare
MS-DIS with step limits 5, 10, 25 and flexABle with opponent sampling at 5%, 25%, and 50%.
Metrics: number of timeouts (#t-out.), incorrect results (#inc.), total time in hours (time [h]),
accuracy excluding timeouts (% acc.), and accuracy treating timeouts as incorrect (% acc. t). All
values are rounded to the nearest integer. Plot on the right shows solving times for all instances,
ordered by time (x-axis: solving time in seconds, y-axis: instance index). Solid label background
indicates exact solver; white background: approximate.

instances, executing a bounded dispute (especially with human-in-the-loop guidance)
may yield more insight than receiving a time-out from systems such as aspforaba.

5 Conclusion

To the best of our knowledge, this is the first investigation of multi-shot solving applied
to argument games, focusing on disputes in ABA and AFs. Our prototype, MS-DIS,
outperforms existing dispute-based ABA systems, and its approximate variant matches
the efficiency of the leading inference-focused ABA system – highlighting the benefits
of the approach, especially when support for interaction and explanation are required.

More generally, our modular encodings and the strength of modern ASP systems
suggest that multi-shot solving can serve as a unifying basis for implementing and com-
paring diverse argument games. As shown for AFs and ABA, the control components
(Figure 1-right) are reusable across two-player games, while the ASP program modules
for initialization (base), internal state updates (updateState(t)), and move selection
(step(t)) need to be adapted for each specific game type. We therefore envision de-
veloping a library of encodings for various argument games, e.g. alternative games and
disputes for AFs and ABA [37,10,7], but also games for different formalisms such as
SETAFs [5] or ADFs [29].
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