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A Formal Model of Learning

1. In the basic statistical
learning setting, the learner has access to
the following:

= Domain set: An arbitrary set, X. This is the set

of objects that we may wish to recognize or
abel. For example, in the papaya learning
oroblem, the domain set will be the set of all
papayas, represented by a vector of features
(like the papaya's and ).
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= Label set: For our current discussion, we will
restrict the label set Y to be a two-element
set, usually {0, 1}. For our papayas example,
let 1 represents being tasty and O stands for
being not-tasty.

= Training data: S = ((X{, Y1), ---» Xy Yim)) IS @
finite sequence of pairs in X = Y: that is, a
sequence of labeled domain points. This is
the input that the learner has access to (like a
set of papayas that have been tasted,
represented by their color, softness, and
tastiness).
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The learner Is requested
to output a prediction rule, h : X — Y. This
function is also called a predictor, a hypothesis,
or a classifier. The predictor can be used to
predict the label of new domain points. In our
papayas example, it is a rule that our learner
will employ to predict whether future papayas in
the market are going to be tasty or not. We use
the notation A(S) to denote the hypothesis that
a learning algorithm, A, returns upon receiving
the training sequence S.
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How is the training data
generated? First, we assume that the instances (the
papayas) are generated by some probability distribution
(in this case, representing the environment). Let us
denote that probability distribution over X by D. Itis
Important to note that we do not assume that the learner
knows anything about this distribution. This could be any
arbitrary probability distribution. As to the labels, in the
current discussion we assume that there is some “correct”
labeling function, f : X — Y, and that y, = f(x;) for all i. This
assumption will be relaxed later. The labeling function is
unknown to the learner. In fact, this is just what the
learner is trying to figure out. In summary, each pair in the
training data S is generated by first sampling a point x;
according to D and then labeling it by f.
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The error of h is the probability to
draw a random instance X, according to the distribution
D, such that h(x) does not equal f(x). Given a domain
subset, A — X, the probability distribution, D, assigns a
number, D(A), which determines how likely it is to
observe a point x € A. We refer to A as an event and
express it using a function = : X — {0,1}, namely,

A={x € X:rn(x) =1}. In that case, we also use the
notation P, _p[r(x)] to express D(A). Now, we can define
the error of a prediction rule, h: X — Y, to be

d E|f d E'f r

Lps(h) = P [h(z)# f(z)] = D({z:

L 5 (h) has several synonymous names such as the
generalization error, the risk, or the true error of h.
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* Notice that the learner is blind to the
underlying distribution D over the world
and to the labeling function f. The only way
the learner can interact with the
environment is through observing the

training set.
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Empirical Risk Minimization

 Alearning algorithm receives as input a
training set S, sampled from an unknown
distribution D and labeled by some target
function f, and should output a predictor
hs : X — Y (the subscript S emphasizes
the fact that the output predictor depends
on S). The goal of the algorithm is to find
hg that minimizes the error with respect to
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* Since the learner does not know what D
and f are, the true error is not directly
available to the learner. A useful notion of
error that can be calculated by the learner
IS the training error (the error the classifier
Incurs over the training sample):

. def H = ['m.] Dhixg) # JaH
] e

T

where [m] = {1, ..., m}.
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Empirical Risk Minimization

* The terms and are
often used interchangeably for

 Since the training sample is the snapshot of the
world that is available to the learner, it makes
sense to search for a solution that works well on
that data.

* This learning paradigm, which tries to come up
with a predictor h that minimizes L¢(h) Is called
Empirical Risk Minimization or ERM.
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Overfitting

* Although the ERM rule seems very natural, without being
careful, this approach may fail miserably.

« To demonstrate such a failure, let us go back to the

problem of learning to predict the taste of a papaya on
the basis of its softness and color.

« Consider a sample as depicted in the following:
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Overfitting

« Assume that the probability distribution D is such that
Instances are distributed uniformly within the larger
square and the labeling function f determines the label to
be 1 if the instance is within the inner square, and O
otherwise. The area of the larger square In the picture is
2 and the area of the inner square is 1.

» Consider the following predictor:

hs(r) = {yﬁ if Jie[m]st o ==z

0 otherwise.
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Overfitting

No matter what the sample is, Ls(hs) = O, and therefore
this predictor may be chosen by an ERM algorithm.

On the other hand, the true error of any predictor that
predicts the label 1 IS,
In this case, . Thus, Ly «(hg) = 1/2.

So we have found a predictor whose performance on the
training set is excellent, yet its performance on the true
“world” is very poor. This phenomenon is called overfitting.

That Is,

Intuitively, overfitting occurs when our hypothesis fits the
training data “too well”.
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Empirical Risk Minimization with
Inductive Bias

« \We have just demonstrated that the ERM rule might lead
to overfitting.

* Rather than giving up on the ERM paradigm, we will look
for ways to rectify it. We will search for conditions under
which there is a guarantee that ERM does not overfit,
namely, conditions under which when the ERM predictor
has good performance wrt the training data, it is also
highly likely to perform well over the underlying data
distribution.

« A common solution is to apply the ERM learning rule
over a restricted search space.
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Empirical Risk Minimization with
Inductive Bias

« Formally, the learner should choose in advance (
) a set of predictors. This set is called a
hypothesis class and is denoted by H. Eachh € His a
function from X to Y. For a given class H, and a training
sample, S, the ERM,, learner uses the ERM rule to
choose a predictor h € H, with the lowest possible error
over S. Formally,

ERMy(5) € argmin Lg(h)

hel
where argmin stands for the set of hypotheses in H that
achieve the minimum value of Ls(h) over H.
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Empirical Risk Minimization with
Inductive Bias

By restricting the learner to choosing a predictor from H, we it
toward a particular set of predictors. Such restrictions are often called

an

Since the choice of such a restriction is determined before the learner
sees the training data, it should ideally be based on some prior
knowledge about the problem to be learned. For example, for the
papaya problem we may choose the class H to be the set of predictors
that are determined by axis aligned rectangles. We will later show that
ERM,, over this class is guaranteed not to overfit. On the other hand,
the example of overfitting that we have seen previously, demonstrates
that choosing H to be a class of predictors that includes all functions
that assign the value 1 to a finite set of domain points does not suffice
to guarantee that ERM,, will not overfit.
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* A fundamental question in learning theory
IS, over which hypothesis classes ERM,,
earning will not result in overfitting.

* Intuitively, choosing a more restricted
nypothesis class better protects us against
overfitting but at the same time might
cause us a stronger inductive bias.

* We will study this fundamental tradeoff.
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Finite Hypothesis Classes

* The simplest type of restriction on a class
IS Imposing an upper bound on its size
(that Is, the number of predictors h in H).

* We will show that if H Is a finite class then
ERM,, will not overfit, provided it Is based
on a sufficiently large training sample (this
size requirement will depend on the size of

H).
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Finite Hypothesis Classes

* Limiting the learner to prediction rules

within some finite hypothesis class may be
considered as a reasonably mild
restriction.

* For example, H can be the set of all
predictors that can be implemented by a

Python program written in at most 10° bits
of code.
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Finite Hypothesis Classes

* Another example of H is the class of axis
aligned rectangles for the papaya learning
problem, with discretized representation.
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Performance Analysis of ERM,,

* His a finite class.

« For atraining sample, S, labeled according to
some f: X — Y, let hg denote a result of applying
ERM, to S, namely,

hs € argmin Lg(h)
heH
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Performance Analysis of ERM,,

The Realizability Assumption:
There exists h* € H such that L j, 5(h*) = 0.

Note that this assumption implies that with
probability 1 over random samples, S, where
the instances of S are sampled according to
D and are labeled by f,

we have Lg(h*) = 0.
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Performance Analysis of ERM,,

« Any guarantee on the error with respect to the
underlying distribution D, for an algorithm that has

access only to a sample S, should depend on the
relationship between D and S.

 The common assumption in statistical machine
learning Is that the training sample S is generated
by sampling points from the distribution D
of each other.

« Expressed formally:
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The examples in the training set are

and distributed (i.1.d.) according to the
distribution D. That Is, every x; In S Is freshly
sampled according to D and then labeled
according to the labeling function, f. We denote
this assumption by S ~ D™ where m is the size of
S, and D™ denotes the probabllity over m-tuples
iInduced by applying D to pick each element of the
tuple independently of the other members of the
tuple.
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* Intuitively, the training set S Iis a window
through which the learner gets
about the distribution D over
the world and the labeling function, f. The
larger the sample gets, the more likely it is
to reflect more accurately the distribution
and labeling used to generate it.
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(1-6)

« Since the training set S is picked by a random process, it
IS not realistic to expect that with full certainty S will suffice
to direct the learner toward a good predictor (from the
point of view of D), as there Is always some probability that
S happens to be very nonrepresentative of D.

 In the papaya tasting example, there is always some
chance that all the papayas we have happened to taste
were not tasty, in spite of the fact that, say, 75% of the
papayas in our island are tasty. In such a case, ERM,,(S)
may be the constant function that labels every papaya as
not tasty (and has 75% error on the true distribution of
papayas in the island). Therefore ...

N g v
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(1-6)

« Therefore, we will address the probability to sample a
training set for which L n(hs) Is not too large. Usually, we
denote the probabillity of getting a non-representative
sample by ¢, and call (1 - 9) the of
our prediction.
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« Furthermore, since we cannot guarantee perfect
label prediction, we need another parameter for
the quality of prediction, the accuracy parameter,
commonly denoted by e.

* We Interpret the event L (hg) > € as a failure
of the learner, while If L ; 5(hs) < € we view the
output of the algorithm as an approximately
correct predictor.

 Therefore ...
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« Therefore, we are interested in upper bounding the prob-
ability to sample m-tuple of instances that will lead to failure
of the learner. The labeling function f: X — Y Is fixed.

* Let S|, = (X4, .., X,,) be the instances of the training set. We
would like to upper bound

D™({S|x: Lp,py(hs) > €})
* Let Hg be the set of
{h € H: L(Df)(h) > E}
and M be the set of
= {S|x:3h € Hp, Ls(h) = 0}
M Is misleadlng, because VS|, € M, there is a hypo-

Slides 03



Upper Bounding the Probability of
Learner’s Failure

- We want to bound the probability of the event L, ¢ (hs) >
E.

 Since the realizability assumption implies that L¢(hs) = 0, it
follows that the event L s (hs) > € can only happen if for
some h € Hz we have L¢(h) = 0. In other words, this event
will only happen if our sample is in the set of misleading
samples, M. So, formally, we have shown that

{Slx: L(D,f)(hS) >E} c M.
* Rewriting M as
M = Upepy (Sl Ls(h) = 0}
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Upper Bounding the Probability of
Learner’s Failure

we have

D™ ({S|x: Lp,fy(hs) >€}) < D™(M) = D™(Upenp{S|x: Ls(h) = 0})

Applying the union bound property from the Probability Theory to

the right-hand side of the preceding equation yields
Dm({Slx:L(D,f) (hs) >E}) = ZhEHBDm({Slx: INWEEY) (%)

Next, let us bound each summand of the right-hand side of the

preceding inequality. Fix some “bad” hypothesis h € Hg. The event

Ls(h) = 0 is equivalent to the event Vi, h(x;) = f(x;). Since the
examples in the training set are sampled 1.i.d. we get

D™({S|; : Ls(h) = 0}) = D™ ({S|; : Vi, h(z;) = f(x:)})

— H D({z; : h(z;) = f(z;)}).
i=1
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Upper Bounding the Probability of
Learner’s Failure

* For each individual sampling of an element of the
training set we have

D({xi:h(x) = f(x)}) =1—=Lpp(h) <1—¢
where the last inequality follows from the fact that h € Hy
such that L £)(h) > €. Combining the previous equation
with Equation (**) and using the inequality 1 —e < e™¢

we obtain that for every h € Hp,
D™({S|y:Ls(h) =0) < (1—e)m < e ™,

Combining this inequality with Inequality (*) we conclude

Slides 03



A graphical illustration of the union bound result

Each point in the large circle represents a
possible m-tuple of instances. Each colored
oval represents the set of misleading m-tuple
of instances for some predictor h € Hp.
The ERM can potentially overfit whenever it
gets a misleading training set S. That Is, for
some h € Hy we have Lg(h) = 0. The result of the union bound
guarantees that for each individual bad hypothesis, at most
(1-e)™-fraction of the training sets would be misleading. In particular,
the larger m is, the smaller each of these colored ovals becomes. The
union bound formalizes the fact that the area representing the training
sets in M Is at most the sum of the areas of the colored ovals.
Therefore, it is bounded by [Hg| o (the maximum size of a colored oval).
Any sample S outside the colored ovals cannot cause the ERM to
overfit.

. : - ‘
Slides 03 ’




So we have derived the following theorem about learnabillity.

Theorem 1

Let H be a finite hypothesis class. Let 6 € (0,1) and e > 0
and let m be an integer that satisfies

m > MOHI/5)

Then, for any labeling function f, and for any distribution D
for which the realizability assumption holds (that is, for
some h € H,Lp )(h) = 0 ), with probability of at least 1 — &
over the choice of an sample S of size m, we have that
for every ERM hypothesis hg, it holds that

L(D,f) (hS) < €.
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 Theorem 1 tells us that for a sufficiently
large sample m, the ERM, rule with a
finite hypothesis class H will be probably
(with confidence 1 — §) approximately (up
to an error of €) correct.
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