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A Formal Model of Learning

1. The learner's input: In the basic statistical 

learning setting, the learner has access to 

the following:

 Domain set: An arbitrary set, X. This is the set 

of objects that we may wish to recognize or 

label. For example, in the papaya learning 

problem, the domain set will be the set of all 

papayas,  represented by a vector of features

(like the papaya's color and softness). 
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 Label set: For our current discussion, we will 

restrict the label set Y to be a two-element 

set, usually {0, 1}. For our papayas example, 

let 1 represents being tasty and 0 stands for 

being not-tasty.

 Training data: S = ((x1, y1), …, (xm, ym)) is a 

finite sequence of pairs in X x Y: that is, a 

sequence of labeled domain points. This is 

the input that the learner has access to (like a 

set of papayas that have been tasted, 

represented by their color, softness, and 

tastiness). 
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2. The learner's output: The learner is requested 

to output a prediction rule, h : X → Y. This 

function is also called a predictor, a hypothesis, 

or a classifier. The predictor can be used to 

predict the label of new domain points. In our 

papayas example, it is a rule that our learner 

will employ to predict whether future papayas in 

the market are going to be tasty or not. We use 

the notation A(S) to denote the hypothesis that 

a learning algorithm, A, returns upon receiving 

the training sequence S.
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3. A data-generation model: How is the training data  

generated? First, we assume that the instances (the 

papayas) are generated by some probability distribution 

(in this case, representing the environment). Let us 

denote that probability distribution over X by D. It is 

important to note that we do not assume that the learner 

knows anything about this distribution. This could be any 

arbitrary probability distribution. As to the labels, in the 

current discussion we assume that there is some “correct” 

labeling function, f : X → Y, and that yi = f(xi) for all i. This 

assumption will be relaxed later. The labeling function is 

unknown to the learner. In fact, this is just what the 

learner is trying to figure out. In summary, each pair in the 

training data S is generated by first sampling a point xi

according to D and then labeling it by f.
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4. Measures of success: The error of h is the probability to 

draw a random instance x, according to the distribution 

D, such that h(x) does not equal f(x). Given a domain 

subset, A ⸦ X, the probability distribution, D, assigns a 

number, D(A), which determines how likely it is to 

observe a point x  A. We refer to A as an event and 

express it using a function  : X → {0,1}, namely,           

A = {x  X : (x) = 1}. In that case, we also use the 

notation PxD[(x)] to express D(A). Now, we can define 

the error of a prediction rule, h : X → Y, to be

L D,f (h) has several synonymous names such as the 

generalization error, the risk, or the true error of h.
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• Notice that the learner is blind to the 

underlying distribution D over the world 

and to the labeling function f. The only way 

the learner can interact with the 

environment is through observing the 

training set.
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Empirical Risk Minimization

• A learning algorithm receives as input a 

training set S, sampled from an unknown 

distribution D and labeled by some target 

function f, and should output a predictor  

hS : X → Y (the subscript S emphasizes 

the fact that the output predictor depends 

on S). The goal of the algorithm is to find 

hS that minimizes the error with respect to 

the unknown D and f.
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Empirical Risk Minimization

• Since the learner does not know what D

and f are, the true error is not directly 

available to the learner. A useful notion of 

error that can be calculated by the learner 

is the training error (the error the classifier 

incurs over the training sample):

where [m] = {1, …, m}.
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Empirical Risk Minimization

• The terms empirical error and empirical risk are 

often used interchangeably for training error.

• Since the training sample is the snapshot of the 

world that is available to the learner, it makes 

sense to search for a solution that works well on 

that data.

• This learning paradigm, which tries to come up 

with a predictor h that minimizes LS(h) is called 

Empirical Risk Minimization or ERM.
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Overfitting

• Although the ERM rule seems very natural, without being 

careful, this approach may fail miserably.

• To demonstrate such a failure, let us go back to the 

problem of learning to predict the taste of a papaya on 

the basis of its softness and color. 

• Consider a sample as depicted in the following:
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Overfitting

• Assume that the probability distribution D is such that 

instances are distributed uniformly within the larger 

square and the labeling function f determines the label to 

be 1 if the instance is within the inner square, and 0 

otherwise. The area of the larger square in the picture is 

2 and the area of the inner square is 1.

• Consider the following predictor:
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Overfitting

• No matter what the sample is, LS(hS) = 0, and therefore 

this predictor may be chosen by an ERM algorithm. 

• On the other hand, the true error of any predictor that 

predicts the label 1 only on a finite number of instances is, 

in this case, 1/2. Thus, LD,f(hS) = 1/2.

• So we have found a predictor whose performance on the 

training set is excellent, yet its performance on the true 

“world” is very poor. This phenomenon is called overfitting.

• That is, being correct by chance. 

• Intuitively, overfitting occurs when our hypothesis fits the 

training data “too well”. 
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Empirical Risk Minimization with 

Inductive Bias

• We have just demonstrated that the ERM rule might lead 

to overfitting. 

• Rather than giving up on the ERM paradigm, we will look 

for ways to rectify it. We will search for conditions under 

which there is a guarantee that ERM does not overfit, 

namely, conditions under which when the ERM predictor 

has good performance wrt the training data, it is also 

highly likely to perform well over the underlying data 

distribution.

• A common solution is to apply the ERM learning rule 

over a restricted search space.
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Empirical Risk Minimization with 

Inductive Bias

• Formally, the learner should choose in advance (before 

seeing the data) a set of predictors. This set is called a 

hypothesis class and is denoted by H. Each h  H is a 

function from X to Y. For a given class H, and a training 

sample, S, the ERMH learner uses the ERM rule to 

choose a predictor h  H, with the lowest possible error 

over S. Formally,

where argmin stands for the set of hypotheses in H that 

achieve the minimum value of LS(h) over H.
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Empirical Risk Minimization with 

Inductive Bias

• By restricting the learner to choosing a predictor from H, we bias it 

toward a particular set of predictors. Such restrictions are often called 

an inductive bias. 

• Since the choice of such a restriction is determined before the learner 

sees the training data, it should ideally be based on some prior 

knowledge about the problem to be learned. For example, for the 

papaya problem we may choose the class H to be the set of predictors 

that are determined by axis aligned rectangles. We will later show that 

ERMH over this class is guaranteed not to overfit. On the other hand, 

the example of overfitting that we have seen previously, demonstrates 

that choosing H to be a class of predictors that includes all functions 

that assign the value 1 to a finite set of domain points does not suffice 

to guarantee that ERMH will not overfit.
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• A fundamental question in learning theory 

is, over which hypothesis classes ERMH

learning will not result in overfitting. 

• Intuitively, choosing a more restricted 

hypothesis class better protects us against 

overfitting but at the same time might 

cause us a stronger inductive bias. 

• We will study this fundamental tradeoff.
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Finite Hypothesis Classes

• The simplest type of restriction on a class 

is imposing an upper bound on its size 

(that is, the number of predictors h in H). 

• We will show that if H is a finite class then 

ERMH will not overfit, provided it is based 

on a sufficiently large training sample (this 

size requirement will depend on the size of 

H).
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Finite Hypothesis Classes

• Limiting the learner to prediction rules 

within some finite hypothesis class may be 

considered as a reasonably mild 

restriction. 

• For example, H can be the set of all 

predictors that can be implemented by a 

Python program written in at most 109 bits 

of code. 

Slides 03
20



Finite Hypothesis Classes

• Another example of H is the class of axis 

aligned rectangles for the papaya learning 

problem, with discretized representation.
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Performance Analysis of ERMH

• H is a finite class. 

• For a training sample, S, labeled according to 

some f : X → Y, let hS denote a result of applying 

ERMH to S, namely,

ℎ𝑆 ∈ argmin
ℎ∈𝐻

𝐿𝑆(ℎ)
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Performance Analysis of ERMH

The Realizability Assumption: 

There exists h*  H such that L(D,f)(h*) = 0. 

Note that this assumption implies that with 

probability 1 over random samples, S, where 

the instances of S are sampled according to 

D and are labeled by f, 

we have LS(h*) = 0.

Slides 03
23



Performance Analysis of ERMH

• Any guarantee on the error with respect to the 

underlying distribution D, for an algorithm that has 

access only to a sample S, should depend on the 

relationship between D and S. 

• The common assumption in statistical machine 

learning is that the training sample S is generated 

by sampling points from the distribution D

independently of each other. 

• Expressed formally:
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the i.i.d assumption

The examples in the training set are independently

and identically distributed (i.i.d.) according to the 

distribution D. That is, every xi in S is freshly 

sampled according to D and then labeled 

according to the labeling function, f. We denote 

this assumption by S  Dm where m is the size of 

S, and Dm denotes the probability over m-tuples 

induced by applying D to pick each element of the 

tuple independently of the other members of the 

tuple.
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• Intuitively, the training set S is a window 

through which the learner gets partial 

information about the distribution D over 

the world and the labeling function, f. The 

larger the sample gets, the more likely it is 

to reflect more accurately the distribution 

and labeling used to generate it.
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Confidence Parameter (1-)

• Since the training set S is picked by a random process, it 

is not realistic to expect that with full certainty S will suffice 

to direct the learner toward a good predictor (from the 

point of view of D), as there is always some probability that 

S happens to be very nonrepresentative of D.

• In the papaya tasting example, there is always some 

chance that all the papayas we have happened to taste 

were not tasty, in spite of the fact that, say, 75% of the 

papayas in our island are tasty. In such a case, ERMH(S)

may be the constant function that labels every papaya as 

not tasty (and has 75% error on the true distribution of 

papayas in the island). Therefore …
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Confidence Parameter (1-)

• Therefore, we will address the probability to sample a 

training set for which L(D,f)(hS) is not too large. Usually, we 

denote the probability of getting a non-representative 

sample by , and call (1 - ) the confidence parameter of 

our prediction.
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Accuracy Parameter 

• Furthermore, since we cannot guarantee perfect 

label prediction, we need another parameter for 

the quality of prediction, the accuracy parameter, 

commonly denoted by .

• We interpret the event L(D,f)(hS) >  as a failure

of the learner, while if L(D,f)(hS)   we view the 

output of the algorithm as an approximately 

correct predictor. 

• Therefore …
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Accuracy Parameter 
• Therefore, we are interested in upper bounding the prob-

ability to sample m-tuple of instances that will lead to failure

of the learner. The labeling function f : X → Y is fixed.

• Let S|x = (x1, …, xm) be the instances of the training set. We 

would like to upper bound

𝐷𝑚( 𝑆|𝑥: 𝐿 𝐷,𝑓 ℎ𝑆 > 𝜖 )

• Let HB be the set of bad hypotheses:

𝐻𝐵 = ℎ ∈ 𝐻: 𝐿 𝐷,𝑓 ℎ > 𝜖

and M be the set of misleading samples: 

𝑀 = 𝑆|𝑥: ∃ℎ ∈ 𝐻𝐵 , 𝐿𝑆 ℎ = 0

• M is misleading, because ∀𝑆|𝑥 ∈ 𝑀, there is a bad hypo-

thesis that looks like a “good” hypothesis on 𝑆|𝑥.

Slides 03
30



Upper Bounding the Probability of 

Learner’s Failure

• We want to bound the probability of the event 𝐿 𝐷,𝑓 ℎ𝑆 >

∈.

• Since the realizability assumption implies that 𝐿𝑆 ℎ𝑆 = 0, it 

follows that the event 𝐿 𝐷,𝑓 ℎ𝑆 > ∈ can only happen if for 

some ℎ ∈ 𝐻𝐵 we have 𝐿𝑆 ℎ = 0. In other words, this event 

will only happen if our sample is in the set of misleading 

samples, M. So, formally, we have shown that

𝑆|𝑥: 𝐿 𝐷,𝑓 ℎ𝑆 >∈ ⊆ 𝑀.

• Rewriting M as

𝑀 = ⋃ℎ∈𝐻𝐵
𝑆|𝑥: 𝐿𝑆 ℎ = 0

we have … 
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Upper Bounding the Probability of 

Learner’s Failure

we have

𝐷𝑚 𝑆|𝑥: 𝐿 𝐷,𝑓 ℎ𝑆 >∈ ≤ 𝐷𝑚 𝑀 = 𝐷𝑚 ⋃ℎ∈𝐻𝐵
𝑆|𝑥: 𝐿𝑆 ℎ = 0

• Applying the union bound property from the Probability Theory to 

the right-hand side of the preceding equation yields

𝐷𝑚 𝑆|𝑥: 𝐿 𝐷,𝑓 ℎ𝑆 >∈ ≤ ∑ℎ∈𝐻𝐵
𝐷𝑚( 𝑆|𝑥: 𝐿𝑆 ℎ = 0 ) (*)

• Next, let us bound each summand of the right-hand side of the 

preceding inequality. Fix some “bad” hypothesis ℎ ∈ 𝐻𝐵 . The event 

𝐿𝑆 ℎ = 0 is equivalent to the event ∀𝑖, ℎ(𝑥𝑖) = 𝑓 𝑥𝑖 . Since the 

examples in the training set are sampled i.i.d. we get

(**)
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Upper Bounding the Probability of 

Learner’s Failure

• For each individual sampling of an element of the 

training set we have

𝐷({𝑥𝑖: ℎ(𝑥𝑖) = 𝑓 𝑥𝑖 }) = 1 − 𝐿 𝐷,𝑓 ℎ ≤ 1 − 𝜖,

where the last inequality follows from the fact that ℎ ∈ 𝐻𝐵

such that 𝐿 𝐷,𝑓 ℎ > 𝜖. Combining the previous equation  

with Equation (**) and using the inequality 1 − 𝜖 ≤ 𝑒−𝜖

we obtain that for every ℎ ∈ 𝐻𝐵,

𝐷𝑚 𝑆|𝑥: 𝐿𝑆 ℎ = 0 ≤ 1 − 𝜖 𝑚 ≤ 𝑒−𝜖𝑚.

Combining this inequality with Inequality (*) we conclude    

that 𝐷𝑚 𝑆|𝑥: 𝐿 𝐷,𝑓 ℎ𝑆 > 𝜖 ≤ 𝐻𝐵 𝑒−𝜖𝑚 ≤ 𝐻 𝑒−𝜖𝑚.
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Each point in the large circle represents a 

possible m-tuple of instances. Each colored 

oval represents the set of misleading m-tuple 

of instances for some bad predictor ℎ ∈ 𝐻𝐵. 

The ERM can potentially overfit whenever it 

gets a misleading training set S. That is, for 

some ℎ ∈ 𝐻𝐵 we have LS(h) = 0. The result of the union bound 

guarantees that for each individual bad hypothesis, at most           

(1-)m-fraction of the training sets would be misleading. In particular, 

the larger m is, the smaller each of these colored ovals becomes. The 

union bound formalizes the fact that the area representing the training 

sets in M is at most the sum of the areas of the colored ovals. 

Therefore, it is bounded by |HB|  (the maximum size of a colored oval). 

Any sample S outside the colored ovals cannot cause the ERM to 

overfit.
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Theorem 1

Let H be a finite hypothesis class. Let    (0,1) and 𝜖 > 0
and let m be an integer that satisfies

𝑚 ≥ ln(|H|/δ )
𝜖

.

Then, for any labeling function f, and for any distribution D

for which the realizability assumption holds (that is, for 

some ℎ ∈ 𝐻, 𝐿 𝐷,𝑓 ℎ = 0 ), with probability of at least 1 − 𝛿

over the choice of an i.i.d. sample S of size m, we have that 

for every ERM hypothesis ℎ𝑆, it holds that

𝐿 𝐷,𝑓 ℎ𝑆 ≤ 𝜖.
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• Theorem 1 tells us that for a sufficiently 

large sample m, the ERMH rule with a 

finite hypothesis class H will be probably

(with confidence 1 − 𝛿) approximately (up 

to an error of 𝜖) correct. 
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