
The DIAMOND System for Argumentation:
Preliminary Report?

Stefan Ellmauthaler and Hannes Strass

Computer Science Institute, Leipzig University

Abstract Abstract dialectical frameworks (ADFs) are a powerful gener-
alisation of Dung’s abstract argumentation frameworks. In this paper we
present an answer set programming based software system, called DIA-
MOND (DIAlectical MOdels eNcoDing). It translates ADFs into answer
set programs whose stable models correspond to models of the ADF with
respect to several semantics (i.e. admissible, complete, stable, grounded).

1 Introduction

Formal argumentation has established itself as a vibrant subfield of artificial in-
telligence, contributing to such diverse topics as legal decision making and multi-
agent interactions. A particular, well-known formalism to model argumentation
scenarios are Dung’s abstract argumentation frameworks [1]. In that model, ar-
guments are treated as abstract atomic entities. The only information given
about them is a binary relation expressing that one argument attacks another.

A criticism often advanced against Dung frameworks is their restricted ex-
pressive capability of allowing only attacks between arguments. This leads to
quite a number of extensions of Dung AFs, for example with attacks from sets
of arguments [2], attacks on attacks [3] and meta-argumentation [4]. Unifying
these and other extensions to AFs, Brewka and Woltran [5] proposed a general
model, abstract dialectical frameworks (ADFs). In ADFs, attack, support, joint
support, combined attacks and many more relations between arguments (called
statements there) can be expressed, while the whole formalism stays on the same
abstraction level as Dung’s.

In this paper we present the DIAMOND software system that computes
models of ADFs with respect to several different semantics. The name DIA-
MOND abbreviates “DIAlectical MOdels eNcoDing” and hints at the fact that
DIAMOND is built on top of the state of the art in answer set programming:
abstract dialectical frameworks are encoded into logic programs, and an answer
set solver is used to compute the models of the ADF. By providing an expressive
argumentation formalism with an implementation, we pave the way for practical
applications of ADFs in scenarios where dialectical aspects are of interest, for
example in group decision making.

The paper proceeds as follows. We first introduce the necessary background
in abstract dialectical frameworks and answer set programming. We then present

? This research has been supported by DFG projects BR 1817/7-1 and FOR 1513.

the DIAMOND system – how ADFs are represented there, and how the ADF
semantics are encoded into answer set programs. We conclude with a contrasting
discussion of the most significant related work.

2 Background

An abstract dialectical framework (ADF) [5] is a directed graph whose nodes
represent statements or positions that can be accepted or not. The links represent
dependencies: the status of a node s only depends on the status of its parents
(denoted par(s)), that is, the nodes with a direct link to s. In addition, each
node s has an associated acceptance condition Cs specifying the exact conditions
under which s is accepted. Cs is a function assigning to each subset of par(s) one
of the truth values t, f . Intuitively, if for some R ⊆ par(s) we have Cs(R) = t,
then s will be accepted provided the nodes in R are accepted and those in
par(s) \R are not accepted.

Definition 1. An abstract dialectical framework is a tuple D = (S,L,C) where

– S is a set of statements (positions, nodes),
– L ⊆ S × S is a set of links,
– C = {Cs}s∈S is a set of total functions Cs : 2par(s) → {t, f}.

In many cases it is convenient to represent the acceptance condition of a state-
ment s by a propositional formula ϕs, as is done in our running example.

Example 1. Consider the ADF D = (S,L,C) with a support cycle and one at-
tack relation: S = {a, b, c} , L = {(a, b), (b, a), (b, c)} , ϕa = b, ϕb = a, ϕc = ¬b. This
ADF can also be represented as a graph, where the nodes are statements and
the relations between them are directed edges. The boxes below each node are
the acceptance conditions for the particular statement.

a b c

b a ¬b

In recent work [6], we redefined several standard ADF semantics and defined
additional ones. In this paper, we use these revised definitions, which are based
on three-valued logic.1 The three truth values true (t), false (f) and unknown
(u) are partially ordered by ≤i according to their information content: we have
u <i t and u <i f and no other pair in <i, which intuitively means that the
classical truth values contain more information than the truth value unknown.
On the set of truth values, we define a meet operation, consensus, which assigns

1 For further details on those newly introduced semantics we refer the interested reader
to Brewka et al. [6].

t u t = t, f u f = f , and returns u otherwise. The information ordering ≤i ex-
tends in a straightforward way to valuations v1, v2 over S in that v1 ≤i v2 iff
v1(s) ≤i v2(s) for all s ∈ S. Obviously, a three-valued interpretation v is two-
valued if all statements are mapped to either true or false. For a three-valued
interpretation v, we say that a two-valued interpretation w extends v iff v ≤i w.
We denote by [v]2 the set of all two-valued interpretations that extend v. A three-
valued interpretation Ev has an associated extension Ev = {s ∈ S | v(s) = t}.

Brewka and Woltran [5] defined an operator ΓD over three-valued interpret-
ations. For each statement s, the operator returns the consensus truth value for
its acceptance formula ϕs, where the consensus takes into account all possible
two-valued interpretations w that extend the input valuation v.

Definition 2. Let D be an ADF and v be a three-valued interpretation. Then
the interpretation ΓD(v) is given by s 7→

d
{w(ϕs) | w ∈ [v]2}. Furthermore v is

admissible iff v ≤i ΓD(v); complete iff ΓD(v) = v, that is, v is a fixpoint of ΓD;
grounded iff v is the ≤i-least fixpoint of ΓD.

A two-valued interpretation v is a model of D iff ΓD(v) = v; it is a stable
model of D = (S,L,C) iff v is a model of D and Ev equals the grounded exten-
sion of the reduced ADF Dv = (Ev, L

v, Cv), where Lv = L ∩ (Ev × Ev) and for
s ∈ Ev we set ϕvs = ϕs[r/f : v(r) = f].

Example 2. We will now show the models with respect to the different semantics
for the ADF introduced in Example 1. For readability, we write interpretations
v as sets of literals Lv = {s ∈ S | v(s) = t} ∪ {¬s | s ∈ S, v(s) = f}. There are

– five admissible interpretations: ∅, {a, b}, {a, b,¬c} {¬a,¬b, c}, {¬a,¬b},
– three complete models: {¬a,¬b, c}, ∅, {a, b,¬c}; of which ∅ is grounded;

– two models: {a, b,¬c}, {¬a,¬b, c}, of which one is stable: {¬a,¬b, c}

Brewka et al. [6] also defined an approach to handle preferences in ADFs.
The approach generalises the one for AFs from Amgoud and Cayrol [7]. Since
DIAMOND also implements this treatment of preferences, we recall it here. For
this approach, the links are restricted to links that are attacking or supporting.

Definition 3. A prioritised ADF (PADF) is a tuple P = (S,L+, L−, >) where
S is the set of nodes, L+ and L− are subsets of S×S, the supporting and attack-
ing links, and > is a strict partial order (irreflexive, transitive, antisymmetric)
on S representing preferences among the nodes.

Here (a, b) ∈ > (alternatively: a > b) expresses that a is preferred to b. The
semantics of prioritised ADFs is given by a translation to standard ADFs: P
translates to (S,L+ ∪ L−, C), where for each statement s ∈ S the acceptance
condition Cs is defined as: Cs(M) = t iff for each a ∈ M such that (a, s) ∈ L−
and not s > a we have: for some b ∈ M , (b, s) ∈ L+ and b > a. Intuitively, an
attacker does not succeed if the attacked node is more preferred or if there is a
more preferred supporting node.

2.1 Answer Set Programming

A propositional normal logic program Π is a set of finite rules r over a set of
ground atoms A. A rule r is of the form α← β1, . . . , βm,not βm+1 . . . ,not βn,
where α ∈ A, βi ∈ A are ground atoms and m ≤ n ≤ 0. Each rule consists of a
body B(r) = {β1, . . . , βm,not βm+1 . . . ,not βn} and a head H(r) = {α}, divided
by the ←-symbol. We will split up the body into two parts, B(r) = B+(r) ∪
B−(r), where B+(r) = {β1, . . . , βm} and B−(r) = {not βm+1 . . . ,not βn}. A
rule r is said to be positive if B−(r) = ∅ and a program Π is positive if every
rule r ∈ Π is positive. For a positive program Π, its immediate consequence
operator TΠ is defined for S ⊆ A by TΠ(S) = {H(r) ∈ A | r ∈ Π,B+(r) ⊆ S}.
A set A ⊆ A of ground atoms is a minimal model of a positive propositional
logic program Π iff A is the least fixpoint of TΠ . To allow rules with negative
body atoms, Gelfond and Lifschitz [8] proposed the stable model semantics (also
called answer set semantics).

Definition 4. Let A ⊆ A be a set of ground atoms. A is a stable model for the
propositional normal logic program Π iff A is the minimal model of the reduced
program ΠA, where ΠA = {H(r)← B+(r) | r ∈ Π,B−(r) ∩A = ∅}.

We use clasp from the Potsdam Answer Set Solving Collection Potassco2 [9] as
the back-end answer set solver for our software system. Potassco allows us to use
an enriched input language where in addition to the above pictured propositional
logic programs we can use first-order variables and predicates. Ground atoms
are generally written in lower case while variables are represented with upper
case characters. Additionally Potassco offers features like aggregates, cardinality
constraints, choice rules and conditional literals. For further details we refer to
the recent book by Gebser et al. [10].

3 DIAMOND

Our software system DIAMOND is a collection of answer set programming en-
codings and tools to compute the various models with respect to the semantics
for a given ADF. The different encodings are designed around the Potsdam
Answer Set Solving Collection (Potassco) [9] and the additional provided tools
utilise clasp as solver, too. Note that the encodings for DIAMOND are built in
a modular way. To compute the models of an ADF with respect to a semantics,
different modules need to be grounded together to get the desired behaviour.

DIAMOND is available for download and experimentation at the web page
http://www.informatik.uni-leipzig.de/~ellmau/diamond. There we also
provide further documentation on its usage. In short, DIAMOND is a Python-
script,3 which can be invoked via the command line. Different switches are used
to designate the desired semantics, and the input file is given as a file name or
via the standard input. The options for the command line are as follows:

2 Available at http://potassco.sourceforge.net
3 Python is available at http://www.python.org.

http://www.informatik.uni-leipzig.de/~ellmau/diamond
http://potassco.sourceforge.net
http://www.python.org

usage: diamond.py [-h] [-cf] [-m] [-sm] [-g] [-c] [-a]

[--transform pform | --transform prio] [-all] [--version] instance

positional arguments:

instance File name of the ADF instance

optional arguments:

-h, --help show this help message and exit

-cf, --conflict-free compute the conflict free sets

-m, --model compute the two-valued models

-sm, --stablemodel compute the stable models

-g, --grounded compute the grounded model

-c, --complete compute the complete models

-a, --admissible compute the admissible models

--transform pform transform a propositional formula ADF before the computation

--transform prio transform a prioritized ADF before the computation

-all, --all compute all sets and models

--version prints the current version

We next describe how specific ADF instances are represented in DIAMOND.

3.1 Instance Representation

In order to represent an ADF for DIAMOND its acceptance conditions need to
be in the functional representation as given in Definition 1. The statements of
an ADF are declared by the predicate s, and the links are represented by the
binary predicate l, such that l(b,a) reflects that there is a link from b to a. The
acceptance condition is modelled via the unary and tertiary predicates ci and
co. Intuitively ci (resp. co) identifies the parents which need to be accepted,
such that the acceptance condition maps to true (i.e. in) (resp. false (i.e. out)).
To achieve a flat representation of each set of parent statements, we use an
arbitrary third term in the predicate to identify them. To express what happens
to a statement when none of the parents is accepted we use the unary versions
of ci and co. Here is the DIAMOND representation of Example 1:

s(a). s(b). s(c). l(b,a). l(a,b). l(b,c).

co(a). ci(a,1,b). co(b). ci(b,1,a). ci(c). co(c,1,b).

The first line declares the statements and links. The second line expresses the
acceptance conditions: statement a is out if b is out and in if b is; likewise b gets
the same status as a; statement c is in if b is out , and c is out if b is in.

As a part of the DIAMOND software bundle, we also provide an ECLiPSe

Prolog4 [11] program that transforms acceptance functions given as formulas
into the functional representation used by DIAMOND.

We have chosen this functional representation of acceptance conditions for
pragmatic reasons. An alternative would have been to represent acceptance con-
ditions by propositional formulas. In this case, computing a single step of the
operator would entail solving several NP-hard problems. The standard way to

4 ECLiPSe is available at http://eclipseclp.org/.

http://eclipseclp.org/

solve these is the use of saturation [12], which however causes undesired side-
effects when employed together with meta-ASP [13]. Furthermore, other ADF se-
mantics (e.g. preferred) utilise concepts like ⊆-minimality, which also require the
use of meta-argumentation. We plan to extend DIAMOND to further semantics
and therefore chose the functional representation of acceptance conditions to
forestall potential implementation issues.

Due to compatibility considerations, it is possible for DIAMOND to under-
stand the propositional formula representation as well as a PADF. The propos-
itional formula representation uses the unary predicate statement to identify
statements. The binary predicate ac(s,φ) associates to each statement s one
formula φ. Each formula φ is constructed in the usual inductive way, where
atomic formulae are other statements and the truth constants (i.e. c(v) and
c(f)) and the operators are written as functions. The allowed operators are
neg, and, or, imp, and iff for their respective logical operators. To describe
a PADF, we use the unary predicate s to describe the set of statements. In
addition the support (i.e. L+) and attack (i.e. L−) links are represented by the
binary predicates lp and lm (i.e. positive resp. negative links). To express a pref-
erence, such as a > b, we use the predicate pref(a,b). Note that DIAMOND
provides a method to translate propositional formula ADFs and PADFs into
ADFs with total functions and only computes the models using the functional
representation.

For illustration, let us look at another, slightly more complicated example.

Example 3. Consider the ADF D2 = (S2, L2, C2) with S2 = {a, b, c, d}, L2 =
{(a, c), (b, b), (b, c), (b, d)}, and C2 = {ϕa = t, ϕb = b, ϕc = a ∧ b, ϕd = ¬b}.

a b

c d

ϕa = t ϕb = b

ϕc = a ∧ b ϕd = ¬b

For this ADF there are

– 16 admissible interpretations: ∅, {a}, {b}, {¬b}, {b,¬d}, {a, b}, {a,¬b},
{¬b, d}, {¬b,¬d}, {a, b, c}, {a, b,¬d}, {a,¬b, d}, {a,¬b,¬c}, {¬b,¬c, d},
{a, b, c,¬d}, {a,¬b,¬c, d}

– three complete models: {a}, {a, b, c,¬d}, {a,¬b,¬c, d}; of these, {a} is the
grounded model;

– two models: {a, b, c,¬d}, {a,¬b,¬c, d}, of which one is stable: {a,¬b,¬c, d}.
Its propositional formula representation for DIAMOND (inherited from
ADFsys) is given by the following ASP code:

statement(a). statement(b). statement(c). statement(d).

ac(a,c(v)).

ac(b, b).

ac(c, and(a,b)).

ac(d, neg(b)).

The functional ASP representation of the same ADF looks thus:

s(a). s(b). s(c). s(d).

l(a,c). l(b,b). l(b,c). l(b,d).

ci(a).

co(b). ci(b,1,b).

co(c). co(c,1,a). co(c,2,b). ci(c,3,a). ci(c,3,b).

ci(d). co(d,1,b).

Arguably, the formula representation is easier to read for humans.

3.2 Implementation of ΓD

Since all of the semantics are defined via the operator ΓD, we will now present
how the implementation of the operator is done in DIAMOND. The unary pre-
dicate step with an arbitrary term is used to apply the operator several times.
The input for the operator is given by the predicates in and out to represent
mappings to t and f . The resulting interpretation can be read off the predicates
valid and unsat. Predicates fp and nofp denote whether a fixpoint is reached
or not. First, DIAMOND decides which of the mappings to t are still of interest
(cii) (i.e. which of those can still be satisfied under the given interpretation):

ciui(S,J,I) :- lin(X,S,I), not ci(S,J,X), ci(S,J).

ciui(S,J,I) :- lout(X,S,I), ci(S,J,X).

cii(S,J,I) :- not ciui(S,J,I), ci(S,J), step(I).

The predicates lin and lout are those links between arguments which are
already decided by the given three-valued interpretation. The binary predic-
ate ci (resp. co) is just the projection of its tertiary version to express that
at least one predicate with a specific statement occurs in a specific acceptance
condition. The treatment of the interesting mappings to f (coi) is dual:

coui(S,J,I) :- lin(X,S,I), not co(S,J,X), co(S,J).

coui(S,J,I) :- lout(X,S,I), co(S,J,X).

coi(S,J,I) :- not coui(S,J,I), co(S,J), step(I).

Afterwards it is checked whether there exist two-valued extensions of the given
interpretation that are a model or not, which is denoted by the predicates pmodel
(resp. imodel). Then a statement can be seen to be valid (resp. unsat) if there
does not exist an interpretation which is not a model (is a model). The predicate
verum (resp. falsum) represents that the acceptance condition is always true
(resp. false).

pmodel(S,I) :- cii(S,J,I). pmodel(S,I) :- verum(S), step(I).

pmodel(S,I) :- not lin(S,I), ci(S), step(I).

pmodel(S,I) :- not lin(S,I), ci(S), step(I).

valid(S,I) :- pmodel(S,I), not imodel(S,I).

imodel(S,I) :- coi(S,J,I).

imodel(S,I) :- falsum(S), step(I).

imodel(S,I) :- not lin(S,I), co(S), step(I).

unsat(S,I) :- imodel(S,I), not pmodel(S,I).

At last, either nofp or fp is deduced. To achieve this, DIAMOND checks whether
the application of the operator resulted in an interpretation that is different from
the given one.

nofp(I) :- in(X,I), not valid(X,I), step(I).

nofp(I) :- valid(X,I), not in(X,I), step(I).

nofp(I) :- out(X,I), not unsat(X,I), step(I).

nofp(I) :- unsat(X,I), not out(X,I), step(I).

fp(I) :- not nofp(I), step(I).

3.3 Semantics

The admissible model is computed by the use of a guess and check approach. At
first a three-valued interpretation is guessed, by an assignment of the statements
to be in, out, or neither. The last two lines remove all guesses which violate the
definition of the admissible model (i.e. check which guesses are right):

step(0).

{in(S,0):s(S)}.
{out(S,0):s(S)}.
:- in(S,0), out(S,0).

:- in(S), not valid(S,0).

:- out(S), not unsat(S,0).

The complete model encoding uses the same concept as used for the ad-
missible model. The only difference is that the guessed model needs to be a
fixpoint. To this effect the last two rules of the above encoding are replaced by
the constraint “:- nofp(0).”.

To compute the grounded model, we need to apply ΓD until a fixpoint is
reached. This is done via a sequence of steps, where the result of one step is
taken as the used given interpretation for the next step:

maxit(I) :- I:={s(S)}. step(0).

in(S,I+1) :- valid(S,I). out(S,I+1) :- unsat(S,I).

step(I+1) :- step(I), not maxit(I).

in(S) :- fp(I), in(S,I).

out(S) :- fp(I), out(S,I).

udec(S) :- fp(I), s(S), not in(S), not out(S).

Note that we use the number of statements as the upper bound on the number
of operator applications as this is the maximal number of steps needed to reach
a fixpoint.

To implement the model semantics, the operator is not essential: as the model
is only two-valued, there do not remain undecided parts. So each variable is
mapped to a truth-value and therefore every acceptance condition may only
map to one value (i.e. t or f). The encoding just guesses a two-valued interpret-
ation and checks whether the guessed interpretation agrees with the acceptance
conditions of each statement or not. The stable model combines the encoding
for models with the operator encoding to check for each model whether it is also
the grounded extension of its reduced ADF or not.

4 Discussion and Future Work

We presented the DIAMOND software system that uses answer set programming
to compute models of abstract dialectical frameworks under various semantics.
DIAMOND can be seen as a continuation of the trend to utilise ASP for im-
plementing abstract argumentation. The most important existing tool in this
line of work is the ASPARTIX system5 [14] for computing extensions of Dung
argumentation frameworks.

Quite recently, Ellmauthaler and Wallner presented their system ADFsys6 for
determining the semantics of ADFs [15]. Since their system likewise uses answer
set programming, it is natural to ask where the differences lie. For one, after
the discovery of several examples where some original ADF semantics do not
behave as intended, Brewka et al. [6] proposed revised and generalised versions
of these semantics. The DIAMOND system implements the new semantics while
ADFsys still computes the old versions. For another, ADFsys relies solely on
the representation of acceptance conditions via propositional formulas, while
DIAMOND can additionally deal with functional representations. Due to the
new semantics it is not trivial to compare those two systems. In fact only the
model and the grounded semantics have not changed. During preliminary tests,
we used different methods to generate randomised ADF instances. Depending on
the used generation method, DIAMOND could compete with ADFsys and even
outperform it. Alas, there were also instances for which ADFsys outperformed
DIAMOND. We consider it an important future task to determine specific classes
of ADFs that distinguish the two systems, and to connect these ADF classes to
possible real-world applications.

To adapt ADFsys to the new semantics, it would be needed to decide at each
operation of ΓD which acceptance formulae are (under the given three-valued in-
terpretation) irrefutable (resp. unsatisfiable). To solve such an embedded co-NP

5 ASPARTIX is available at http://www.dbai.tuwien.ac.at/research/project/

argumentation/systempage/
6 ADFsys is available at http://www.dbai.tuwien.ac.at/research/project/

argumentation/adfsys/

http://www.dbai.tuwien.ac.at/research/project/argumentation/systempage/
http://www.dbai.tuwien.ac.at/research/project/argumentation/systempage/
http://www.dbai.tuwien.ac.at/research/project/argumentation/adfsys/
http://www.dbai.tuwien.ac.at/research/project/argumentation/adfsys/

problem it would be necessary to use the saturation technique or similar con-
cepts, which will make the use of disjunctive logic programs obligatory. Therefore
there would also be issues with more complex semantics (like the preferred se-
mantics). There the use of meta-ASP would conflict with the use of saturation
in the disjunctive program.

Apart from the semantics implemented in this paper, there are also ADF
semantics that DIAMOND cannot yet deal with – these remain for future work.
For example, the preferred semantics is based on maximisation, and so we will
need meta-ASP to implement that. In general, ADFs are a quite new formalism,
and we expect that further ADF semantics will be defined in the future. Natur-
ally, we plan to implement these new semantics using the infrastructure already
available through DIAMOND.

Another future research interest concerns a possible practical application
for ADFs: We intend to analyse discussions in social media, where opinions
and viewpoints can be modelled by statements that are in some relation to
each other. ADF semantics can guide the respective online community, for ex-
ample as to what positions everybody can agree on, or how a group decision
can be justified. Such an approach was proposed by Toni and Torroni [16] as a
possible application of assumption-based argumentation frameworks [17]. How-
ever, assumption-based argumentation inherits the expressiveness limitations of
abstract argumentation, that is, it can also express only attack relationships
between statements. We expect that ADFs with their greater expressiveness are
better suited to model online interactions in social media.

A similar application of argumentation in online social communities is the
approach by Snaith et al. [18]. They utilise their database for arguments in the
Argument Interchange Format [19] to capture discussions via different blogging-
sites and use their tool TOAST [20] to compute an acceptable consensus about
the issues under discussion. Again we think that ADFs are more suitable for this
application due to their expressiveness.

References

1. Dung, P.M.: On the Acceptability of Arguments and its Fundamental Role in
Nonmonotonic Reasoning, Logic Programming and n-Person Games. Artificial
Intelligence 77 (1995) 321–358

2. Nielsen, S.H., Parsons, S.: A generalization of Dung’s abstract framework for
argumentation: Arguing with sets of attacking arguments. In: Argumentation in
Multi-Agent Systems. Volume 4766 of LNCS., Springer (2006) 54–73

3. Modgil, S.: Reasoning about preferences in argumentation frameworks. Artif.
Intell. 173(9-10) (2009) 901–934

4. Boella, G., Gabbay, D.M., van der Torre, L., Villata, S.: Meta-argumentation
modelling I: Methodology and techniques. Studia Logica 93(2–3) (2009) 297–355

5. Brewka, G., Woltran, S.: Abstract Dialectical Frameworks. In: KR. (2010) 102–111
6. Brewka, G., Ellmauthaler, S., Strass, H., Wallner, J.P., Woltran, S.: Abstract Dia-

lectical Frameworks Revisited. In: IJCAI, AAAI Press (August 2013) To appear.
7. Amgoud, L., Cayrol, C.: On the acceptability of arguments in preference-based

argumentation. In: UAI, Morgan Kaufmann (1998) 1–7

8. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
ICLP/SLP. (1988) 1070–1080

9. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Schneider,
M.: Potassco: The Potsdam answer set solving collection. AI Communications
24(2) (2011) 105–124

10. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Prac-
tice. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan
and Claypool Publishers (2012)

11. Schimpf, J., Shen, K.: ECLiPSe – from LP to CLP. CoRR abs/1012.4240 (2010)
12. Eiter, T., Gottlob, G.: On the computational cost of disjunctive logic program-

ming: Propositional case. Annals of Mathematics and Artificial Intelligence 15(3–4)
(1995) 289–323

13. Gebser, M., Kaminski, R., Schaub, T.: Complex optimization in answer set pro-
gramming. Theory and Practice of Logic Programming 11(4–5) (2011) 821–839

14. Egly, U., Gaggl, S.A., Woltran, S.: Answer-set programming encodings for argu-
mentation frameworks. Argument and Computation 1(2) (2010) 147–177

15. Ellmauthaler, S., Wallner, J.P.: Evaluating Abstract Dialectical Frameworks with
ASP. [21] 505–506

16. Toni, F., Torroni, P.: Bottom-up argumentation. In Modgil, S., Oren, N., Toni, F.,
eds.: TAFA. Volume 7132 of Lecture Notes in Computer Science., Springer (2011)
249–262

17. Bondarenko, A., Dung, P.M., Kowalski, R.A., Toni, F.: An abstract,
argumentation-theoretic approach to default reasoning. Artificial Intelligence 93
(1997) 63–101

18. Snaith, M., Bex, F., Lawrence, J., Reed, C.: Implementing argublogging. [21]
511–512

19. Rahwan, I., Reed, C.: The Argument Interchange Format. In: Argumentation in
Artificial Intelligence. Springer (2009) 383–402

20. Snaith, M., Reed, C.: Toast: Online aspic+ implementation. [21] 511–512
21. Verheij, B., Szeider, S., Woltran, S., eds.: Computational Models of Argument -

Proceedings of COMMA 2012, Vienna, Austria, September 10-12, 2012. In Verheij,
B., Szeider, S., Woltran, S., eds.: COMMA. Volume 245 of Frontiers in Artificial
Intelligence and Applications., IOS Press (2012)

	The DIAMOND System for Argumentation: Preliminary Report
	Stefan Ellmauthaler and Hannes Strass

