
Concurrency Theory
Lecture 2: Linear Time vs. Branching Time
Dr. Stephan Mennicke

Institute for Theoretical Computer Science
Knowledge-Based Systems Group

April 8, 2025

https://iccl.inf.tu-dresden.de/web/Concurrency_Theory

Process (Equivalence) Relations

Definition 11 Any binary relation ℛ ⊆ 𝖯𝗋 × 𝖯𝗋 is called a process relation. ℛ is a
process equivalence if it is a process relation and an equivalence.

We have seen two instances of process equivalences.

Theorem 12 ↔ and ≡𝗍𝗋 are process equivalences.

Proof: in a few slides … ∎

Throughout the course, we will explore many more process equivalences, each time with a
different set of requirements.

Isomorphic equivalence (↔) and trace equivalence (≡𝗍𝗋) form meaninful boundaries.

Trivial boundaries: 𝒰 = 𝖯𝗋 × 𝖯𝗋 (the universal equivalence) and ∅ (the non-equivalence).

Dr. Stephan Mennicke Concurrency Theory: Linear Time vs. Branching Time April 8, 2025 1

A Proof of Theorem 12

Theorem 12 ↔ and ≡𝗍𝗋 are process equivalences.

Proof: For all processes 𝑝, 𝑞, 𝑟 ∈ 𝖯𝗋,
1. 𝑝 ↔ 𝑝 by id : 𝖯𝗋 → 𝖯𝗋 (id(𝑞) = 𝑞 for all 𝑞 ∈ 𝖯𝗋) being an isomorphism.
2. 𝑝 ↔ 𝑞 implies 𝑞 ↔ 𝑝 since the inverse 𝑓−1 of an isomorphism 𝑓 is an isomorphism (cf.

Lemma 7).
3. 𝑝 ↔ 𝑞 and 𝑞 ↔ 𝑟 implies 𝑝 ↔ 𝑟 since isomorphisms 𝑓 and 𝑔 compose to an

isomorphism 𝑔 ⚬ 𝑓 (if unclear, let’s make it another exercise 😀).

For all processes 𝑝, 𝑞, 𝑟 ∈ 𝖯𝗋,
1. 𝑝 ≡𝗍𝗋 𝑝 iff 𝗍𝗋𝖺𝖼𝖾𝗌(𝑝) = 𝗍𝗋𝖺𝖼𝖾𝗌(𝑝) by reflexivity of =.
2. 𝑝 ≡𝗍𝗋 𝑞 iff 𝗍𝗋𝖺𝖼𝖾𝗌(𝑝) = 𝗍𝗋𝖺𝖼𝖾𝗌(𝑞) iff 𝗍𝗋𝖺𝖼𝖾𝗌(𝑞) = 𝗍𝗋𝖺𝖼𝖾𝗌(𝑝) iff 𝑞 ≡𝗍𝗋 𝑝 by symmetry of =.
3. 𝑝 ≡𝗍𝗋 𝑞 and 𝑞 ≡𝗍𝗋 𝑟 iff ☐☐ iff 𝑝 ≡𝗍𝗋 𝑟 by transitivity of =.

∎

Dr. Stephan Mennicke Concurrency Theory: Linear Time vs. Branching Time April 8, 2025 2

Reminder: ↔ and ≡𝗍𝗋

Example. Reconsider processes 𝑝 and 𝑞 and find that 𝑝 ≡𝗍𝗋 𝑞

𝑎
𝑎

𝑝 𝑞

We have 𝑝 ↮ 𝑞 but 𝑝 ≡𝗍𝗋 𝑞.

• this means, ↔≠≡𝗍𝗋
• but does ≡𝗍𝗋⊆↔? ✘
• or ↔⊆≡𝗍𝗋? ✔

Process equivalence ℰ1 ……… process equivalence ℰ2
• is finer (than) if ℰ1 ⊆ ℰ2 strictly if if ℰ1 ⊊ ℰ2
• is coarser (than) if ℰ1 ⊇ ℰ1 strictly if if ℰ1 ⊋ ℰ2
• is incomparable with if neither finer nor coarser

Dr. Stephan Mennicke Concurrency Theory: Linear Time vs. Branching Time April 8, 2025 3

Towards a Spectrum of Process Equivalences

Theorem 13

∅ ⊊
(1)

 ↔ ⊊
(2)

 ≡𝗍𝗋 ⊊
(3)

 𝒰 = 𝖯𝗋 × 𝖯𝗋

Dr. Stephan Mennicke Concurrency Theory: Linear Time vs. Branching Time April 8, 2025 4

Towards a Spectrum of Process Equivalences

Theorem 13

∅ ⊊
(1)

 ↔ ⊊
(2)

 ≡𝗍𝗋 ⊊
(3)

 𝒰 = 𝖯𝗋 × 𝖯𝗋

Proof: Parts (1) and (3) are clear. Proper inclusions stem from the examples we have seen.

Regarding (2), let 𝑝, 𝑞 ∈ 𝖯𝗋 such that 𝑝 ↔ 𝑞. Then there is an isomorphism 𝑓 between the
graphs 𝐺(𝑝) and 𝐺(𝑞), meaning
1. 𝑓(𝑝) = 𝑞 (since 𝑝 and 𝑞 are the roots of their respective process graphs) and
2. 𝑝1 ⟶

𝑎
𝑝2 (𝑝1 ∈ Reach(𝑝)) if and only if 𝑓(𝑝1) ⟶

𝑎
𝑓(𝑝2) (𝑓(𝑝1) ∈ Reach(𝑞))

… to be continued ∎

Dr. Stephan Mennicke Concurrency Theory: Linear Time vs. Branching Time April 8, 2025 5

Towards a Spectrum of Process Equivalences
Proof: For every trace 𝜎 = 𝑎1𝑎2…𝑎𝑛 ∈ 𝖠𝖼𝗍⋆,

𝜎 ∈ 𝗍𝗋𝖺𝖼𝖾𝗌(𝑝) iff ∃𝑝1, …, 𝑝𝑛 ∈ 𝖯𝗋 .𝑝 ⟶
𝑎1

𝑝1 ⟶
𝑎2

⋯ ⟶
𝑎𝑛

𝑝𝑛 (by definition)

iff ∃𝑝1, …, 𝑝𝑛 ∈ 𝖯𝗋 .𝑓(𝑝) ⟶
𝑎1

𝑓(𝑝1) ⟶
𝑎2

⋯ ⟶
𝑎𝑛

𝑓(𝑝𝑛) (𝑓 is an isomorphism)

iff ∃𝑞1, …, 𝑞𝑛 ∈ 𝖯𝗋 .𝑞 ⟶
𝑎1

𝑞1 ⟶
𝑎2

⋯ ⟶
𝑎𝑛

𝑞𝑛 (take 𝑞1 = 𝑓(𝑝1)…𝑞𝑛 = 𝑓(𝑝𝑛))
iff 𝜎 ∈ 𝗍𝗋𝖺𝖼𝖾𝗌(𝑞) (by definition)

For ↔≠≡𝗍𝗋, reconsider 𝑝 and 𝑞 below, having 𝑝 ≡𝗍𝗋 𝑞 but 𝑝 ↮ 𝑞.

𝑎
𝑎

𝑝 𝑞

∎

Dr. Stephan Mennicke Concurrency Theory: Linear Time vs. Branching Time April 8, 2025 6

Trace Equivalence: End of Story?

Example.

€ ☕ €

€

☕

𝑝 𝑞 𝑟 𝑝′𝑞′

😈

𝑟′

𝗍𝗋𝖺𝖼𝖾𝗌(𝑝) = {𝜀, €, €☕} = {𝜀, €, €, €☕} = 𝗍𝗋𝖺𝖼𝖾𝗌(𝑝′)

There is one trace, namely €, that is a completed trace of 𝑝′ but not of 𝑝.

In other words, trace equivalence (i.e., ≡𝗍𝗋) is not sensitive to deadlocks.

Dr. Stephan Mennicke Concurrency Theory: Linear Time vs. Branching Time April 8, 2025 7

The Completed Trace Semantics

Definition 14 A process 𝑝 ∈ 𝖯𝗋 is a deadlock if 𝑝 ⟶
𝑎

 for all 𝑎 ∈ 𝖠𝖼𝗍.

The set of completed traces of a process 𝑝 ∈ 𝖯𝗋, denoted by 𝖼𝗍𝗋𝖺𝖼𝖾𝗌(𝑝) is the set of all
traces 𝜎 ∈ 𝗍𝗋𝖺𝖼𝖾𝗌(𝑝) such that 𝑝 ⟶

𝜎
𝑞 and 𝑞 is a deadlock.

Processes 𝑝, 𝑞 ∈ 𝖯𝗋 are completed trace equivalent, denoted by 𝑝 ≡𝖼𝗍𝗋 𝑞, if 𝑝 ≡𝗍𝗋 𝑞 and
𝖼𝗍𝗋𝖺𝖼𝖾𝗌(𝑝) = 𝖼𝗍𝗋𝖺𝖼𝖾𝗌(𝑞).

Theorem 15

↔ ⊊
(1)

 ≡𝖼𝗍𝗋 ⊊
(2)

 ≡𝗍𝗋

Dr. Stephan Mennicke Concurrency Theory: Linear Time vs. Branching Time April 8, 2025 8

Proof of Theorem 15

Theorem 15

↔ ⊊
(1)

 ≡𝖼𝗍𝗋 ⊊
(2)

 ≡𝗍𝗋

Regarding (2),
• observe that trace equivalence is part of the definition of ≡𝖼𝗍𝗋;
• in fact, 𝖼𝗍𝗋𝖺𝖼𝖾𝗌(𝑝) ⊆ 𝗍𝗋𝖺𝖼𝖾𝗌(𝑝) for all processes 𝑝 ∈ 𝖯𝗋;
• furthermore, 😈 serves as a counterexample, proving ≡𝖼𝗍𝗋≠≡𝗍𝗋.

€ ☕ €

€

☕

𝑝 𝑞 𝑟 𝑝′𝑞′

😈

𝑟′

Dr. Stephan Mennicke Concurrency Theory: Linear Time vs. Branching Time April 8, 2025 9

Proof of Theorem 15

Towards (1),
• observe that a deadlock process 𝑝 ∈ 𝖯𝗋 can only be isomorphic to other deadlock

processes;
• in fact, 𝑝 ↔ 𝑞 for all processes 𝑝, 𝑞 ∈ 𝖯𝗋 that are deadlocks;
• hence, any completed trace of 𝑝 ∈ 𝖯𝗋 must be a a completed trace of 𝑓(𝑝) (by the same

arguments as in proof of Theorem 13);
• also, ↔≠≡𝖼𝗍𝗋 (e.g., 𝑝0 and 𝑞0 below).

𝑎

𝑎

𝑎
𝑝0𝑞0𝑞1

𝑝1

𝑝2

≡𝖼𝗍𝗋

↮

∎

Dr. Stephan Mennicke Concurrency Theory: Linear Time vs. Branching Time April 8, 2025 10

Completed Traces: End of Story?

Definition 14 A process 𝑝 ∈ 𝖯𝗋 is a deadlock if 𝑝 ⟶
𝑎

 for all 𝑎 ∈ 𝖠𝖼𝗍.

The set of completed traces of a process 𝑝 ∈ 𝖯𝗋, denoted by 𝖼𝗍𝗋𝖺𝖼𝖾𝗌(𝑝) is the set of all
traces 𝜎 ∈ 𝗍𝗋𝖺𝖼𝖾𝗌(𝑝) such that 𝑝 ⟶

𝜎
𝑞 and 𝑞 is a deadlock.

Processes 𝑝, 𝑞 ∈ 𝖯𝗋 are completed trace equivalent, denoted by 𝑝 ≡𝖼𝗍𝗋 𝑞, if 𝑝 ≡𝗍𝗋 𝑞 and
𝖼𝗍𝗋𝖺𝖼𝖾𝗌(𝑝) = 𝖼𝗍𝗋𝖺𝖼𝖾𝗌(𝑞).

Theorem 15

↔ ⊊
(1)

 ≡𝖼𝗍𝗋 ⊊
(2)

 ≡𝗍𝗋

≡𝖼𝗍𝗋 preserves traces (2) and deadlocks (😈)

Dr. Stephan Mennicke Concurrency Theory: Linear Time vs. Branching Time April 8, 2025 11

Completed Traces are Insensitive to Nondeterminism

Example.

€

☕

🍵

€

€

☕

🍵

𝑝 𝑞

𝑟1

𝑟2

𝑝′

𝑞1′

𝑞2′

𝑟1′

𝑟2′

What more do we need?
1. We are looking for the intimate connection between nondeterminism and interaction.
2. We are aiming at equivalences going beyond linear-time (≡𝗍𝗋 and ≡𝖼𝗍𝗋 are linear-time).

Dr. Stephan Mennicke Concurrency Theory: Linear Time vs. Branching Time April 8, 2025 12

Recall

Definition 11 Any binary relation ℛ ⊆ 𝖯𝗋 × 𝖯𝗋 is called a process relation. ℛ is a
process equivalence if it is a process relation and an equivalence.

Theorem 15

↔ ⊊
(1)

 ≡𝖼𝗍𝗋 ⊊
(2)

 ≡𝗍𝗋

If, between two process equivalences ℛ1 and ℛ2, it holds that ℛ1 ⊆ ℛ2, we say that ℛ1 is
finer than ℛ2, and ℛ2 is coarser than ℛ1.

The coarsest process equivalence of all is 𝒰 ⊆ 𝖯𝗋 × 𝖯𝗋.

Dr. Stephan Mennicke Concurrency Theory: Linear Time vs. Branching Time April 8, 2025 13

Towards More Meaningful Equivalences

Example.

€

☕

🍵

€

€

☕

🍵

𝑝 𝑞

𝑟1

𝑟2

𝑝′

𝑞1′

𝑞2′

𝑟1′

𝑟2′

Maybe induction helps?
Suppose, 𝑝 ≡ 𝑝′ (← claim);
1. since 𝑝 ⟶

€
𝑞, 𝑝′ needs to have a similar step

2. 𝑝′ ⟶
€

𝑞1′ and 𝑝′ ⟶
€

𝑞2′

3. thus, the claim holds if 𝑞 ≡ 𝑞1′ or 𝑞 ≡ 𝑞2′

4. but as 𝑞 ⟶
☕

 and 𝑞2′ ⟶
☕

, 𝑞 ≢ 𝑞2′ ; similarly, 𝑞 ⟶
🍵

 but 𝑞1′ ⟶
🍵

, 𝑞 ≢ 𝑞1′

Dr. Stephan Mennicke Concurrency Theory: Linear Time vs. Branching Time April 8, 2025 14

Induction Seems to Work

Example.

€

☕

🍵

€

€

☕

🍵

𝑝 𝑞

𝑟1

𝑟2

𝑝′

𝑞1′

𝑞2′

𝑟1′

𝑟2′

𝑝 ≢ 𝑝′ because 𝑞 ≢ 𝑞1′ and 𝑞 ≢ 𝑞2′ .

Cooking up Equivalence ≡
𝑝 ≡ 𝑞 if, for all 𝑎 ∈ 𝖠𝖼𝗍,
1. for all 𝑝′ with 𝑝 ⟶

𝑎
𝑝′, there is a 𝑞′ with 𝑞 ⟶

𝑎
𝑞′ and 𝑝′ ≡ 𝑞′;

2. for all 𝑞′ with 𝑞 ⟶
𝑎

𝑞′, there is a 𝑝′ with 𝑝 ⟶
𝑎

𝑝′ and 𝑝′ ≡ 𝑞′.

Dr. Stephan Mennicke Concurrency Theory: Linear Time vs. Branching Time April 8, 2025 15

Induction Seems to Work

𝑝 ≡ 𝑞 if, for all 𝑎 ∈ 𝖠𝖼𝗍,
1. for all 𝑝′ with 𝑝 ⟶

𝑎
𝑝′, there is a 𝑞′ with 𝑞 ⟶

𝑎
𝑞′ and 𝑝′ ≡ 𝑞′;

2. for all 𝑞′ with 𝑞 ⟶
𝑎

𝑞′, there is a 𝑝′ with 𝑝 ⟶
𝑎

𝑝′ and 𝑝′ ≡ 𝑞′.

€ ☕ €

€

☕

𝑝 𝑞 𝑟 𝑝′𝑞′

😈

𝑟′

𝑝 ≢ 𝑝′ because 𝑞 ≢😈

Note, 𝑟 ≡ 𝑟′ ≡😈

All deadlock processes are equivalent under ≡.

Dr. Stephan Mennicke Concurrency Theory: Linear Time vs. Branching Time April 8, 2025 16

Where Does Induction Fail?
𝑝 ≡ 𝑞 if, for all 𝑎 ∈ 𝖠𝖼𝗍,
1. for all 𝑝′ with 𝑝 ⟶

𝑎
𝑝′, there is a 𝑞′ with 𝑞 ⟶

𝑎
𝑞′ and 𝑝′ ≡ 𝑞′;

2. for all 𝑞′ with 𝑞 ⟶
𝑎

𝑞′, there is a 𝑝′ with 𝑝 ⟶
𝑎

𝑝′ and 𝑝′ ≡ 𝑞′.

Example. Reconsider processes 𝑝 and 𝑞 and find that 𝑝 ≡𝗍𝗋 𝑞

𝑎
𝑎

𝑝 𝑞

To prove that 𝑝 ≡ 𝑞, we have to show that 𝑞 ≡ 𝑞 because
1. 𝑝 ⟶

𝑎
𝑞 and there is a 𝑞′ such that 𝑞 ⟶

𝑎
𝑞′, namely 𝑞′ = 𝑞, for which 𝑞 ≡ 𝑞′ = 𝑞, and

2. 𝑞 ⟶
𝑎

𝑞 and there is a 𝑝′ such that 𝑝 ⟶
𝑎

𝑝′, namely 𝑝′ = 𝑞, for which 𝑝′ = 𝑞 ≡ 𝑞.

To prove that 𝑞 ≡ 𝑞, we have to show that 𝑞 ≡ 𝑞 … To prove that 𝑞 ≡ 𝑞, we have to show
that 𝑞 ≡ 𝑞 … To prove that 𝑞 ≡ 𝑞, we have to show that 𝑞 ≡ 𝑞 … … ∎

Dr. Stephan Mennicke Concurrency Theory: Linear Time vs. Branching Time April 8, 2025 17

Why Does Induction Fail?

𝑝 ≡ 𝑞 if, for all 𝑎 ∈ 𝖠𝖼𝗍,
1. for all 𝑝′ with 𝑝 ⟶

𝑎
𝑝′, there is a 𝑞′ with 𝑞 ⟶

𝑎
𝑞′ and 𝑝′ ≡ 𝑞′;

2. for all 𝑞′ with 𝑞 ⟶
𝑎

𝑞′, there is a 𝑝′ with 𝑝 ⟶
𝑎

𝑝′ and 𝑝′ ≡ 𝑞′.

• Induction requires a base case start with nothing: ℛ0 = {}
• By definition, in order to know that 𝑝 ≡ 𝑞, we have to already know that 𝑝′ ≡ 𝑞′

• In the example, to know/prove that 𝑝 ≡ 𝑞, we have to already know that 𝑞 ≡ 𝑞

𝑎
𝑎

𝑝 𝑞

What went wrong?

Dr. Stephan Mennicke Concurrency Theory: Linear Time vs. Branching Time April 8, 2025 18

What went well?

𝑝 ≡ 𝑞 if, for all 𝑎 ∈ 𝖠𝖼𝗍,
1. for all 𝑝′ with 𝑝 ⟶

𝑎
𝑝′, there is a 𝑞′ with 𝑞 ⟶

𝑎
𝑞′ and 𝑝′ ≡ 𝑞′;

2. for all 𝑞′ with 𝑞 ⟶
𝑎

𝑞′, there is a 𝑝′ with 𝑝 ⟶
𝑎

𝑝′ and 𝑝′ ≡ 𝑞′.

Example.

€

☕

🍵

€

€

☕

🍵

𝑝 𝑞

𝑟1

𝑟2

𝑝′

𝑞1′

𝑞2′

𝑟1′

𝑟2′

Dr. Stephan Mennicke Concurrency Theory: Linear Time vs. Branching Time April 8, 2025 19

An Inductive Approach to Process Equivalence in Reverse

Note

The coarsest process equivalence of all is 𝒰 ⊆ 𝖯𝗋 × 𝖯𝗋.

Compute ≃0, ≃1, … and define ≃𝜔≔ ⋂𝑖≥0 ≃𝑖
1. set ≃0= 𝒰
2. 𝑝 ≃𝑛+1 𝑞 for 𝑛 ≥ 0 if for all 𝑎 ∈ 𝖠𝖼𝗍:

a. for all 𝑝′ with 𝑝 ⟶
𝑎

𝑝′, there is a 𝑞′ with 𝑞 ⟶
𝑎

𝑞′ and 𝑝′ ≃𝑛 𝑞′;
b. for all 𝑞′ with 𝑞 ⟶

𝑎
𝑞′, there is a 𝑝′ with 𝑝 ⟶

𝑎
𝑝′ and 𝑝′ ≃𝑛 𝑞′.

Dr. Stephan Mennicke Concurrency Theory: Linear Time vs. Branching Time April 8, 2025 20

An Inductive Approach to Process Equivalence in Reverse

Compute ≃0, ≃1, … and define ≃𝜔≔ ⋂𝑖≥0 ≃𝑖
1. set ≃0= 𝒰
2. 𝑝 ≃𝑛+1 𝑞 for 𝑛 ≥ 0 if for all 𝑎 ∈ 𝖠𝖼𝗍:

a. for all 𝑝′ with 𝑝 ⟶
𝑎

𝑝′, there is a 𝑞′ with 𝑞 ⟶
𝑎

𝑞′ and 𝑝′ ≃𝑛 𝑞′;
b. for all 𝑞′ with 𝑞 ⟶

𝑎
𝑞′, there is a 𝑝′ with 𝑝 ⟶

𝑎
𝑝′ and 𝑝′ ≃𝑛 𝑞′.

Example.

𝑎
𝑎

𝑝 𝑞

≃0= {(𝑝, 𝑝), (𝑝, 𝑞), (𝑞, 𝑝), (𝑞, 𝑞)}
≃1= {(𝑝, 𝑝), (𝑝, 𝑞), (𝑞, 𝑝), (𝑞, 𝑞)} =≃0=≃𝜔

Dr. Stephan Mennicke Concurrency Theory: Linear Time vs. Branching Time April 8, 2025 21

An Inductive Approach to Process Equivalence in Reverse

Example.

€

☕

🍵

€

€

☕

🍵

𝑝 𝑞

𝑟1

𝑟2

𝑝′

𝑞1′

𝑞2′

𝑟1′

𝑟2′

≃0= {(𝑝, 𝑝), (𝑝, 𝑞), (𝑝, 𝑟1), (𝑝, 𝑟2), …}
≃1= {(𝑝, 𝑝), (𝑝, 𝑝′), …, (𝑞, 𝑞2′), (𝑞, 𝑞1′), …, (𝑟1, 𝑟1′), (𝑟1, 𝑟2′), …}
≃2= {(𝑝, 𝑝), (𝑝, 𝑝′), (𝑝′, 𝑝), (𝑝′, 𝑝′), (𝑞, 𝑞), (𝑞1′ , 𝑞1′), (𝑞2′ , 𝑞2′), …}
≃3= {(𝑝, 𝑝), (𝑝′, 𝑝′), (𝑞, 𝑞), (𝑞1′ , 𝑞1′), (𝑞2′ , 𝑞2′), …} =≃𝜔

𝑝 ≄𝜔 𝑝′

Dr. Stephan Mennicke Concurrency Theory: Linear Time vs. Branching Time April 8, 2025 22

Rebooting Process Equivalence
A process relation ℛ ⊆ 𝖯𝗋 × 𝖯𝗋 is called a (strong) bisimulation if, for all 𝑝, 𝑞 ∈ 𝖯𝗋, 𝑝 ℛ 𝑞
implies
1. for all 𝑝′ with 𝑝 ⟶

𝑎
𝑝′, there is a 𝑞′ with 𝑞 ⟶

𝑎
𝑞′ and 𝑝′ ℛ 𝑞′, and

2. for all 𝑞′ with 𝑞 ⟶
𝑎

𝑞′, there is a 𝑝′ with 𝑝 ⟶
𝑎

𝑝′ and 𝑝′ ℛ 𝑞′

for all 𝑎 ∈ 𝖠𝖼𝗍. We call 𝑝 and 𝑞 bisimilar, denoted 𝑝 ≃ 𝑞, if there is a bisimulation ℛ such
that 𝑝 ℛ 𝑞. ≃ is called the bisimilarity.

Dr. Stephan Mennicke Concurrency Theory: Linear Time vs. Branching Time April 8, 2025 23

Rebooting Process Equivalence

Definition 16 (Bisimulation, Bisimilarity) A process relation ℛ ⊆ 𝖯𝗋 × 𝖯𝗋 is called
a (strong) bisimulation if, for all 𝑝, 𝑞 ∈ 𝖯𝗋, 𝑝 ℛ 𝑞 implies
1. for all 𝑝′ with 𝑝 ⟶

𝑎
𝑝′, there is a 𝑞′ with 𝑞 ⟶

𝑎
𝑞′ and 𝑝′ ℛ 𝑞′, and

2. for all 𝑞′ with 𝑞 ⟶
𝑎

𝑞′, there is a 𝑝′ with 𝑝 ⟶
𝑎

𝑝′ and 𝑝′ ℛ 𝑞′

for all 𝑎 ∈ 𝖠𝖼𝗍. We call 𝑝 and 𝑞 bisimilar, denoted 𝑝 ≃ 𝑞, if there is a bisimulation ℛ
such that 𝑝 ℛ 𝑞. ≃ is called bisimilarity.

Dr. Stephan Mennicke Concurrency Theory: Linear Time vs. Branching Time April 8, 2025 24

Rebooting Process Equivalence

Definition 16 (Bisimulation, Bisimilarity) A process relation ℛ ⊆ 𝖯𝗋 × 𝖯𝗋 is called
a (strong) bisimulation if, for all 𝑝, 𝑞 ∈ 𝖯𝗋, 𝑝 ℛ 𝑞 implies
1. for all 𝑝′ with 𝑝 ⟶

𝑎
𝑝′, there is a 𝑞′ with 𝑞 ⟶

𝑎
𝑞′ and 𝑝′ ℛ 𝑞′, and

2. for all 𝑞′ with 𝑞 ⟶
𝑎

𝑞′, there is a 𝑝′ with 𝑝 ⟶
𝑎

𝑝′ and 𝑝′ ℛ 𝑞′

for all 𝑎 ∈ 𝖠𝖼𝗍. We call 𝑝 and 𝑞 bisimilar, denoted 𝑝 ≃ 𝑞, if there is a bisimulation ℛ
such that 𝑝 ℛ 𝑞. ≃ is called bisimilarity.

Consequences
1. bisimilarity ≃ is the union of all bisimulations
2. showing that 𝑝 ≃ 𝑞 holds reduces to finding a bisimulation ℛ such that 𝑝 ℛ 𝑞
3. conversely, 𝑝 ≄ 𝑞 can be shown by excluding the existence of any such bisimulation ℛ

Dr. Stephan Mennicke Concurrency Theory: Linear Time vs. Branching Time April 8, 2025 25

