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Abstract

Query entailment over ontologies is a fundamental decision problem in the field of knowledge represen-

tation and reasoning. The disjunctive (skolem) chase is a sound and complete reasoning procedure that

solves this problem for boolean conjunctive queries over the powerful first-order logic fragment of dis-

junctive existential rules. Yet, termination of the procedure is an undecidable problem. We develop novel

acyclicity and cyclicity notions for this procedure; that is, we develop sufficient conditions to determine

chase termination and non-termination. Our empirical evaluation on translated OWL ontologies shows

that our novel notions are significantly more general than existing criteria.
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1. Introduction

We consider the problem of query entailment over ontologies, aka. knowledge bases (KBs)

that are based on disjunctive existential rules. The latter form a very expressive fragment of

first-order logic. The problem can then be defined as follows:

• Input: a set ℛ of rules, a set ℱ of facts, and a boolean conjunctive query (BCQ) 𝛾.

• Output: yes iff 𝛾 is entailed by ⟨ℛ,ℱ⟩ under standard first-order semantics.

The disjunctive skolem chase [1, 2] can solve entailment of a BCQ 𝛾 by computing a universal

model set and checking if 𝛾 is satisfied by every model in this set. Unfortunately, BCQ entailment

as well as termination of the chase is undecidable [3, 4, 5]. Therefore, we study acyclicity and
cyclicity notions; i.e., sufficient conditions for chase termination or non-termination, respectively.

In this sense, a rule set ℛ is terminating if the chase terminates on every KB of the form ⟨ℛ,ℱ⟩.
In this extended abstract, we briefly discuss our published paper [6], where we introduced

disjunctive MFA/MFC (DMFA/DMFC) as novel (a)cyclicity notions for the disjunctive skolem

chase, and show that these are more general than previous criteria in practice. We take inspira-

tion from model faithful (a)cyclicity (MFA/MFC) and restricted MFA/MFC (RMFA/RMFC) [7, 8],

which tackle (non-)termination for skolem chase and disjunctive restricted chase, respectively.
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2. Disjunctive Skolem Chase

We define Cons, Vars, Funs, and Preds to be mutually disjoint, finite (albeit large enough)

sets of constants, variables, function symbols, and predicates, respectively, such that every

𝑠 ∈ Funs ∪ Preds has an arity ar(𝑠) ≥ 1. The set Terms of terms includes Cons ∪ Vars and

contains 𝑓(𝑡1, . . . , 𝑡𝑛) for every 𝑛 ≥ 1, 𝑓 ∈ Funs with ar(𝑓) = 𝑛, and 𝑡1, . . . , 𝑡𝑛 ∈ Terms. A

term 𝑡 is functional if 𝑡 /∈ Cons ∪ Vars. We write lists 𝑡1, . . . , 𝑡𝑛 of terms as �⃗�. A term 𝑠 is a

subterm of a term 𝑡 if 𝑡 = 𝑠, or 𝑡 is of the form 𝑓(�⃗�) and 𝑠 is a subterm of some term in �⃗�. A term

is cyclic if it has a subterm of the form 𝑓(�⃗�) such that 𝑓 ∈ Funs(�⃗�) where Funs(�⃗�) denotes the

function symbols in �⃗�. An atom is a first-order formula of the form 𝑃 (�⃗�) where 𝑃 is a |�⃗�|-ary

predicate and �⃗� is a term list. A fact is a variable-free atom. For a formula 𝜑, we write 𝜑[�⃗�] to

indicate that �⃗� is the set of all free variables in 𝜑; i.e., variables that are not explicitly quantified.

Definition 1. A (disjunctive existential) rule is a constant- and function-free formula of the form

∀�⃗�, �⃗�.
(︀
𝛽[�⃗�, �⃗�] →

⋁︁𝑛

𝑖=1
∃�⃗�𝑖.𝜂𝑖[�⃗�𝑖, �⃗�𝑖]

)︀
(1)

where 𝑛 ≥ 1; �⃗�, �⃗�, �⃗�𝑖 are pairwise disjoint lists of variables;
⋃︀𝑛

𝑖=1 �⃗�𝑖 = �⃗�; �⃗�𝑖 are non-empty; and
𝛽, 𝜂𝑖 are non-empty conjunctions of atoms (featuring exactly the denoted variables).

A rule 𝜌 as in (1) is deterministic if 𝑛 = 1, generating if it features at least one existential

variable, and datalog if it is deterministic and not generating. We denote a skolemized rule

(head) with sk(𝜌) (sk(𝜂𝑖)), i.e. all existential variables are replaced by skolem terms.

A (boolean conjunctive) query 𝛾 is a first-order formula of the form ∃�⃗�.𝛽[�⃗�]with 𝛽 a non-empty

conjunction of function-free atoms. A knowledge base (KB) 𝒦 is a pair ⟨ℛ, ℐ⟩ with ℛ a rule set

and ℐ an instance; that is, a function-free fact set. A (ground) substitution 𝜎 is a partial function

that maps variables to variable-free terms. We use [𝑥1/𝑡1, . . . , 𝑥𝑛/𝑡𝑛] to denote the substitution

that maps the variable 𝑥𝑖 to the term 𝑡𝑖 for every 1 ≤ 𝑖 ≤ 𝑛. For a first-order formula 𝜑, let 𝜑𝜎
be the formula that results from replacing every occurrence of every variable 𝑥 in the domain

of 𝜎 in 𝜑 with 𝜎(𝑥). A trigger 𝜆 is a pair ⟨𝜌, 𝜎⟩ with 𝜌 a rule as in (1) and 𝜎 a substitution with

domain �⃗�∪ �⃗�. The trigger 𝜆 is loaded for a fact set ℱ if 𝛽𝜎 ⊆ ℱ ; it is active for ℱ if sk(𝜂𝑖)𝜎 ⊈ ℱ
for all 1 ≤ 𝑖 ≤ 𝑛. Let out𝑖(𝜆) = sk(𝜂𝑖)𝜎 for 1 ≤ 𝑖 ≤ 𝑛; out(𝜆) = {out𝑖(𝜆) | 1 ≤ 𝑖 ≤ 𝑛} be the

output of 𝜆. A fact set ℱ is closed under a rule 𝜌 if no trigger with 𝜌 is loaded and active for ℱ .

Definition 2. A (skolem) chase tree (CT) of a KB ⟨ℛ, ℐ⟩ is a directed tree labelled with fact sets
such that (1) the root label is ℐ ; (2.1) for every non-leaf vertex 𝑣, there is a trigger 𝜆 with a rule in
ℛ that is loaded and active for the label 𝐿 of 𝑣 such that, for every 𝐹 ∈ out(𝜆), some child of 𝑣 is
labelled with 𝐿 ∪ 𝐹 ; (2.2) if 𝜆 features a non-datalog rule, then 𝐿 is closed under all datalog rules
in ℛ; (3.1) leaf vertex labels are closed under the rules in ℛ; and (3.2) for a trigger 𝜆 with a rule in
ℛ, there is a 𝑘 ≥ 1 such that 𝜆 is not loaded or not active for labels of vertices of depth at least 𝑘.

Conditions (3.1) and (3.2) ensure fairness. A KB terminates if it only admits finite CTs. A

rule set ℛ terminates if every KB ⟨ℛ, ℐ⟩ terminates; it never-terminates if some KB ⟨ℛ, ℐ⟩ only

admits infinite CTs. It is undecidable to determine if ℛ terminates [4]. The result of a CT 𝑇 is

the set of all fact sets that can be constructed via the union of all labels in a maximal path in 𝑇 .

Proposition 1. Consider the result R of some CT of a 𝒦. Then, 𝒦 entails a query 𝛾 = ∃�⃗�.𝛽 iff
ℱ |= 𝛾 for every ℱ ∈ R iff for every ℱ ∈ R there is a substitution 𝜎 with 𝛽𝜎 ⊆ ℱ .



3. Acyclicity and Cyclicity

For detecting (never-)termination, we extend MFA [7] and MFC [8] towards DMFA and

DMFC [6] with ideas from RMFA and RMFC [8]. We use the latter because, opposed to the

skolem chase, the disjunctive skolem chase and restricted chase both have the property that

more facts can remove activeness of triggers e.g. if a head-disjunct is already present. (see

Proposition 2). For acyclicity, we start with a naive extension of MFA for disjunctions.

Definition 3 ([6, Section 3.1]). A rule set ℛ is MFA if MFA(ℛ) does not feature a cyclic term,
where MFA(ℛ) is the minimal fact set that contains the critical instance ℐ⋆ = {𝑃 (⋆, . . . , ⋆) |
𝑃 ∈ Preds} (with the special constant ⋆) and out1(⟨𝜌∧, 𝜎⟩) for every trigger ⟨𝜌, 𝜎⟩ that is loaded
for MFA(ℛ). Here, 𝜌∧ results from 𝜌 by replacing all disjunctions with conjunctions.

Note that out1(⟨𝜌∧, 𝜎⟩) denotes the output of the first (and only) head-disjunct of 𝜌∧ with 𝜎
applied. Intuitively, MFA(ℛ) is an overapproximation of the facts in every possible CT of any KB

with ℛ. Without cyclic terms, the number of terms and facts is finite so ℛ is terminating. MFA

makes use of all triggers that are loaded without considering activeness. Indeed, deterministic

triggers can always be considered active because of the following key property:

Proposition 2 ([6, Lemma 15]). A deterministic trigger output occurs in a CT if it is loaded.

This holds because a loaded deterministic trigger is only not active if its exact output is already

present, which is not true for disjunctive triggers. However, it is safe to ignore disjunctive

triggers that are blocked [6, Definition 8], ensuring the following property [6, Lemma 7]: If a

trigger 𝜆 is blocked for ℛ, then 𝜆 is not active whenever it is loaded in any CT of a KB with ℛ.

Definition 4 ([6, Definitions 9,10]). For a rule set ℛ, let DMFA(ℛ) be defined as MFA(ℛ) but
only use of triggers that are not blocked. If no cyclic term occurs in DMFA(ℛ), then ℛ is DMFA.

Theorem 1 ([6, Corollary 5, Theorem 10]). If a rule set ℛ is (D)MFA, then ℛ terminates.

Example 1 ([6, Example 2]). The following rule set ℛ, which is a slightly simplified subset of rule
set 00007.owl in the Oxford Ontology Repository OXFD (see Section 4), is DMFA but not MFA:

(1) evidence(𝑥) → ∃𝑤.Confidence(𝑥,𝑤) (3) Confidence(𝑥, 𝑦) → confidence(𝑦)

(2) XRef(𝑥, 𝑦) → evidence(𝑥) ∨ confidence(𝑥) (4) Confidence(𝑥, 𝑦) → ∃𝑧.XRef(𝑦, 𝑧)

Consider a KB ⟨ℛ, ℐ⟩ and suppose that 𝜆 = ⟨(2), [𝑥/𝑓𝑤(𝑡), 𝑦/𝑓𝑧(𝑓𝑤(𝑡))]⟩ is loaded in some CT
𝑇 of ⟨ℛ, ℐ⟩. Then, Confidence(𝑡, 𝑓𝑤(𝑡)) occurs in 𝑇 since 𝑓𝑤(𝑡) may only be introduced via (1).
Since datalog rules are prioritised (2.2 in Definition 2), confidence(𝑓𝑤(𝑡)) is added by (3). But then,
𝜆 cannot be active, so 𝜆 is blocked! Hence, MFA(ℛ) features a cyclic term but DMFA(ℛ) does not.

For cyclicity, i.e. MFC membership of a rule set ℛ, we compute a fact set MFC(ℛ, 𝜌) for every

generating rule 𝜌 ∈ ℛ. We can sometimes verify that 𝜌 can be applied infinitely many times

when we start on the weakest instance to which this rule can be applied [6, Section 4.1]. MFC

ignores disjunctive rules in the process and relies heavily on Proposition 2. To support disjunctive

rules, a key aspect is to port the notion of unblockable triggers from RMFC, which ensure the

property from Proposition 2 [6, Definition 17]. We obtain DMFC and prove its correctness [6,

Definitions 19,20, Theorem 18]. Furthermore, checking DMFA or DMFC is 2ExpTime-complete

and reasoning with DMFA rule sets is coN2ExpTime-complete [6, Theorems 12,13,19].



#∃ # tot. # fin. MFA DMFA DMFA2 MFC DMFC𝑠

O
X

FD
1–19 37 36 21 28 28 4 8
20–99 18 17 3 3 3 10 14
100+ 82 26 4 6 6 14 19
1+ 137 79 28 (35%) 37 (46%) 37 (46%) 28 (35%) 41 (51%)

O
R

E1
5

1–19 103 98 51 66 66 18 31
20–99 119 105 32 33 35 54 69

100–999 278 219 5 6 119 89 100
1–999 500 422 88 (20%) 105 (24%) 220 (52%) 161 (38%) 200 (47%)

M
O

W
L 1–19 1361 1283 676 725 732 173 515

20–99 894 740 104 114 121 301 610
100–299 448 254 25 25 111 103 143
1–299 2703 2277 805 (35%) 864 (37%) 964 (42%) 577 (25%) 1268 (55%)

Table 1
Skolem Chase Termination: Rule Sets with at least one Disjunctive and one Generating Rule

4. Evaluation & Outlook

We refine some introduced notions for the evaluation: We consider DMFA
2
, looking for cyclic

terms of higher nesting depth, and DMFC
𝑠
; a simplified version of DMFC. We obtain the rule

sets via normalization and translation of OWL ontologies [7, Section 6] from OXFD, ORE15, and

MOWL.
1

We drop OWL axioms that require equality (“at-most restrictions” and “nominals”).

The tools, rule sets, and results of the evaluation are available online.
2

We set a timeout of 30 minutes for each check and only consider rule sets for which all

checks finished; we indicate the number of attempted (# tot.) vs finished (# fin.) rule sets. We

group results by the number of generating rules (#∃). The percentage of finished rule sets that

are fully classified by MFA and MFC for OXFD, ORE15, and MOWL are 70%, 58%, and 60%,

respectively. With DMFA
2

and DMFC
𝑠
, we achieve 97%, 99%, and 97%.

For future work, we would like to develop a normalisation procedure that preserves both

query entailment and chase termination. As a long term goal, we would like to adapt our notions

so they can be applied in other areas of knowledge representation and reasoning. For instance,

we believe that we can use our ideas to (i) show if an ASP program with function symbols does

or does not admit a finite solution or (ii) determine if DPLL(T) algorithms used in automated

theorem proving will terminate or not for many real-world inputs.
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