
1Foundations of Constraint Programming Complete Constraint Solvers

Lecture 3

Complete Constraint Solvers



2Foundations of Constraint Programming Complete Constraint Solvers

Outline

Introduce a simple proof theoretic framework

Use it to define complete solvers

Show how the standard unification problem can be interpreted as CSP

Discuss Gauss-Jordan Elimination and Gaussian Elimination algorithms 
for solving linear equations over reals



3Foundations of Constraint Programming Complete Constraint Solvers

Proof Theoretic Framework

Rules that transform CSP's

A rule

is equivalence preserving if  and  are equivalent

All considered rules will be equivalence preserving




〈 ;   〉
〈 ' ;   ' 〉



4Foundations of Constraint Programming Complete Constraint Solvers

Types of Rules

Domain reduction rules

  ≔ x1  ∈ D1, ..., xn  ∈ Dn

       '  ≔ x1  ∈ D'1, ..., xn  ∈ D'n

for i  [1..∈ n]
D'i  ⊆ Di

': restriction of all constraints in  to the domains D'1, ..., D'n

Transformation rules

Not domain reduction rules

' ≠ 

 ' extends 



5Foundations of Constraint Programming Complete Constraint Solvers

Examples: Domain Reduction Rules

Linear Disequality

where h'x = min(hx, hy – 1), l'y = max(ly, lx + 1)

Equality

Disequality

(domain expression y = a stands for y  {∈ a})

〈xy ; x∈ [ l x ..hx ] , y∈ [ l y ..hy ] 〉
〈xy ; x∈ [ l x ..h ′x ] , y∈ [ l ′y ..hy ] 〉

〈 x=y ; x∈Dx , y∈Dy 〉
〈 x=y ; x∈Dx∩Dy , y∈Dx∩Dy 〉

〈 x≠y ; x∈D , y=a 〉
〈 ; x∈D−{ a } , y=a 〉



6Foundations of Constraint Programming Complete Constraint Solvers

Examples: Transformation Rules

Disequality Transformation

where
- s is not a variable
-  includes all variables present in s and t

- x does not appear in 

Variable Elimination

where x occurs in 

〈s≠t ;   〉
〈x≠t , x=s ;   , x∈ℤ 〉

〈 ;   , x=a 〉
〈 { x /a } ;   , x=a 〉



7Foundations of Constraint Programming Complete Constraint Solvers

Rule Applications

Application of a rule (informally):
replace in a CSP the part that matches the premise by the conclusion

Relevant application of a rule (informally):
the result differs from the initial CSP

A CSP  is closed under the applications of R if

- R cannot be applied to , or

- no application of it to  is relevant



8Foundations of Constraint Programming Complete Constraint Solvers

Recap: Solved and Failed CSP's

A constraint is solved if it equals the Cartesian 
product of the domains of its variables

CSP is solved if all its constraints are solved

CSP is failed if
- it contains the false constraint ⊥, or
- some of its domains or constraints is empty



9Foundations of Constraint Programming Complete Constraint Solvers

Derivations

Given: a finite set of proof rules

Derivation: a sequence of CSP's s.t. each is obtained from the 
previous one by an application of a proof rule

A finite derivation is called
- successful: last element is first solved CSP in this derivation
- failed: last element is first failed CSP in this derivation
- stabilising: last element is first CSP closed under the applications
 of the proof rules



10Foundations of Constraint Programming Complete Constraint Solvers

Derivation: Example

Take

Equality

Disequality

and consider CSP
〈x = y, y ≠ z, z ≠ u; x  {∈ a,b,c}, y  {∈ a,b,d}, z  {∈ a,b}, u = b〉

〈 x=y ; x∈Dx , y∈Dy 〉
〈 x=y ; x∈Dx∩Dy , y∈Dx∩Dy 〉

〈 x≠y ; x∈D , y=a 〉
〈 ; x∈D−{ a } , y=a 〉



11Foundations of Constraint Programming Complete Constraint Solvers

Derivation: Example, ctd

〈x = y, y ≠ z, z ≠ u; x  {∈ a,b,c}, y  {∈ a,b,d}, z  {∈ a,b}, u = b〉
Apply Equality rule

〈x = y, y ≠ z, z ≠ u; x  {∈ a,b}, y  {∈ a,b}, z  {∈ a,b}, u = b〉
Apply Disequality rule to z ≠ u

〈x = y, y ≠ z; x  {∈ a,b}, y  {∈ a,b}, z = a, u = b〉
Apply Disequality rule to y ≠ z

〈x = y; x  {∈ a,b}, y = b, z = a, u = b〉
Apply Equality rule

〈x = y; x = b, y = b, z = a, u = b〉

Last CSP is solved: the derivation is successful



12Foundations of Constraint Programming Complete Constraint Solvers

Term Equations

Alphabet

variables

function symbols, each with a fixed arity

parentheses: “(” and “)”

comma: “,”

Terms

a variable is a term

if f is an n-ary function symbol and t1, ..., t are terms, 
then f(t1, ..., tn) is a term



13Foundations of Constraint Programming Complete Constraint Solvers

Substitutions

Finite mappings from variables to terms:

{x1/t1, ..., xn/tn}

where
- x1, ..., xn are different variables
- t1, ..., tn are terms
- for i  [1..∈ n], xi Ã ti
  is more general than  if for some substitution  

  = 



14Foundations of Constraint Programming Complete Constraint Solvers

Standard Unification

  is a unifier of a set of term equations {s1 = t1, ..., sn = tn} 
if si      ti  for  i  [1..∈ n]

  is an mgu (most general unifier) of E if
-  is a unifier of  E
-  is more general than all unifiers of  E

Two sets of equations are equivalent if they have the 
same set of unifiers



15Foundations of Constraint Programming Complete Constraint Solvers

Connection with CSP's

Domains: , the set of all terms in the considered alphabet

s = t with variables x1, ..., xn represents the constraint
{(x1, ..., xn )  |  unifier of  s and t}

{s1 = t1, ..., sk = tk} with variables x1, ..., xn represents

〈s1 = t1, ..., sk = tk ; x1  ∈ , ..., xn  ∈        〉

Note: 
Sol(〈E ; x1  ∈ , ..., xn  ∈    〉) = {(x1, ..., xn )  |  unifier of  E}



16Foundations of Constraint Programming Complete Constraint Solvers

Unif Proof System

Decomposition

Failure 1

  (where f  g)

Deletion

f s1 , ... ,sn=f t1 , ... , t n
s1=t1 , ... ,sn=t n

f s1 , ... , sn=g t1 , ... , tm
⊥

x=x



17Foundations of Constraint Programming Complete Constraint Solvers

Unif Proof System, ctd

Transposition

(where t is not a variable)

Substitution

(where x ∉ Var(t) and x  ∈ Var(E))

Failure 2

(where x  ∈ Var(t) and x  t)
x=t
⊥

t=x
x=t

x=t ,E
x=t ,E { x /t }



18Foundations of Constraint Programming Complete Constraint Solvers

Martelli-Montanari Algorithm

Given:

CSP   ≔  〈 ; 〉
Rule

 〈 '; '〉 is the result of applying  to 
This rule application of  is called global

Martelli-Montanari Algorithm

Unif proof rules

All applications of the Substitution rule are global

≔
〈 ;   〉

〈 ' ;   ' 〉



19Foundations of Constraint Programming Complete Constraint Solvers

Linear Equations over Reals

Alphabet

each real number is a constant

for each real number r unary function symbol ‘r⋅’

binary function symbol ‘+’ (written in infix notion)

Linear expressions and equations

Linear expression over reals: a term in this alphabet

Linear equation over reals:
s = t

where s, t linear expressions



20Foundations of Constraint Programming Complete Constraint Solvers

Normal Forms

Assume ordering  on the variables

Linear expression in normal form:

where n ≥ 0 and x1, ..., xn are ordered w.r.t. 

Linear equation in normal form:

where n ≥ 0 and x1, ..., xn are ordered w.r.t. 

Linear equation in pivot form:
x = t

if x ∉ Var(t) and t is in normal form

Each linear equation can be rewritten (normalises) 
to a unique linear equation in normal form.

∑i=1

n
ai x ir

∑i=1

n
ai x i=r



21Foundations of Constraint Programming Complete Constraint Solvers

Substitutions

Substitution: finite mapping from variables to linear 
expressions in normal form
To each variable x in its domain a linear expression 
different from x is assigned.

Given: substitutions  and °
Composition ° of  and  ° uniquely determined by

( x)  ≔ norm((x ) °)

  is a unifier of s = t if s = t normalises to 0 = 0



22Foundations of Constraint Programming Complete Constraint Solvers

Pivot Forms

Three types of normal forms:

0 = 0

0 = r where r is a non-zero real

Pivot forms of linear equations

Each linear equation e normalises to a normal form

Linear equations with normal form 0 = 0 or 0 = r have no pivot form

Otherwise each equation

is a pivot form of 

∑i=1

n
ai x i=r , wheren0

x j =∑i∈ [1.. j−1 ]∪ { j1..n }
−

ai

a j

x i 
r
a j



23Foundations of Constraint Programming Complete Constraint Solvers

Lin Proof System

Deletion

if s = v normalises to 0 = 0

Failure

if s = v normalises to 0 = r and r non-zero real

s=v
⊥

s=v



24Foundations of Constraint Programming Complete Constraint Solvers

Lin Proof System, ctd

norm(s): normal form of s

stand(s = t)  ≔ norm(s) = norm(t)

Substitution

where x = t is a pivot form of s = v

s=v ,E
x=t ,stand E { x /t }



25Foundations of Constraint Programming Complete Constraint Solvers

Gauss-Jordan Elimination

Lin proof rules

All applications of the Substitution rule are global and condition x  ∈ Var(E) holds

Theorem

Given: finite set of linear equations E

Gauss-Jordan Elimination always terminates

If E has a solution, then each execution of the algorithm terminates with a set of 
linear equations that determines an mgu of E.
Otherwise each execution terminates with a set containing ⊥.



26Foundations of Constraint Programming Complete Constraint Solvers

Gaussian Elimination

Forward substitution phase:

Repeatedly take the leftmost equation that has not yet been considered

Deletion applicable: delete the equation and consider the next equation

Failure applicable: terminate with failure

Substitution applicable: apply it taking as E the set of equations lying to 
the right of the current equation

Backward substitution phase:

Repeatedly take the rightmost equation that has not yet been considered

Apply Substitution taking as E the set of equations to the left of the current 
equation.



27Foundations of Constraint Programming Complete Constraint Solvers

Gaussian Elimination: Correctness

Theorem

Given: finite set of linear equations E

Gaussian Elimination always terminates

If E has a solution, then each execution of the algorithm terminates with a set 
of linear equations that determines an mgu of E.
Otherwise each execution terminates with a set containing ⊥.



28Foundations of Constraint Programming Complete Constraint Solvers

Objectives

Introduce a simple proof theoretic framework

Use it to define complete solvers

Show how the standard unification problem can be interpreted as CSP

Discuss Gauss-Jordan Elimination and Gaussian Elimination algorithms 
for solving linear equations over reals


