Lecture 3

Complete Constraint Solvers
Outline

- Introduce a simple proof theoretic framework
- Use it to define complete solvers
- Show how the standard unification problem can be interpreted as CSP
- Discuss Gauss-Jordan Elimination and Gaussian Elimination algorithms for solving linear equations over reals
Proof Theoretic Framework

- Rules that transform CSP's
 \[
 \frac{C ; \mathcal{D} \mathcal{E}}{\langle C' ; \mathcal{D} \mathcal{E}' \rangle}
 \]

- A rule
 \[
 \frac{\phi}{\psi}
 \]

 is equivalence preserving if ϕ and ψ are equivalent

- All considered rules will be equivalence preserving
Types of Rules

Domain reduction rules
- $DE := x_1 \in D_1, \ldots, x_n \in D_n$
- $DE' := x_1 \in D'_1, \ldots, x_n \in D'_n$
- for $i \in [1..n]$
 - $D'_i \subseteq D_i$
- C': restriction of all constraints in C to the domains D'_1, \ldots, D'_n

Transformation rules
- Not domain reduction rules
- $C' \neq \emptyset$
- DE' extends DE
Examples: Domain Reduction Rules

- **Linear Disequality**
 \[
 \langle x < y ; x \in [l_x..h_x], y \in [l_y..h_y] \rangle \\
 \langle x < y ; x \in [l_x..h'_x], y \in [l'_y..h_y] \rangle
 \]
 where \(h'_x = \min(h_x, h_y - 1), l'_y = \max(l_y, l_x + 1) \)

- **Equality**
 \[
 \langle x = y ; x \in D_x, y \in D_y \rangle \\
 \langle x = y ; x \in D_x \cap D_y, y \in D_x \cap D_y \rangle
 \]

- **Disequality**
 \[
 \langle x \neq y ; x \in D, y = a \rangle \\
 \langle ; x \in D - \{a\}, y = a \rangle
 \]
 (domain expression \(y = a \) stands for \(y \in \{a\} \))
Examples: Transformation Rules

- **Disequality Transformation**
 \[
 \begin{align*}
 &\langle s \neq t ; \mathcal{DE} \rangle \\
 \implies &\langle x \neq t , x = s ; \mathcal{DE} , x \in \mathbb{Z} \rangle
 \end{align*}
 \]
 where
 - \(s \) is not a variable
 - \(\mathcal{DE} \) includes all variables present in \(s \) and \(t \)
 - \(x \) does not appear in \(\mathcal{DE} \)

- **Variable Elimination**
 \[
 \begin{align*}
 &\langle C ; \mathcal{DE} , x = a \rangle \\
 \implies &\langle C \{x/a\} ; \mathcal{DE} , x = a \rangle
 \end{align*}
 \]
 where \(x \) occurs in \(C \)
Rule Applications

- Application of a rule (informally): replace in a CSP the part that matches the premise by the conclusion.

- Relevant application of a rule (informally): the result differs from the initial CSP.

- A CSP \mathcal{P} is closed under the applications of R if
 - R cannot be applied to \mathcal{P}, or
 - no application of it to \mathcal{P} is relevant.
Recap: Solved and Failed CSP's

- A constraint is **solved** if it equals the Cartesian product of the domains of its variables.
- CSP is **solved** if all its constraints are solved.
- CSP is **failed** if
 - it contains the false constraint \(\bot \), or
 - some of its domains or constraints is empty.
Derivations

Given: a finite set of proof rules

- **Derivation**: a sequence of CSP's s.t. each is obtained from the previous one by an application of a proof rule
- A finite derivation is called
 - **successful**: last element is first solved CSP in this derivation
 - **failed**: last element is first failed CSP in this derivation
 - **stabilising**: last element is first CSP closed under the applications of the proof rules
Derivation: Example

Take

- Equality

\[
\begin{align*}
\langle x = y ; x \in D_x, y \in D_y \rangle & \\
\Rightarrow & \\
\langle x = y ; x \in D_x \cap D_y, y \in D_x \cap D_y \rangle
\end{align*}
\]

- Disequality

\[
\begin{align*}
\langle x \neq y ; x \in D, y = a \rangle & \\
\Rightarrow & \\
\langle ; x \in D - \{a\}, y = a \rangle
\end{align*}
\]

and consider CSP
\[
\langle x = y, y \neq z, z \neq u; x \in \{a,b,c\}, y \in \{a,b,d\}, z \in \{a,b\}, u = b \rangle
\]
Derivation: Example, ctd

\[\langle x = y, y \neq z, z \neq u; x \in \{a,b,c\}, y \in \{a,b,d\}, z \in \{a,b\}, u = b \rangle \]
Apply Equality rule
\[\langle x = y, y \neq z, z \neq u; x \in \{a,b\}, y \in \{a,b\}, z \in \{a,b\}, u = b \rangle \]
Apply Disequality rule to \(z \neq u \)
\[\langle x = y, y \neq z; x \in \{a,b\}, y \in \{a,b\}, z = a, u = b \rangle \]
Apply Disequality rule to \(y \neq z \)
\[\langle x = y; x \in \{a,b\}, y = b, z = a, u = b \rangle \]
Apply Equality rule
\[\langle x = y; x = b, y = b, z = a, u = b \rangle \]

Last CSP is solved: the derivation is successful
Term Equations

Alphabet
- variables
- function symbols, each with a fixed arity
- parentheses: “(” and “)"
- comma: “,”

Terms
- a variable is a term
- if \(f \) is an \(n \)-ary function symbol and \(t_1, \ldots, t \) are terms, then \(f(t_1, \ldots, t_n) \) is a term
Substitutions

- Finite mappings from variables to terms:
 \[\{x_1/t_1, \ldots, x_n/t_n\} \]

 where
 - \(x_1, \ldots, x_n\) are different variables
 - \(t_1, \ldots, t_n\) are terms
 - for \(i \in [1..n]\), \(x_i \neq t_i\)

- \(\theta\) is more general than \(\tau\) if for some substitution \(\eta\)
 \[\tau = \theta \eta \]
Standard Unification

- θ is a unifier of a set of term equations \{\(s_1 = t_1, \ldots, s_n = t_n\)\} if \(s_i \theta \equiv t_i \theta\) for \(i \in [1..n]\)
- θ is an mgu (most general unifier) of \(E\) if
 - θ is a unifier of \(E\)
 - θ is more general than all unifiers of \(E\)
- Two sets of equations are equivalent if they have the same set of unifiers
Connection with CSP's

- **Domains:** \mathcal{T}, the set of all terms in the considered alphabet

- $s = t$ with variables $x_1, ..., x_n$ represents the constraint
 \[
 \{(x_1\eta, ..., x_n\eta) \mid \eta \text{ unifier of } s \text{ and } t\}
 \]

- $\{s_1 = t_1, ..., s_k = t_k\}$ with variables $x_1, ..., x_n$ represents
 \[
 \langle s_1 = t_1, ..., s_k = t_k ; x_1 \in \mathcal{T}, ..., x_n \in \mathcal{T} \rangle
 \]

Note:

\[
\text{Sol}(\langle E ; x_1 \in \mathcal{T}, ..., x_n \in \mathcal{T} \rangle) = \{(x_1\eta, ..., x_n\eta) \mid \eta \text{ unifier of } E\}
\]
Unif Proof System

Decomposition

\[
\frac{f(s_1, \ldots, s_n) = f(t_1, \ldots, t_n)}{s_1 = t_1, \ldots, s_n = t_n}
\]

Failure 1

\[
\frac{f(s_1, \ldots, s_n) = g(t_1, \ldots, t_m)}{\bot}
\text{ (where } f \neq g)\]

Deletion

\[
x = x
\]
Unif Proof System, ctd

Transposition

\[
\frac{t = x}{x = t} \quad \text{(where } t \text{ is not a variable)}
\]

Substitution

\[
\frac{x = t, E}{x = t, E \{ x / t \}} \quad \text{(where } x \notin \text{Var}(t) \text{ and } x \in \text{Var}(E))
\]

Failure 2

\[
\frac{x = t}{\bot} \quad \text{(where } x \in \text{Var}(t) \text{ and } x \neq t)\]
Martelli-Montanari Algorithm

Given:
- CSP $\mathcal{P} := \langle C; D\mathcal{E} \rangle$
- Rule
 $\mathcal{R} := \frac{\langle C; D\mathcal{E} \rangle}{\langle C'; D\mathcal{E}' \rangle}$
- $\langle C'; D\mathcal{E}' \rangle$ is the result of applying \mathcal{R} to \mathcal{P}
- This rule application of \mathcal{R} is called global

Martelli-Montanari Algorithm
- Unif proof rules
- All applications of the Substitution rule are global
Linear Equations over Reals

Alphabet

- each real number is a constant
- for each real number r unary function symbol ‘$r \cdot$’
- binary function symbol ‘$+$’ (written in infix notion)

Linear expressions and equations

- Linear expression over reals: a term in this alphabet
- Linear equation over reals:
 \[s = t \]
 where s, t linear expressions
Normal Forms

Assume ordering $<$ on the variables

- Linear expression in normal form:
 \[\sum_{i=1}^{n} a_i x_i + r \]
 where $n \geq 0$ and $x_1, ..., x_n$ are ordered w.r.t. $<$

- Linear equation in normal form:
 \[\sum_{i=1}^{n} a_i x_i = r \]
 where $n \geq 0$ and $x_1, ..., x_n$ are ordered w.r.t. $<$

- Linear equation in pivot form:
 \[x = t \]
 if $x \notin \text{Var}(t)$ and t is in normal form

- Each linear equation can be rewritten (normalises) to a unique linear equation in normal form.
Substitutions

- **Substitution**: finite mapping from variables to linear expressions in normal form
 To each variable x in its domain a linear expression different from x is assigned.

- Given: substitutions θ and γ
 Composition $\theta \gamma$ of θ and γ uniquely determined by

 $\eta(x) := \text{norm}((x\theta)\gamma)$

- θ is a unifier of $s = t$ if $s\theta = t\theta$ normalises to $0 = 0$
Pivot Forms

Three types of normal forms:

- $0 = 0$
- $0 = r$ where r is a non-zero real
- $\sum_{i=1}^{n} a_i x_i = r$, where $n > 0$

Pivot forms of linear equations

- Each linear equation e normalises to a normal form
- Linear equations with normal form $0 = 0$ or $0 = r$ have no pivot form
- Otherwise each equation

$$x_j = \sum_{i \in \{1..j-1|\cup|j+1..n\}} -\frac{a_i}{a_j} x_i + \frac{r}{a_j}$$

is a pivot form of e
Lin Proof System

Deletion

\[s = v \]

if \(s = v \) normalises to \(0 = 0 \)

Failure

\[s = v \]
\[\perp \]

if \(s = v \) normalises to \(0 = r \) and \(r \) non-zero real
Lin Proof System, ctd

- $\text{norm}(s)$: normal form of s
- $\text{stand}(s = t) := \text{norm}(s) = \text{norm}(t)$

Substitution

\[
\frac{s = v, E}{x = t, \text{stand}(E \{ x / t \})}
\]

where $x = t$ is a pivot form of $s = v$
Gauss-Jordan Elimination

- Lin proof rules
- All applications of the Substitution rule are global and condition $x \in \text{Var}(E)$ holds

Theorem

Given: finite set of linear equations E
- Gauss-Jordan Elimination always terminates
- If E has a solution, then each execution of the algorithm terminates with a set of linear equations that determines an mgu of E
 Otherwise each execution terminates with a set containing \bot.
Gaussian Elimination

Forward substitution phase:
Repeatedly take the leftmost equation that has not yet been considered
- Deletion applicable: delete the equation and consider the next equation
- Failure applicable: terminate with failure
- Substitution applicable: apply it taking as E the set of equations lying to the right of the current equation

Backward substitution phase:
Repeatedly take the rightmost equation that has not yet been considered
Apply Substitution taking as E the set of equations to the left of the current equation.
Gaussian Elimination: Correctness

Theorem
Given: finite set of linear equations E
- Gaussian Elimination always terminates
- If E has a solution, then each execution of the algorithm terminates with a set of linear equations that determines an mgu of E.
 Otherwise each execution terminates with a set containing \bot.
Objectives

- Introduce a simple proof theoretic framework
- Use it to define complete solvers
- Show how the standard unification problem can be interpreted as CSP
- Discuss Gauss-Jordan Elimination and Gaussian Elimination algorithms for solving linear equations over reals