Lecture 3

Complete Constraint Solvers

Foundations of Constraint Programming Complete Constraint Solvers

Outline

@ [ntroduce a simple proof theoretic framework
@ Use it to define complete solvers
@ Show how the standard unification problem can be interpreted as CSP

@ Discuss Gauss-Jordan Elimination and Gaussian Elimination algorithms
for solving linear equations over reals

Foundations of Constraint Programming Complete Constraint Solvers

Proof Theoretic Framework

- that transform CSP's
c;Dé|
cpe’|
@ Arule
v
IS if ¢ and g are equivalent

@ All considered rules will be equivalence preserving

Foundations of Constraint Programming Complete Constraint Solvers

Types of Rules

° DE=x,€Dy,..,x, €D,
o DE=x,€Dy, .., x, €D’

@ forie[1..n]
D'.c D,

@ (" restriction of all constraints in C to the domains D', ..., D',

@ Not domain reduction rules
@ C'#0
@ PDE' extends DE

Foundations of Constraint Programming Complete Constraint Solvers

Examples: Domain Reduction Rules

@ Linear Disequality

x<yixe

I...h,
I...h'

ye€ll,..h,|
yell',..h,|)

where h', = min(h,, h, - 1), I, = max(ly, [+1)

X<y ixe

@ Equality
\x=y,xeD,,yeD,,
\x=y;xeD,nD,,yeD,ND,|

@ Disequality
x#£y:;xeD,y=a|
;xeD—{a},y=a

(domain expression y = a stands for y € {a})

Foundations of Constraint Programming Complete Constraint Solvers

Examples: Transformation Rules

@ Disequality Transformation
<s;ét;1)8>
<x¢t,x=s;1)8, X€Z>

where
- S is not a variable

- D& includes all variables presentin sand ¢
- x does not appear in DE

@ Variable Elimination
<C;Z)8,x=a>
<C{x/a};1)8, x:a>

where x occurs in C

Foundations of Constraint Programming Complete Constraint Solvers

Rule Applications

@ Application of a rule (informally):
replace in a CSP the part that matches the premise by the conclusion

@ Relevant application of a rule (informally):
the result differs from the initial CSP

@ ACSP®Pis under the applications of R if
- R cannot be applied to #, or
- no application of it to P is relevant

Foundations of Constraint Programming Complete Constraint Solvers

Recap: Solved and Failed CSP's

@ A constraint is if it equals the Cartesian
product of the domains of its variables

@ CSPis if all its constraints are solved

@ CSPis if
- it contains the false constraint L, or
- some of its domains or constraints is empty

Foundations of Constraint Programming Complete Constraint Solvers

Derivations

Given: a finite set of proof rules

E . a sequence of CSP's s.t. each is obtained from the
previous one by an application of a proof rule

@ A finite derivation is called
- . last element is first solved CSP in this derivation

- . last element is first failed CSP in this derivation
- . last element is first CSP closed under the applications

of the proof rules

Foundations of Constraint Programming Complete Constraint Solvers

Derivation: Example

Take
@ Equality
\x=y;xeD,,yeD,
x=y,xeD,nD,,yeD,ND,,
@ Disequality

x#y;xeD,y=a)
,xeD—{a},y=a

and consider CSP
(x=y,y#¥z,z#u,x€{ab,c},ye{ab,d}, ze{ab}, u=>b)

Foundations of Constraint Programming Complete Constraint Solvers

10

Derivation: Example, ctd

(x=y,y#z,z#u,xe€{ab,c}, ye{ab,d}, ze {ab}, u=>b)
Apply Equality rule
(x=y,y#z,z#u,xe€{ab}, ye{ab}, z<c {a,b}, u=b)
Apply Disequality rule to z # u
(x=y,y#¥z;xe{a,b},ye{ab},z=a,u=b)
Apply Disequality rule to y # z
(x=y,xe{ab},y=b,z=a,u=b)
Apply Equality rule
(X=y;,x=b,y=b,z=a,u=b)

Last CSP is solved: the derivation is successful

Foundations of Constraint Programming Complete Constraint Solvers

11

Term Equations

variables
function symbols, each with a fixed arity
parentheses: “(" and “)”

comma: *,

e & & ®

@ avariableis aterm

e if fis an n-ary function symbol and t,, ..., tare terms,
then f(t,, ..., t) is a term

Foundations of Constraint Programming Complete Constraint Solvers

12

Substitutions

@ Finite mappings from variables to terms:
{x,/t;, ..., x [t }

where
- X4, -.., X, are different variables

-1, ..., t, are terms
-forie[1..n], x; # ¢,

@ 0 is more general than t if for some substitution n
T =0n

Foundations of Constraint Programming Complete Constraint Solvers

13

Standard Unification

@ Oisa of a set of term equations {s,=1t,, ..., s, =t}
ifs;0 = t0forie[1..n]
@ fisan (most general unifier) of E if

- 0 is a unifier of E
- 0 is more general than all unifiers of E

@ Two sets of equations are if they have the
same set of unifiers

Foundations of Constraint Programming Complete Constraint Solvers

14

Connection with CSP's

@ Domains: 7, the set of all terms in the considered alphabet

@ s =twith variables x,, ..., x, represents the constraint
{(x4n, ..., x,n) | n unifier of s and f}

o {s,=1, ..., s, =t} with variables x,, ..., X, represents
(8=t s S=t i X ET, .y X, ET)

Note:
Sol((E ; x, €T, ..., x, € T)) ={(x4n, ..., X,n) | n unifier of E}

Foundations of Constraint Programming Complete Constraint Solvers

15

Foundations of Constraint Programming

Unif Proof System

Decomposition

*
—~
w

%)
S
~

Il

*

—

Failure 1

f(sy,....8,)=9g(ty,....1,) (where f £ g)

Deletion

X=X

Complete Constraint Solvers

16

Foundations of Constraint Programming

Unif Proof System, ctd

Transposition

t=x

x=t (where t is not a variable)
Substitution

x=t,E

x—=t,E{x/t} (where x ¢ Var(t) and x € Var(E))
Failure 2

x=t

n (where x € Var(t) and x £)

Complete Constraint Solvers

17

Martelli-Montanari Algorithm

Given:
@ CSPP=(C; DE)
@ Rule <C,'Z)8>
R=
cpe’|

@ (C'; D& is the result of applying R to P

@ This rule application of R is called

Martelli-Montanari Algorithm
@ Unif proof rules
@ All applications of the Substitution rule are global

Foundations of Constraint Programming Complete Constraint Solvers

18

Linear Equations over Reals

Alphabet

d

-

d

each real number is a constant
for each real number r unary function symbol ‘r-’
binary function symbol ‘+’ (written in infix notion)

Linear expressions and equations

d

-

Linear expression over reals: a term in this alphabet
Linear equation over reals:

s=t
where s, t linear expressions

Foundations of Constraint Programming Complete Constraint Solvers

19

Normal Forms

Assume ordering < on the variables
@ Linear expression in

n

D aXr
where n2 0 and x4, ..., x,, are ordered w.r.t. <

@ Linear equation in

n
Zi=1 aiXi:r
where n2 0 and x4, ..., x,, are ordered w.r.t. <

@ Linear equation in
x=t
if x € Var(t) and t is in normal form

@ Each linear equation can be rewritten (
to a unique linear equation in normal form.

Foundations of Constraint Programming Complete Constraint Solvers

20

Substitutions

E . finite mapping from variables to linear
expressions in normal form
To each variable x in its domain a linear expression
different from x is assigned.

@ Given: substitutions 0 and ~
0~ of 0 and ~ uniquely determined by
n(x) == norm((x0)~)

@ Qisaunifierof s=tif s = t0 normalisesto 0 =0

Foundations of Constraint Programming Complete Constraint Solvers

21

Pivot Forms

Three types of normal forms:
@ 0=0
@ (0 =rwhere ris a non-zero real

n
° > . ax;=r,wheren>0
Pivot forms of linear equations
@ Each linear equation e normalises to a normal form
@ Linear equations with normal form 0 = 0 or 0 = r have no pivot form
@ Otherwise each equation

a, r

X = Zieh..j—ﬂu]ﬂ..n} o Xt o

a; a;

is a pivot form of e

Foundations of Constraint Programming Complete Constraint Solvers

22

Lin Proof System

Deletion

S=VvV

if s=vnormalisesto0=0

Failure

S=Vv
1

if s = v normalises to O = r and r non-zero real

Foundations of Constraint Programming Complete Constraint Solvers

23

Foundations of Constraint Programming

Lin Proof System, ctd

@ norm(s): normal form of s
@ stand(s = t) .= norm(s) = norm(t)

Substitution

s=v,E
x=t,stand (E{x/t})

where x = tis a pivot formof s=v

Complete Constraint Solvers

24

Gauss-Jordan Elimination

@ Lin proof rules
@ All applications of the Substitution rule are global and condition x € Var(E) holds

Theorem
Given: finite set of linear equations E
@ Gauss-Jordan Elimination always terminates

@ |If E has a solution, then each execution of the algorithm terminates with a set of
linear equations that determines an mgu of E.
Otherwise each execution terminates with a set containing L.

Foundations of Constraint Programming Complete Constraint Solvers 25

Gaussian Elimination

Forward substitution phase:

Repeatedly take the leftmost equation that has not yet been considered

@ Deletion applicable: delete the equation and consider the next equation
@ Failure applicable: terminate with failure

@ Substitution applicable: apply it taking as E the set of equations lying to
the right of the current equation

Backward substitution phase:
Repeatedly take the rightmost equation that has not yet been considered

Apply Substitution taking as E the set of equations to the left of the current
equation.

Foundations of Constraint Programming Complete Constraint Solvers

26

Gaussian Elimination: Correctness

Theorem
Given: finite set of linear equations E

i

@

Gaussian Elimination always terminates

If E has a solution, then each execution of the algorithm terminates with a set
of linear equations that determines an mgu of E.
Otherwise each execution terminates with a set containing L.

Foundations of Constraint Programming Complete Constraint Solvers

27

Objectives

@ [ntroduce a simple proof theoretic framework
@ Use it to define complete solvers
@ Show how the standard unification problem can be interpreted as CSP

@ Discuss Gauss-Jordan Elimination and Gaussian Elimination algorithms
for solving linear equations over reals

Foundations of Constraint Programming Complete Constraint Solvers

28

