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Abstract EL is a simple tractable Description Logic that features conjunctions and existen-
tial restrictions. Due to its favorable computational properties and relevance to existing on-
tologies, EL has become the language of choice for terminological reasoning in biomedical
applications, and has formed the basis of the OWL EL profile of the Web ontology language
OWL. This paper describes ELK—a high performance reasoner for OWL EL ontologies—
and details various aspects from theory to implementation that make ELK one of the most
competitive reasoning systems for EL ontologies available today.
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1 Introduction

One of the central research goals in Description Logics (DLs) [10] is finding knowledge
representation languages with the right balance between expressivity—what can be said us-
ing the language—and complexity—how difficult it is to check if something specific holds.
For the lack of a better formal criterion, ‘complexity’ of DLs was commonly measured in
terms of the worst case algorithmic behavior. This research area has resulted in discovery
and classification of a broad spectrum of DLs, from simple tractable languages, such as EL
[8] and DL-Lite [25], to very expressive languages of high computational complexity, such
as SROIQ [45,50].1
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Amongst many languages, the EL family of DLs has recently received significant in-
terest. EL is a simple DL which features the top concept (>), conjunctions (CuD), and
existential restrictions (∃R.C) as the only concept constructors. These, however, are some of
the most common constructors used in existing ontologies. Some of today’s largest ontolo-
gies, such as SNOMED CT [92], a medical ontology describing about 300,000 concepts,
OpenGALEN [84], a medical ontology describing about 23,000 concepts, and many Open
Biomedical Ontologies (OBO) [97] can almost completely be expressed in EL.

Biology and medicine are particularly prominent application areas of DLs due to a large
number of technical terms involved. To deal effectively with large vocabularies, concepts
are typically organized in a hierarchical structure called a taxonomy which reflects the sub-
sumption (is-a) relation between them. In a medical ontology, e.g., the concept ‘Flu’ would
be subsumed by the concept ‘Disease’ and would be placed under this concept in the taxon-
omy. DL-based ontology languages help to reduce redundancies in modeling of taxonomies:
rather than stating all relations between concepts explicitly, ontology engineers provide def-
initions of concepts and their general properties, from which the subsumption relations can
be computed using an appropriate reasoning procedure [87]. Reasoning also plays an im-
portant role during the design of ontologies (e.g., for detecting inconsistencies and other
modeling errors [85]) and in the deployment of ontologies (e.g., for query answering [81]).

The main terminological reasoning problem in DLs is ontology classification, whose
goal is to compute the taxonomy. Other reasoning problems include checking consistency
of the ontology, checking satisfiability of a (complex) concept, and checking whether one
(complex) concept is subsumed by another. It turns out that EL is robustly tractable for
these reasoning problems: not only are these problems polynomially solvable for EL,2 but
this holds even if the language is augmented with cyclic definitions, general concept inclu-
sion axioms (GCIs), role hierarchies, complex role inclusion axioms, nominals (and thus
ABox assertions), bottom concept, and some forms of datatype restrictions and role range
restrictions [6,8,9,23]. These extensions of EL are often called the EL family of DLs. We
will often, however, omit the ‘family’ suffix when we refer to such extensions. Thus, unless
specified otherwise, ‘EL ontologies’ and ‘EL reasoners’ will be understood in a broad sense
as ontologies expressed in the EL family of DLs and reasoners for such ontologies.

Polynomial complexity results for EL can be regarded as a strong indication that the
problems can be solved efficiently in practice, but it is not a guarantee. For example, if we
perform (quadratically many) subsumption tests between every pair of the 300,000 concepts
in SNOMED CT to compute the classification, and every test takes just a constant time,
say 1 millisecond, then it will take an estimated 25,000 hours (over 2.8 years) to compute
all subsumptions. Clearly, this procedure, although polynomial, can hardly be regarded as
practical. There is a significant difference between procedures that perform quadratically
many operations for all (or typical) inputs, and procedures that perform quadratically many
operations only in some pathological cases, which are unlikely to occur in practice. This is
one of the main reasons why highly optimized (tableau-based) procedures can perform very
well in practice despite often very high complexity of the languages involved [45,46,76].

The EL classification procedures, however, have several other strong indicators pointing
to a good practical performance. Unlike conventional tableau-based procedures [46], which
test unknown subsumptions by trying to construct counter-models, the EL procedures derive
new subsumptions explicitly using inference rules. This has two important consequences.
First, the reasoner never inspects subsumptions that are not entailed by the ontology. The

2 The ontology and concept consistency problems are, in fact, trivial in EL since this language is too weak
to express inconsistencies.
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number of entailed subsumptions is typically much smaller than the number of all pairs of
concepts. For example, SNOMED CT entails only about 5 million subsumption relations,
which is less than 0.01% of the total number of possible subsumptions. Second, the EL
classification procedure computes all subsumptions at once in ‘one pass’, which requires
fewer operations than testing the same number of subsumptions separately.

Although modern tableau-based reasoners, such as HermiT, FaCT++, Pellet, and Racer-
Pro, incorporate many optimizations that can reduce the number of subsumption tests and
reuse the results of computations between the tests [34,74,104], they still cannot achieve
the performance of specialized EL reasoners on EL ontologies. For example, the EL version
of OpenGALEN cannot be classified by any tableau reasoners available today, but can be
classified by all existing EL reasoners. The main difficulty for tableau reasoners is that
OpenGALEN contains many cyclic axioms, which result in very large models.

Of course, EL reasoners have the advantage of dealing with a much simpler language,
so it may seem unfair to compare specialized EL procedures with general-purpose ones. It
has been recently shown, however, that EL-style classification procedures are not limited
to just EL, or even to tractable DLs, but can be extended to more expressive DLs, such as
Horn-SHIQ [51] and (non-Horn) ALCH, [95] while preserving the mentioned properties.
These so-called consequence-based procedures have other distinguished properties, such as
(i) optimal worst-case complexity, (ii) ‘pay-as-you-go’ behavior: the more EL constructors
ontology uses, the more it behaves like the EL procedure, and (iii) determinism: the proce-
dure does not make choices or backtracking even for DLs with disjunctions, such as ALCH.

This paper describes ELK—an open source, Java-based reasoner for OWL EL ontolo-
gies.3 OWL EL is a profile of the W3C standardized logic-based ontology language OWL
[75,82] based on the EL family of DLs. The main goals of ELK are extensive coverage of
OWL EL features, high performance of reasoning, and easy extensibility and use. Since its
first release in 2011, ELK has already been used in a variety of biomedical applications, e.g.,
to model the neuroanatomy of flies [81], to integrate databases of diseases, genes, and drugs
[39,40,37], and to validate and query genetic ontologies [48,101]. As of this paper, the lat-
est release 0.3.2 of ELK supports a fragment of OWL EL that corresponds to the DL EL+

⊥,
which additionally features the bottom concept (⊥) and (complex) role inclusion axioms.

Although the procedure in ELK shares many similarities with existing EL procedures
[8], it offers a range of significant improvements. Firstly, the procedure applies inference
rules in a goal-directed way and avoids redundant inferences without compromising com-
pleteness. Secondly, the procedure is able to apply inferences in parallel, which can take
advantage of existing multiprocessor systems. In combination with some further implemen-
tation techniques, such as indexing and efficient join computation, these improvements re-
sult in a significant performance increase compared with other EL reasoners. For example,
SNOMED CT can be classified in about 10 minutes by the EL reasoners CEL [14] and jcel
[72], and in about 25 seconds by the EL reasoner Snorocket [66]. The same ontology can
now be classified by ELK in as little as 5 seconds on the same (quad-core) computer.

In detail, the main contributions of this paper can be summarized as follows:

1. We present a new rule-based procedure for reasoning in EL+
⊥ that incorporates many

enhancements and optimizations compared to the previously proposed reasoning proce-
dures. In particular, the procedure does not require the input ontology to be normalized,
and has a novel redundancy condition that can be used to avoid unnecessary inferences.

2. We present a new method for concurrent application of inference rules, which can be
used with arbitrary rule systems, and in particular, with our EL+

⊥ procedure. The method

3 http://elk.semanticweb.org/

http://elk.semanticweb.org/
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assigns expressions participating in the rules to one or more ‘contexts’ such that infer-
ences are possible only between elements of the same context. This way, inferences in
different contexts can be performed in parallel. Another advantage of our method is that
it does not require the datastructures for storing conclusions of the rules to be thread-safe.

3. We describe some new implementation techniques, which contribute to the improved
reasoning performance of ELK. The techniques include indexing of axioms for efficient
rule application, optimized join evaluation for premises of the rules, caching of partial
joins, practical implementation of redundancy, and optimized transitive reduction.

4. We provide an extensive experimental evaluation measuring the effect of concurrency
and other optimizations in ELK on a collection of some of the largest EL+

⊥ ontologies
that we were able to obtain from public and commercial sources. We compare the im-
provements both in system-dependent values, such as running times, as well as system-
independent values, such as the number of rule applications.

Some results presented in this paper were previously published in conference and work-
shop proceedings. In particular, the concurrent procedure for EL+

⊥ ontologies [53] and im-
plementation details of the ELK reasoner [55]. This paper should be self-contained and does
not require any prior knowledge in Description Logics, OWL, or programming languages.
We tried to present a coherent view of the main aspects of the EL reasoning, from theory to
implementation, and provide many examples to illustrate those aspects. We hope, therefore,
that the paper can be valuable to those wishing to understand the underlying ideas of the
ELK system, and to those wishing to implement similar systems.

The paper is organized as follows. After a brief introduction to the description logic
EL+
⊥, in Section 3 we present a consequence-based calculus for terminological reasoning

in EL+
⊥, prove its soundness and completeness, and gradually optimize it with appropri-

ate notions of redundancy for inferences and goal-directed strategies of rule application. In
Section 4 we describe a multi-phase procedure for implementing this calculus using index-
ing and the abstract saturation procedure, in Section 5 we present several optimizations for
this procedure, and in Section 6 we extend our approach to concurrency. Section 7 gives an
overview of the ELK system, and Section 8 provides empirical evaluations of optimizations
and concurrency. We discuss related works in Section 9 and conclude in Section 10. In Ap-
pendix A we describe how our procedure can be used for reasoning with ABox assertions
and some restricted types of nominals.

2 Description Logic Preliminaries

Here we introduce the description logic EL+
⊥, which corresponds to the fragment of OWL

EL supported by ELK 0.3.2. Readers who are not familiar with description logics (DLs)
may wish to consult a more gentle first introduction [65].

EL+
⊥ is defined w.r.t. a vocabulary consisting of countably infinite sets of (atomic) roles,

atomic concepts, and (named) individuals. Complex concepts and axioms are defined re-
cursively in Table 1. We use the letters R,S for roles, C,D,E for concepts, A,B for atomic
concepts, and a,b,c for individuals. A concept equivalence C ≡ D abbreviates the two con-
cept inclusions C v D and D v C. Axioms that involve individuals are called assertional
axioms, or ABox axioms. Other axioms are called terminological axioms, or TBox axioms.
An ontology is a finite set of axioms.

EL+
⊥ has a Tarski-style semantics. An interpretation I consists of a nonempty set ∆I

called the domain of I and an interpretation function ·I that assigns to each role R a binary



The Incredible ELK 5

Table 1 Syntax and semantics of EL+
⊥

Syntax Semantics
Roles:

atomic role R RI

Concepts:
atomic concept A AI

top > ∆I

bottom ⊥ /0
conjunction CuD CI ∩DI

existential restriction ∃R.C {x | ∃y : 〈x,y〉 ∈ RI ∧ y ∈CI}
Individuals:

named individual a aI

Axioms:
concept inclusion C v D CI ⊆ DI

role inclusion Rv S RI ⊆ SI

role composition R1 ◦R2 v S 〈x,y〉 ∈ RI
1 ∧〈y,z〉 ∈ RI

2 → 〈x,z〉 ∈ SI

concept assertion C(a) aI ∈CI

role assertion R(a,b) 〈aI ,bI〉 ∈ RI

relation RI ⊆ ∆I ×∆I , to each atomic concept A a set AI ⊆ ∆I , and to each individual a
an element aI ∈ ∆I . This assignment is extended to complex concepts as shown in Table 1.

An interpretation I satisfies an axiom α (written I |= α) if the corresponding condition
in Table 1 holds. I is a model of an ontology O (written I |= O) if I satisfies all axioms
in O. An ontology is consistent if it has at least one model, otherwise it is inconsistent. We
say that an axiom α is a consequence of an ontology O, or also that O entails α (written
O |= α), if every model of O satisfies α . Note that an inconsistent ontology entails every
axiom. A concept C is unsatisfiable w.r.t. O if O |= C v ⊥, otherwise C is satisfiable w.r.t.
O. A concept C is subsumed by D w.r.t. O if O |=C v D. Concepts C and D are equivalent
w.r.t. O if O |=C ≡ D. An individual a is an instance of a concept C w.r.t. O if O |=C(a).

A general reasoning problem in EL+
⊥ is checking entailment of axioms from ontologies:

given an ontology O and an axiom α , check if O |= α . If both O and α consist only of
terminological axioms, we speak about terminological reasoning. In practice one often does
not check entailment of a single axiom, but performs a reasoning task that consists of check-
ing multiple entailments at once. The goal of the ontology classification task is to compute
the taxonomy representing all entailed subsumptions and equivalences between >, ⊥, and
atomic concepts occurring in O. The goal of the ontology realization task is to compute all
entailed instances of atomic concepts occurring in O.

To simplify the presentation, we only consider terminological reasoning in the main part
of this paper. Thus, without further qualification, we assume that ontologies contain only ter-
minological (TBox) axioms. However, we will show in Appendix A that our algorithms can
very easily be adjusted to also support assertional (ABox) axioms and, more generally, cer-
tain ‘safe’ occurrences of nominals (singleton concepts). As we will show, this is essentially
because safe nominals are indistinguishable from atomic concepts.

3 Inference Rules for Reasoning in EL+
⊥

In this section we develop an optimized calculus for reasoning in EL+
⊥ that is the basis of

the procedure implemented in ELK. In Section 3.1 we start with the most simple and least
restricted version of the calculus that derives all subsumptions C v D between arbitrary
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R0 C vC
R> C v>

R⊥
E v ∃R.C C v⊥

E v⊥

R−u
C v D1 uD2

C v D1 C v D2
R+
u

C v D1 C v D2

C v D1 uD2
R∃

E v ∃R.C C v D
E v ∃R.D

Rv
C v D
C v E

: Dv E ∈O RH
E v ∃R.C
E v ∃S.C

: Rv S ∈O R◦
E v ∃R1.C C v ∃R2.D

E v ∃S.D
: R1 ◦R2 v S ∈O

Fig. 1 Basic inference rules for reasoning in EL+
⊥

(complex) EL+
⊥ concepts C and D entailed from the given EL+

⊥ ontology. In Section 3.2 we
formulate a more restricted calculus in which existential conclusions of some inferences are
distinguished, and demonstrate how this helps to avoid some rule applications using a new
redundancy condition. In Section 3.3 we prove that the restricted calculus does not loose any
of the entailed subsumptions—some subsumptions will just have fewer different proofs. In
Section 3.4 we show how to further restrict the rules if one is interested not in all derivable
subsumptions, but only in some selected subset of (goal) subsumptions. In Section 3.5 we
then show how this result can be used to obtain a polynomial-time classification procedure
for EL+

⊥. While the specific calculus we develop here is new, many similar calculi have been
studied in the literature. We give an overview of such related works in Section 3.6.

3.1 The Basic Inference Rules

In this section we present a simple procedure for reasoning in EL+
⊥, which we are going to

refine gradually. The calculus works by applying the rules in Fig. 1, to derive subsumptions
between EL+

⊥ concepts. We distinguish between the premises of a rule (above the horizontal
line), its conclusions (below the horizontal line), and its side conditions (after the colon).
Rules R0 and R> have no premises and (so far) can be used with arbitrary concepts C. Note
that the axioms in O are only used as side conditions of rules Rv, RH, and R◦.

Intuitively, rules R0 and R> derive trivial subsumptions. Rule R⊥ propagates inconsis-
tency of fillers in existential restrictions. Rules R−u and R+

u decompose and compose con-
junctions on the right-hand side. Rule R∃ replaces the filler of the existential restriction on
the right-hand side using a derived subsumption. Rule Rv unfolds (told) subsumptions in
the ontology. Rules RH and R◦ use role inclusion and composition axioms to produce new
existential restrictions. Note that no rule creates a complex concept on the left-hand side of
subsumptions. This is different from typical sequence-based rules. Also note that rule R∃
uses a (derived) subsumption C v D, and not a told subsumption from the ontology, like
D v E in Rv. From the following example one can see that if the second premise of R∃ is
likewise restricted to only told subsumptions, some subsumptions would not be derivable.

Example 1 Consider the ontology O consisting of the following axioms:

(ax1): Av ∃R.(CuD) (ax2): B≡ Au∃S.D (ax3): ∃S.DvC (ax4): Rv S.

The rules in Fig. 1 can be used to derive the subsumption Av B using axioms (ax1)–(ax4).

Av A by R0 (1)

Av ∃R.(CuD) by Rv to (1) using (ax1) (2)

CuDvCuD by R0 (3)
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R0 C vC
R> C v>

R⊥
E R→ C C v⊥

E v⊥

R−u
C v D1 uD2

C v D1 C v D2
R+
u

C v D1 C v D2

C v D1 uD2

R−∃
E v ∃R.C

E R→ C
R+
∃

E R→ C C v D
E v ∃R.D

Rv
C v D
C v E

: Dv E ∈O RH
E R→ C

E S→ C
: Rv S ∈O R◦

E R1→ C C R2→ D

E S→ D
: R1 ◦R2 v S ∈O

Fig. 2 Basic inference rules with links for reasoning in EL+
⊥

CuDv D by R−u to (3) (4)

Av ∃R.D by R∃ to (2) and (4) (5)

Av ∃S.D by RH to (5) using (ax4) (6)

Av Au∃S.D by R+
u to (1) and (6) (7)

Av B by Rv to (7) using (ax2) (8)

Note that (5) was produced by R∃ using a derived premise (4). We would not be able to
apply R∃ to (2) if instead of this premise we had a side condition similarly to Rv because
there are no (told) subsumptions in O with CuD on the left-hand side.

Clearly, the rules in Fig. 1 can derive only subsumptions that are entailed by O since
each rule produces a logical consequence of the premises and the side condition, if there is
one. In other words, the inference system is sound. Furthermore, it is possible to show that
all entailed subsumptions can be derived by the rules. That is, the rules are complete.

3.2 Redundant Rule Applications

We are not going to prove completeness of the rules in Fig. 1 just yet, but first present some
optimizations. The main idea is that one can avoid applying some inferences to conclusions
produced by R∃ without loosing any derivable subsumptions. Specifically, such conclusions
should not be used as the first premise of R⊥ and R∃ and premises of RH and R◦—these are
all places where existential restrictions are mentioned explicitly in the premises.

Example 2 Note that in Example 1 the conclusion (5) of the rule R∃ was used as a premise
of RH to produce (6). Subsumption (6), however, can be produced differently by ‘swapping’
the order of application of R∃ and RH:

Av ∃S.(CuD) by RH to (2) using (ax4) (9)

Av ∃S.D by R∃ to (9) and (4) (10)

Hence, Av B can be derived without using conclusions of R∃ as premises of RH.

To formalize the described optimization, we first need to distinguish existential restric-
tions produced by R∃ from those produced by other rules. For this purpose, we intro-
duce another type of conclusions called (existential) links C R→ D, semantically equivalent
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to C v ∃R.D. The new rules using links are given in Fig. 2. Note that instead of a single
rule R∃ we now have two rules R−∃ and R+

∃ , a combined application of which gives R∃. Intu-
itively, rule R−∃ eliminates existential restrictions by converting them to links, whereas rule
R+
∃ produces existential restrictions from links and other concept subsumptions.

Note that (so far) the inference rules in Fig. 2 derive C R→ D if and only if they derive
C v ∃R.D. Indeed, C R→ D can be derived from C v ∃R.D by R−∃ . On the other hand, since
DvD is derivable by R0, we can derive Cv∃R.D from C R→ D by R+

∃ . It is easy to see that if
we now replace every link in the rules of Fig. 2 by the corresponding existential restrictions,
we obtain the rules in Fig. 1. Indeed, R−∃ will produce E v ∃R.C from E v ∃R.C and can
be ignored, R+

∃ in Fig. 2 becomes R∃ in Fig. 1, whereas rules R⊥, RH and R◦ in Fig. 2 will
become the corresponding rules in Fig. 1. Therefore, the rules in Fig. 2 derive the same
concept subsumptions as those in Fig. 1. From now on, we only focus on the rules in Fig. 2.

Existential links in Fig. 2 prevent conclusions of R+
∃ to be used as the first premise of

R+
∃ or as premises of RH and R◦ immediately, but, of course, one can first convert such

conclusions to links using R−∃ , after which they can be still used as premises of those rules.
To avoid this situation, we are going to ‘block’ the applications of R−∃ to conclusions of R+

∃ .

Definition 1 (Redundancy of R−∃ ) Let O be an EL+
⊥ ontology, and Closure a set of sub-

sumptions and existential links. An application of rule R−∃ that derives E R→ C from E v∃R.C
is redundant w.r.t. Closure if {E R→ D, DvC} ⊆ Closure for some concept D. Any other ap-
plication of rules in Fig. 2 is non-redundant w.r.t. Closure. If Closure is clear from the context,
we often say that an inference is redundant or non-redundant without mentioning Closure.

We say that Closure is closed under the rules of Fig. 2 up to redundancy w.r.t. O if it
contains all conclusions of non-redundant applications of rules in Fig. 2 w.r.t. O.

Example 3 Consider the ontology O from Example 1. We will use the inference rules from
Fig. 2 to derive Av ∃S.D. The shortest derivation proceeds as follows.

Av A by R0 (11)

Av ∃R.(CuD) by Rv to (11) using (ax1) (12)

A R→ CuD by R−∃ to (12) (13)

CuDvCuD by R0 (14)

CuDv D by R−u to (14) (15)

A S→ CuD by RH to (13) using (ax4) (16)

Av ∃S.D by R+
∃ to (16) and (15) (17)

There is also another derivation. It starts as above until (15), but then instead of deriving the
link A S→ CuD, it proceeds by using the link A R→ CuD as follows.

Av ∃R.D by R+
∃ to (13) and (15) (18)

A R→ D by R−∃ to (18) (19)

A S→ D by RH to (19) using (ax4) (20)

Dv D by R0 (21)

Av ∃S.D by R+
∃ to (20) and (21) (22)

The redundancy condition allows us to ‘block’ the second derivation after (18): we have
already derived A R→ CuD in (13) and CuDvD in (15), so the application of R−∃ in (19) is
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redundant. Intuitively, every further conclusion using the link A R→ D can as well be derived
using the former link A R→ CuD instead.

Remark 1 Note that if Closure is closed under the rules in Fig. 2 up to redundancy, then
every application of R−∃ to E v∃R.C ∈ Closure is redundant w.r.t. Closure. Indeed, otherwise
Closure contains the conclusion E R→ C of R−∃ by the definition of closure under redundancy,
and since C vC ∈ Closure due to closure under R0, we have {E R→ C,C vC} ⊆ Closure.

Note that the application of R−∃ to E v ∃R.C can be redundant even if E v ∃R.C was not
obtained by rule R+

∃ , so the redundancy condition can also be used to avoid other inferences
than those mentioned in the beginning of this section. In the next section, we prove that our
optimized calculus is complete for deriving all subsumptions entailed in EL+

⊥.

Theorem 1 Let O be an EL+
⊥ ontology, and let Closure be a set that is closed under the rules

in Fig. 2 up to redundancy. Then O |=C v D implies C v D ∈ Closure or C v⊥ ∈ Closure.

From Theorem 1, it follows that if O |=C v D then either C v D or C v⊥ is derivable
using the rules in Fig. 2 even if the applications of R−∃ are required to be non-redundant
w.r.t. the set of already derived (intermediate) conclusions. Specifically, let {Si | i≥ 0} be
a sequence of sets such that S0 = /0, and for every i ≥ 0, let Si+1 be the extension of Si
with conclusions of all non-redundant (w.r.t. Si) applications of rules from Fig. 2 to Si. Let
Closure =

⋃
i≥0 Si be the set of all conclusions derivable in this way. Clearly, Closure is

closed under the rules in Fig. 2 up to redundancy. Hence, by Theorem 1, if O |=CvD, then
either C v D or C v⊥ belongs to Closure, i.e., is derivable using this particular strategy.

3.3 Proof of Completeness

The goal of this section is to prove Theorem 1. A commonly used technique for proving
completeness of EL procedures is based on canonical model construction.4 Similarly to
saturation-based theorem proving [18], canonical models for EL are constructed (uniquely)
from the set of expressions closed under inference rules (up to redundancy).

Assume that O and Closure satisfy the condition of Theorem 1. If C v ⊥ ∈ Closure for
every concept C then Theorem 1 trivially holds. So, w.l.o.g., we can assume that C v ⊥ /∈
Closure for at least one concept C. In this case, one can define the canonical model (of O
w.r.t. Closure) as follows:

Definition 2 (Canonical Model) The canonical model I is defined by

∆
I = {xC |C v⊥ /∈ Closure},

AI = {xC ∈ ∆
I |C v A ∈ Closure},

RI = {〈xC,xD〉 ∈ ∆
I ×∆

I |C R→ D ∈ Closure}.

Note that I is well-defined only if Cv⊥ /∈Closure for at least one concept C. Otherwise,
the domain ∆I is empty and I is not a valid interpretation. Note also that the definition of
the canonical model uses only expressions of the form C v A and C R→ D from Closure. In
particular, the existential restrictions C v ∃R.D are ignored by this definition, in contrast to
the corresponding links C R→ D, which define the interpretation of roles.

4 In the earlier EL papers [6,8,9], canonical models were called completion graphs.
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Of course, even if I is well-defined, it is not necessarily a model of O. In the rest of this
section we demonstrate that I |=O if Closure satisfies the closure properties of Theorem 1.
Towards this goal, we first prove two auxiliary lemmas.

Lemma 1 For each xC ∈ ∆I and each concept D, C v D ∈ Closure implies xC ∈ DI .

Proof The proof is by induction over the structure of D. In each case, we assume that xC ∈
∆I and C v D ∈ Closure, and we prove that xC ∈ DI .

– Case D = A: xC ∈ AI holds by the definition of AI .
– Case D =>: We have xC ∈ >I since >I = ∆I .
– Case D =⊥: Not possible since, by Definition 2, C v⊥ /∈ Closure for xC ∈ ∆I .
– Case D = D1uD2: Due to closure under R−u , C v D1uD2 ∈ Closure implies C v Di ∈

Closure for i = 1,2. Then, by the induction hypothesis, we have xC ∈ DI
i , from which

xC ∈ (D1uD2)
I follows by the semantics of u.

– Case D = ∃R.D2: Due to closure under R−∃ up to redundancy, by Remark 1, there exists
D1 such that {C R→ D1,D1 v D2} ⊆ Closure. Now if D1 v ⊥ ∈ Closure then C v ⊥ ∈
Closure due to closure under R⊥, which contradicts xC ∈ ∆I . Therefore, D1 v ⊥ /∈
Closure, and so xD1 ∈ ∆I . Since D1 v D2 ∈ Closure, by induction hypothesis applied
to xD1 ∈ ∆I , we get xD1 ∈ DI

2 . Since C R→ D1 ∈ Closure, we have 〈xC,xD1〉 ∈ RI by the
definition of RI . Then xC ∈ (∃R.D2)

I follows by the semantics of ∃. ut

Corollary 1 For each C such that C v⊥ /∈ Closure we have xC ∈CI .

Proof This is a direct application of Lemma 1 with C = D; the required C v C ∈ Closure
holds due to closure under R0.

Note that the proof of Lemma 1 uses only that Closure is closed under R−u , R⊥, R0, and
under R−∃ up to redundancy. The converse of Lemma 1 uses closure under R>, R+

u and R+
∃ :

Lemma 2 For each xC ∈ ∆I and each concept D, xC ∈ DI implies C v D ∈ Closure.

Proof The proof is by induction over the structure of D. In each case, we assume that xC ∈
DI , and we prove that C v D ∈ Closure.

– Case D = A: C v A ∈ Closure holds by the definition of AI .
– Case D =>: C v> ∈ Closure holds due to closure under R>.
– Case D =⊥: This case cannot occur since xC ∈ ⊥I = /0 is not possible.
– Case D = D1uD2: By the semantics of u, xC ∈ (D1uD2)

I implies xC ∈DI
i for i = 1,2.

Then, by the induction hypothesis, we have C v Di ∈ Closure for i = 1,2, from which
C v D1uD2 ∈ Closure follows due to closure under R+

u .
– Case D = ∃R.D2: By the semantics of ∃, xC ∈ (∃R.D2)

I implies that there exists an
element xD1 ∈ ∆I such that 〈xC,xD1〉 ∈ RI and xD1 ∈ DI

2 . Then C R→ D1 ∈ Closure by
the definition of RI and, by applying the induction hypothesis to xD1 ∈ DI

2 , we obtain
D1 v D2 ∈ Closure. Then C v ∃R.D2 ∈ Closure follows due to closure under R+

∃ . ut

We are now ready to prove that I is indeed a model of O.

Theorem 2 I |=O.

Proof We check that I |= α for each axiom α ∈O:
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– Case α = D v E: We consider an arbitrary xC ∈ DI . We need to show that xC ∈ EI .
Indeed, by Lemma 2, xC ∈ DI implies C v D ∈ Closure. Then C v E ∈ Closure due to
closure under Rv, from which xC ∈ EI follows by Lemma 1.

– Case α = Rv S: We consider arbitrary 〈xC,xD〉 ∈ RI . We need to show that 〈xC,xD〉 ∈
SI . Indeed, by the definition of RI , we have C R→ D ∈ Closure. Then C S→ D ∈ Closure
due to closure under RH, from which 〈xC,xD〉 ∈ SI follows by the definition of SI .

– Case α = R1 ◦R2 v S: We consider arbitrary 〈xC,xD〉 ∈ RI
1 and 〈xD,xE〉 ∈ RI

2 . We need
to show that 〈xC,xE〉 ∈ SI . Indeed, by the definition of RI

1 and RI
2 , we have C R1→ D ∈

Closure and D R2→ E ∈ Closure. Then C S→ E ∈ Closure due closure under R◦, from which
〈xC,xE〉 ∈ SI follows by the definition of SI . ut

It is now easy to conclude the proof of Theorem 1. Let C and D be arbitrary concepts
such that O |= C v D and C v ⊥ /∈ Closure. Then, the canonical model I of O is well-
defined, and by Theorem 2, I |= O. Since C v ⊥ /∈ Closure, xC ∈ ∆I , and by Corollary 1,
xC ∈CI . Since I |=O |=C v D, we have xC ∈ DI , hence C v D ∈ Closure by Lemma 2.

3.4 Goal-Directed Rule Application

The rules in Fig. 2 can derive an infinite number of subsumptions since already rule R0 can
be applied for any EL+

⊥ concept C. In practice, however, one is usually interested in finitely
many subsumptions of some specific form. For example, for classification, it is sufficient
to derive only those C v D where C and D are either atomic concepts, >, or ⊥. Deriving
subsumptions from a given finite set, however, may require other subsumptions not in this
set to be derived first, and in general, it is not clear why only finitely many intermediate
conclusions can be considered. In this section, we present restrictions of the inference rules
in Fig. 2 that can be used to avoid many inferences that are not relevant for deriving the
goal subsumptions. To this end, within this section we assume that we are given a fixed EL+

⊥
ontology O and a fixed goal subsumption F vG. Our goal is to determine which applications
of the rules in Fig. 2 are needed for deriving this goal subsumption, if it is derivable.

First we demonstrate that it is sufficient to consider only intermediate conclusions that
are reachable from the goal using derivable links.

Definition 3 Given a concept C and a set Closure, we say that C is reachable from F in
Closure if there exist sequences of concepts F = C0,C1, . . . ,Cn = C and roles R1, . . . ,Rn,
n ≥ 0, such that Ci−1

Ri→ Ci ∈ Closure for every i with 1 ≤ i ≤ n. We say that expressions
C v D and C R→ D are reachable from F in Closure if C is reachable from F in Closure.

Note that an expression can be reachable from F in Closure even if it is not contained in
Closure. When speaking about reachable concepts and expressions, we often drop F and
Closure if they are clear from the context. The following result demonstrates that non-
reachable conclusions can be always disregarded when deriving the goal subsumption.

Lemma 3 Let Closure be a set that contains all reachable (from F in Closure) conclusions
of non-redundant applications of rules in Fig. 2 to Closure. Then O |= F v G implies that
either F v G ∈ Closure or F v⊥ ∈ Closure.

Proof Let {Si | i≥ 0} be a sequence of sets of expressions such that S0 = Closure, and for
every i≥ 0, Si+1 is the extension of Si with all conclusions of non-redundant applications of
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rules to Si. Let S =
⋃

i≥0 Si. Clearly, S is closed under all rules in Fig. 2 up to redundancy.
Thus, by Theorem 1, if O |= F v G, then S contains either F v⊥ or F v G.

We will now prove by induction on i ≥ 0 that if α ∈ Si is reachable from F in Closure,
then α ∈ Closure. Since both F v ⊥ and F v G are reachable from F in Closure, this will
imply the claim of the lemma.

The induction hypothesis clearly holds for i = 0 since S0 = Closure by definition. For
the induction step, assume that the hypothesis holds for some i≥ 0. Now take any α ∈ Si+1
that is reachable from F in Closure. If α ∈ Si then α ∈ Closure by induction hypothesis.
Otherwise, α ∈ Si+1 \ Si is a conclusion of a non-redundant application of some rule to Si.
We prove that α ∈ Closure by considering all possible cases for deriving α:

– rules R0, R>, R−u , R+
u , R−∃ , Ru, RH: it is easy to see that all premises of such rules are

reachable if α is reachable (since they have the same left-hand side). Since all premises
belong to Si and are reachable, by induction hypothesis, they belong to Closure. Since
Closure contains all reachable conclusions of non-redundant rule applications, we obtain
that α ∈ Closure (note that if an application of R−∃ is not redundant w.r.t. Si then it is not
redundant w.r.t. Closure because Closure⊆ Si).

– rules R⊥, R+
∃ , R◦: for these rules, the first premise is reachable if the conclusion is

reachable. Hence the first premise belongs to Closure by induction hypothesis. But then,
the second premise is also reachable by Definition 3, and likewise belongs to Closure.
Since both premises belong to Closure, we obtain similarly that α ∈ Closure. ut

It is possible to restrict the application of inference rules even further. Specifically, the
inference rules R>, R+

u , R+
∃ that introduce new concepts on the right-hand side of subsump-

tions can be restricted to produce only concepts occurring in G or occurring in the left-hand
sides of axioms in O.

Definition 4 We say that a concept C occurs negatively (respectively positively) in a on-
tology O, if C is a syntactic subexpression of D (respectively E) for some D v E ∈ O. An
application of rules R>, R+

u , or R+
∃ is goal-directed (w.r.t. O and F vG) if for its conclusion

C v D, either D occurs in G or occurs negatively in O. Applications of rules other than R>,
R+
u , and R+

∃ (that do not introduce new concepts) are always goal-directed.

Lemma 4 Let Closure be a set that contains all reachable (from F in Closure) conclusions
of non-redundant, goal-directed applications of rules in Fig. 2. Then O |= F v G implies
that either F v G ∈ Closure or F v⊥ ∈ Closure.

Proof Let {Si | i≥ 0} be a sequence of sets of expressions such that S0 = Closure, and for
every i ≥ 0, Si+1 is the extension of Si with all reachable (from F in Closure) conclusions
of not goal-directed applications of rules to Si, i.e., those conclusions C v D of R>, R+

u , R+
∃

such that D occurs neither in G, nor negatively in O.
First, we prove by induction on i≥ 0 that each Si+1 contains all reachable conclusions of

non-redundant rule applications to Si. Indeed, for i= 0 this is the case since, by the condition
of the lemma, S0 = Closure contains all such conclusions for goal-directed rule applications,
and S1 contains all such conclusions for not goal-directed rule applications. Now suppose
that this property holds for some i ≥ 0, and let α be a reachable conclusion of some non-
redundant rule application to Si+1. We need to prove that α ∈ Si+2. If α was derived from
premises in Si, then α ∈ Si+1 by induction hypothesis, hence α ∈ Si+2. Otherwise, α was
derived from some β =C v D ∈ Si+1 \Si, which is obtained by one of the rules R>, R+

u , or
R+
∃ such that D occurs neither in G nor negatively in O. But then α can be obtained from β

only using R−u , R+
u , R−∃ , or R+

∃ (the premises of other rules cannot have such β ). Then:
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R0
init(C)

C vC
R>

init(C)

C v>
: > occurs negatively in O R⊥

E R→ C C v⊥
E v⊥

R−u
C v D1 uD2

C v D1 C v D2
R+
u

C v D1 C v D2

C v D1 uD2
: D1 uD2 occur negatively in O

R−∃
E v ∃R.C

E R→ C
R+
∃

E R→ C C v D
E v ∃S.D

: Rv∗O S
∃S.D occurs negatively in O

Rv
C v D
C v E

: Dv E ∈O R◦
E R1→ C C R2→ D

E S→ D
:

R1 v∗O S1
R2 v∗O S2
S1 ◦S2 v S ∈O

R 
E R→ C
init(C)

Fig. 3 Optimized inference rules for classification of EL+
⊥ ontologies

– if α is obtained by R−u , then β =C v D1uD2 can only be obtained by R+
u from Si, and

so α ∈ Si ⊆ Si+1 ⊆ Si+2.
– if α is obtained by R−∃ , then β = E v ∃R.C can only be obtained by R+

∃ from Si, so this
rule application is redundant and cannot take place.

– if α = C v D1 uD2 is obtained by R+
u , then β = C v D1 or β = C v D2, and so,

respectively, either D1 or D2 occurs neither in G nor negatively in O. But then the same
holds for D1uD2, and so α ∈ Si+2 by the definition of Si+2.

– if α = ∃R.D is obtained by R+
∃ , then β =CvD and D occurs neither in F nor negatively

in O. But then the same holds for ∃R.D, and so α ∈ Si+2 by the definition of Si+2.

Now since each Si+1 contains all reachable conclusions of non-redundant applications
of rules to Si, the set S =

⋃
i≥0 Si is closed under such inferences. Thus, by Lemma 3, if

O |= F v G then S contains either F v G or F v⊥. Since neither F v G nor F v⊥ can be
obtained by inferences producing Si+1 from Si for i≥ 0 (for F vG this is not possible since
G occurs in G, and F v⊥ can be obtained by neither of R>, R+

u or R+
∃ ), S0 = Closure must

contain either F v G or F v⊥, as required. ut

3.5 Optimized Inference Rules for Classification

In this section we formulate an optimized calculus for computing classification of EL+
⊥

ontologies that takes into account the optimizations described in the previous section. Recall
that for computing classification it is sufficient to derive all subsumptions of the form Av B,
A v ⊥, > v B, or > v ⊥ where A and B are atomic concepts. By Lemma 4, it is thus
sufficient to restrict the rules R>, R+

u , R+
∃ in Fig. 2 to produce only subsumptions C v D

where D occurs negatively in O: note that for these rules, D cannot be an atomic concept or
⊥. To make sure that only reachable conclusions are derived by the rules, we use a special
expression init(C) to indicate that the C is initialized as a reachable concept. This expression
is then used as a premise of the rules R0 and R> to make sure that the conclusions produced
by such rules are reachable. We do not need to add similar premises to other rules since the
conclusions of these rules have the same left-hand side as one of the premises of the rules,
and hence are reachable whenever the premises are. Whenever we derive a (reachable) link
E R→ C for some new C, we need to produce init(C) to indicate that C is reachable as well;
to this end, we introduce a special rule R that implements this inference.

The optimized inference system is presented in Fig. 3. Note that we have also removed
the rule RH and, instead, use new side conditions of the form Rv∗O S for the rules R+

∃ and R◦.
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Here v∗O is the transitive closure of the role hierarchy in O, i.e., it is the smallest reflexive
transitive binary relation over roles such that R v∗O S holds for all R v S ∈ O. It is easy to
see that once the rules R+

∃ and R◦ are relaxed in this way, the rule RH is not needed anymore:
if the conclusion of this rule can be used in R+

∃ or R◦, then its premise can be used instead
to produce the same conclusion. The advantage of the new rules is that they produce fewer
links: note that if the rules in Fig. 2 derive E R→ C then they also derive E S→ C for all S with
R v∗O S, which is not the case for the rules in Fig. 3. Thus, by precomputing the (often
relatively small) role hierarchy v∗O , we can reduce the number of derived links E R→ C by a
factor of, roughly, the average number of superroles for each role in the role hierarchy. We
also can generalize the notion of redundancy to the new rule R−∃ as follows:

Definition 5 (Redundancy of R−∃ for the system in Fig. 3) Let O be an EL+
⊥ ontology, and

Closure a set of subsumptions, existential links, and initializations. An application of rule R−∃
that derives E R→ C from E v ∃R.C is redundant w.r.t. Closure and O if {E S→ D, DvC} ⊆
Closure for some concept D and some role S v∗O R. Any other application of rules in Fig. 3
is non-redundant w.r.t. Closure. We omit Closure if it is clear from the context.

Closure is closed under the rules in Fig. 3 up to redundancy w.r.t. O if it contains all
conclusions of non-redundant applications of rules in Fig. 3 w.r.t. O.

Now the analogue of Theorem 1 for the rules in Fig. 3 can be formulated as follows:

Theorem 3 Let O be an EL+
⊥ ontology, and let Closure be a set closed under the rules in

Fig. 3 up to redundancy w.r.t. O. Then for every concept C such that init(C) ∈ Closure and
every D an atomic concept or ⊥, O |=C v D implies C v⊥ ∈ Closure or C v D ∈ Closure.

Proof Let Closure′ be obtained from Closure by removing all expressions of the form init(C)
and adding C S→ D for every C R→ D ∈ Closure with R v∗O S. We will prove that Closure′

satisfies the condition of Lemma 4 for every F v G such that init(F) ∈ Closure and G is
either an atomic concept or ⊥. This will imply the claim of the theorem.

Since Closure is closed under the rules in Fig. 3 up to redundancy, Closure′ is also closed
under these rules up to redundancy. But then Closure′ is closed under all applications of R−u ,
Rv, RH, and R◦ in Fig. 2 and under all goal-directed applications of rules R⊥, R+

u , and R+
∃

in Fig. 2. Indeed, it is immediate that the additional side-conditions of R⊥, R+
u , and R+

∃ in
Fig. 3 exclude only rule applications that are not goal-directed.

Furthermore, Closure′ is closed under all non-redundant applications of rule R−∃ in Fig. 2.
Indeed, if an application of R−∃ to E v ∃R.C is redundant w.r.t. Closure and O in the sense
of Definition 5, then {E S→ D, DvC} ⊆ Closure for some D and some S v∗O R. Hence
{E R→ D, DvC} ⊆ Closure′, and thus the application of R−∃ to E v ∃R.C is redundant w.r.t.
Closure′ in the sense of Definition 1.

It remains thus to show that Closure′ is closed under applications of R0 and R> in Fig. 2
that produce reachable conclusions. Indeed, since init(F) ∈ Closure and Closure is closed
under rule R , we have init(C) ∈ Closure for every C reachable from F in Closure. Hence,
every reachable conclusion of rules R0 and R> in Fig. 2 is in Closure′ since init(C)∈ Closure
for such conclusions, and Closure is closed under R0 and R> in Fig. 3. ut

Example 4 Consider the ontology O from Example 1. To compute all subsumers of A, we
compute the closure of Input= {init(A)} under the inference rules in Fig. 3.

init(A) input expression (23)

Av A by R0 to (23) (24)
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Av ∃R.(CuD) by Rv to (24) using (ax1) (25)

A R→ CuD by R−∃ to (25) (26)

init(CuD) by R to (26) (27)

CuDvCuD by R0 to (27) (28)

CuDvC by R−u to (28) (29)

CuDv D by R−u to (28) (30)

Av ∃S.D by R+
∃ to (26) and (30) using (ax4) (31)

Av Au∃S.D by R+
u to (24) and (31) (32)

A S→ D by R−∃ to (31) (33)

AvC by Rv to (31) using (ax3) (34)

Av B by Rv to (32) using (ax2) (35)

init(D) by R to (33) (36)

Dv D by R0 to (36) (37)

The applications of rules R+
∃ and R+

u producing (31) and (32) use the fact that the concepts
∃S.D and Au∃S.D occur negatively in Au∃S.D v B, which is a part of (ax2). Intuitively,
these rules are used to gradually construct the subsumption A v Au∃S.C, so that rule Rv
with side condition (ax2) can be applied to derive Av B.

Since the subsumption (31) was produced by rule R+
∃ , the application of R−∃ producing

(33) is redundant. In fact, the expressions {(23)–(32), (34)–(35)} are already closed under
the rules in Fig. 3 up to redundancy. Note that rule R⊥ is not applicable, since ⊥ does not
occur in the ontology.

We can see that the following subsumers of A have been derived: A, ∃R.(CuD), ∃S.D,
Au∃S.D, C, and B. By applying Theorem 3, we can also conclude that O 6|= A v ⊥ and
O 6|= Av D, but we cannot tell, e.g., whether O |= Av ∃R.B.

Finally, we estimate the worst-case complexity of computing the closure of Input under
the inference rules in Fig. 3 w.r.t. O. The key insight is to note that the rules in Fig. 3 can
only produce expressions init(C), CvD, and C R→ D such that all C, D, and R occur in Input
or in O. Let c and r be respectively the number of such concepts and roles. Thus, the in-
ference rules can derive at most c expressions init(C), at most c2 expressions C v D, and at
most c2r expressions C R→ D. In addition, we need to precompute at most r2 subrole relations
Rv∗O S. Consequently, the space complexity of the procedure is O(c2r+ r2). To bound the
time complexity, it is sufficient to estimate the number of instances of the inference rules in
Fig. 3; the closure of a system of instantiated rules can be computed in time linear in the
number of rules using the linear time algorithm for checking satisfiability of propositional
Horn logic [30]. There are at most c3r3 instances of rule R◦, and this clearly dominates the
remaining rules. Consequently, the time complexity of the procedure is O(c3r3). Thus, com-
puting the closure of Input under the inference rules in Fig. 3 w.r.t. O can be implemented
in polynomial time in the size of Input and O.

3.6 Relations with Other Rule Systems

The inference rules in Fig. 2 and 3 are closely related to the completion rules proposed
for EL++ [8]. The differences are mostly presentational. Instead of working with expres-
sions of the form C v D and C R→ D, the completion rules work with collection of sets of
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CR1 If D ∈ S(C), Dv E ∈O, and E /∈ S(C), then add E to S(C).

CR2 If D1,D2 ∈ S(C), D1 uD2 v D ∈O, and D /∈ S(C), then add D to S(C).

CR3 If E ∈ S(C), and E v ∃R.D ∈O, and 〈C,D〉 /∈ R(R) then add 〈C,D〉 to R(R).

CR4 If 〈E,C〉 ∈ R(R), D1 ∈ S(C), ∃R.D1 v D2 ∈O, and D2 /∈ S(E) then add D2 to S(E).
CR5 If 〈C,D〉 ∈ R(R), ⊥ ∈ S(D), and ⊥ /∈ S(C) then add ⊥ to S(C).

CR10 If 〈E,C〉 ∈ R(R), Rv S ∈O, and 〈E,C〉 /∈ R(S) then add 〈E,C〉 to R(S).

CR11 If 〈E,C〉 ∈ R(R1), 〈C,D〉 ∈ R(R2), R1 ◦R2 v S ∈O, and 〈E,D〉 /∈ R(S) then add 〈E,D〉 to R(S).

Fig. 4 A subset of the EL++ completion rules [8] specific to EL+
⊥ ontologies

the form S(C) and R(R) where C is a concept and R is a role. The set S(C) loosely corre-
sponds to all concepts D such that C v D is derived by our procedure and the set R(R) to
all pairs 〈C,D〉 for which C R→ D is derived by our procedure. The main difference is that
the completion-based procedure requires the input ontology O to be normalized (flattened)
so that each concept inclusion contains at most one concept constructor. This can always
be done by repeatedly replacing complex concepts with fresh atomic concepts and adding
the corresponding equivalences, followed by subsequent simplifications. For example, the
ontology in Example 1 can be normalized as follows using fresh atomic concepts X1 and X2:

– Av ∃R.(CuD)  Av ∃R.X1, X1 ≡ (CuD)  
 Av ∃R.X1, X1 vC, X1 v D, CuDv X1;

– B≡ Au∃S.D  B≡ AuX2, X2 ≡ ∃S.D  
 Bv A, Bv X2, AuX2 v B, X2 v ∃S.D, ∃S.Dv X2;

– ∃S.DvC (already normalized);
– Rv S (already normalized).

The subset of EL++ completion rules [8] relevant to EL+
⊥ is listed in Fig. 4. Every rule

except for CR5 deals with a specific type of a normalized axiom in O.5 One can easily see
similarities with the rules in Fig. 2: the rules correspond respectively to Rv, R+

u , R−∃ , R+
∃ ,

R⊥, RH, and R◦. Note that there is no rule that is analogous to R−u because axioms of the
form C v D1uD2 are replaced with C v D1 and C v D2 during normalization.

To compute the entailed subsumptions using completion rules, the algorithm first sets
S(C) = {C,>} and R(R) = /0 for each C and R, and then repeatedly applies the rules
until no rule is applicable. Initialization of S(C) is similar to applying the initialization
rules R0 and R> in our case. For our example, e.g., the rules in Fig. 4 produce S(A) =
S(B) = {>,A, B, X2,C}, S(X1) = {>, X1,C, D}, S(C) = {>,C}, S(D) = {>, D}, S(X2) =
{>, X2}, R(R) = 〈A,X1〉, 〈B,X1〉, and R(S) = {〈A, X1〉, 〈A, D〉, 〈B, X1〉, 〈B, D〉}. It is also
possible to apply the completion rules in a goal-directed way by initializing S(C) dynami-
cally as they become reachable from the goal query [15,51].

It is worth noting that the behavior of the completion-based procedure is sensitive to
the chosen normalization method. Typically, equivalences like X1 ≡ CuD are introduced
for occurrences of CuD irrespective of whether such occurrences are positive or negative.
A polarity-preserving structural transformation (see, e.g., [51]) can be used to introduce
weaker axioms depending on polarities of such occurrences. For example, it is sufficient to
replace the axiom Av∃R.(CuD) in our example, with just Av∃R.X1 and X1 vCuD, thus
avoiding CuD v X1 and subsequent applications of rule CR2. This has a similar effect as
restricting our rule R+

u only to conjunctions that occur negatively. Even if expressions occur

5 In other formulations [13,15], CR1 and CR2 are generalized to a rule for n-ary conjunctions on the left.
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Ax :
C vC

AndL1 :
C v E

CuDv E
AndL2 :

Dv E
CuDv E

AndR :
C v D1 C v D2

C v D1 uD2

Ex :
C v D

∃R.C v ∃R.D
Cut :

C v D Dv E
C v E

Concept :
C v D E v F

C v F
: Dv E ∈O

Fig. 5 Sequent-style rules for EL [41]

both positively and negatively, it is still possible to avoid introducing full equivalences. For
example, our second axiom B ≡ Au ∃S.D, can be normalized to B v A, B v ∃S.D (for
the inclusion B v Au ∃S.D), and ∃S.D v X2, Au X2 v B (for the inclusion Au ∃S.D v
B), thus avoiding X2 v ∃S.D and subsequent applications of CR3. Reducing the number of
normalized axioms, in general, should reduce the number of inferences. However, aggressive
normalization makes it difficult to apply some of the optimizations because the connection
between the original and the normalized ontology is destroyed. We will discuss this issue in
more detail in Section 5 when we talk about some specific optimizations used in ELK.

Our calculus is certainly not the only one that avoids normalization for the input on-
tology. A similar proof-theoretic procedure for EL (without >) was described by Hofmann
[41]. The procedure is based on sequent-style rules in Fig. 5. These rules are similar to our
basic rules in Fig. 1. The main difference is that the sequent-style rules introduce new con-
cepts both on the left and on the right of concept subsumptions. This makes it possible to
prove the cut elimination result (that Cut rule is not needed), and as a consequence, the sub-
formula property (that all concepts in the rules can be restricted to subconcepts of the goal
and O), from which the polynomial complexity of the procedure follows. This is similar to
our results in Section 3.4. Note, however, that our rules in Fig. 1 have three cut-like rules,
namely R⊥, R∃, R◦—just like Cut, these are the only rules that have some concept that does
not occur in the conclusion of the rule or in the ontology, but occurs in the premises. These
rules, obviously, cannot be removed from the system. Thus our rules have the subformula
property (when restricted to EL), but do not enjoy the similar cut-elimination property.

Apart from (re-)establishing the polynomial complexity of EL, the sequent-style pro-
cedure of Hofmann does not seem to have any purpose. Once the subformula property is
established, there does not appear to be much difference between the rules Cut and Concept.
In fact, these two rules make the sequent-style procedures rather inefficient for some quite
common situations. For example, if the ontology contains a long chain of concept inclusions
Ai−1 v Ai (1≤ i≤ n), the procedure (both with and without the Cut rule) derives all Ai v A j
with 0 ≤ i ≤ j ≤ n, and hence there are O(n3) possible applications of both rules Cut and
Concept. Thus, every subsumption is produced, on average, O(n) times by these rules from
different premises. This does not happen with our procedure in Fig. 1 since there are only
O(n2) possible applications of Rv (in fact every subsumption will be produced exactly once
for this example). Of course, in theory, a similar situation can occur with our rule R∃, which
also has a cubic worst-case complexity in the number of different concepts, but due to the
presence of existential restrictions, the rule is significantly more restricted (note that not only
E, C, and D are required to occur in the input due to the subformula property, but also ∃R.C
and ∃R.D) and an example that exhibits the worst case complexity would probably be too
artificial to really occur in practice. Our further optimizations, in particular existential links
and the notion of redundancy, which effectively prevent the conclusions of R∃ to be used as
the left premise of R∃, make this worst-case situation even less likely.
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Algorithm 1: The abstract saturation procedure
input : Input: a set of expressions, R: a set of inference rules
output : Closure: the closure of Input under R

1 Closure, Todo← /0;
2 for expression ∈ Input do /* initialize */
3 Todo.add(expression);

4 while Todo 6= /0 do /* close */
5 expression← Todo.takeNextElement();
6 process (expression);

7 return Closure;

8 process(expression) :
9 if expression /∈ Closure then

10 Closure.add(expression);
11 for inference ∈ R(expression,Closure) do
12 Todo.add(inference.conclusion);

4 Computing the Closure under the Inference Rules

So far we have discussed theoretical properties of the calculus based on the inference rules
in Fig. 3, such as soundness and completeness of the procedure for various reasoning tasks.
In this section, we focus on the algorithmic aspect of the problem, specifically, on how to
compute the deductive closure under the inference rules in an efficient way. Although it
is relatively easy to implement the procedure so that it runs in polynomial time, we will
demonstrate that a number of optimizations and efficient data structures can account for a
significant speedup in practice, even though they do not reduce the worst-case complexity.

We first give a high-level overview of the procedure, which can essentially be applied
to any inference system, and then provide a more detailed description that is specific to the
inference rules in Fig. 3. For simplicity, in this section, we do not discuss how to avoid
redundant applications of rule R−∃ ; this will be done later in Section 5.1.

4.1 The Abstract Saturation Procedure

In this section we present a basic algorithm for computing the deductive closure of input
expressions under inference rules, which we call the abstract saturation procedure. This
is a well-known procedure and it is similar to the ‘given clause’ algorithm (set of sup-
port strategy) used in saturation-based theorem proving (see, e.g., [18,109]) and semi-naive
(bottom-up) evaluation of logic programs (see, e.g., [1]).

The abstract saturation procedure can be described using Algorithm 1. In order to com-
pute the deductive closure of a set of expressions Input under a set of inference rules R, the
procedure maintains two collections of expressions: the queue Todo contains expressions
to which the rules have yet to be applied and the set Closure accumulates the expressions
to which the rules are applied. A queue can have duplicate elements whereas a set can-
not. Todo is first initialized with the input expressions (lines 2–3). After that, the expres-
sions are repeatedly removed from Todo (in no specific order) and processed by method
process(expression) until the queue becomes empty (lines 4–6). Expressions are processed
by applying all rules R (expression, Closure) between this expression and the expressions in
Closure (lines 11–12). Note that the new conclusions are inserted into Todo, which are again
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processed in the main loop (lines 4–6). In order to avoid a potentially infinite loop, the rules
are applied only the first time an expression is inserted into Closure (see lines 9, 10). This
guarantees termination of the algorithm in case there are only finitely many expressions.

Example 5 The derivation in Example 4 already presents the expressions in the order in
which they are processed by the abstract saturation algorithm. For example, after process-
ing expression (28), Closure contains expressions (23)–(28), and Todo contains expressions
(29) and (30). The algorithm then takes and removes expression (29) from Todo, adds it to
Closure, and applies all inferences involving this expression and the previously processed
expressions (23)–(28). In this case, no inference rules are applicable. The algorithm then
takes the next expression (30) from Todo, adds it to Closure, and applies all inferences in-
volving this expression and the previously processed expressions (23)–(29). In this case,
rule R+

∃ is applicable to the premises (26) and (30), so the conclusion (31) is added to Todo.

Correctness of Algorithm 1 is a consequence of the following (semi-)invariants that can
be proved by induction over the execution of the algorithm:

(i) Every expression in Todo and Closure is either from Input or obtained by an inference
rule from some expressions in Closure;

(ii) Closure does not contain duplicate expressions;
(iii) After every iteration of the loop at lines 4–6:

(a) Either the size of Closure increases or, otherwise, it remains the same and the size
of Todo decreases;

(b) Every expression in Input occurs in either Todo or Closure;
(c) Every conclusion of an inference from Closure occurs in either Todo or Closure.

From (i), it follows that Algorithm 1 can add to Closure only expressions that are deriv-
able by the rules from Input. Therefore, from (ii) and (iii).(a), it follows that if there are
only finitely many different expressions that can be derived from Input, then Algorithm 1
terminates. Finally, from (iii).(b) and (iii).(c) it follows that when Algorithm 1 terminates
(and thus Todo is empty), Closure contains all expressions derivable from Input.

4.2 Implementing the Abstract Saturation Procedure for EL+
⊥

A key detail of Algorithm 1 not discussed so far is the application of inference rules in line
11, where the abstract saturation procedure needs to compute all inferences between the
given expression and the expressions in Closure. How can we implement this computation?
One possibility is to enumerate all tuples of expressions in Closure that contain the given
expression,6 and check applicability of all rules to each tuple. While this can be implemented
in polynomial time in the size of Closure (all rules have a bounded number of premises, so
it suffices to consider polynomially many tuples of bounded size), this would clearly be
impractical. For a more efficient implementation, we need a goal-directed way to determine
which rules can be applied to the given premise and with which other premises from Closure.

In this section, we present algorithms and datastructures that enable efficient search and
application of the rules from Fig. 3. The optimized saturation procedure for EL+

⊥ consists of
three phases. The first two phases ‘compile’ axioms to produce an efficient representation
of inference rules, and the third phase uses this representation to compute the closure.

6 Note that the given expression will already be present in Closure at this point.
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IdxRole

occurs : integer
id: String

IdxExistential

role : IdxRole
filler : IdxConcept

IdxConjunction

firstConj : IdxConcept
secondConj : IdxConcept

IdxAtomic

id: String

IdxConcept

negOccurs : integer
posOccurs : integer

Fig. 6 Classes for indexing objects

4.2.1 Phase 1: Indexing

The goal of the indexing phase is to build a representation of the input ontology O so that
the side conditions of the rules in Fig. 3 can be verified efficiently. For this purpose, we store
information about occurrences of roles and concepts in O using a system of indexed objects.

The type hierarchy of indexed objects is shown in Fig. 6; it closely follows the recursive
definition of EL expressions. The top level classes IdxRole and IdxConcept represent roles
and concepts, respectively. For each indexed role, the field occurs stores the number of
times this role occurs in the ontology O, and the field id contains the string identifier of
the role. For indexed concepts we separately keep track of the number of their negative and
positive occurrences in O in the fields negOccurs and posOccurs. These counters are used
to determine which expressions occur in the ontology under which polarity, and to update
this information when adding or removing axioms. The different types of EL concepts are
represented by the corresponding subclasses of IdxConcept. For example, a conjunction Cu
D is represented by an object of type IdxConjunction with fields firstConj and secondConj
pointing to the indexed objects that represent C and D, respectively. In addition, there are
distinguished instances top and bottom of IdxConcept that represent > and ⊥, respectively.
From now on, when we mention roles or concepts, we refer to their indexed representations.

Apart from creating the indexed objects, the indexing phase also constructs data struc-
tures for efficient look-up of side conditions of the inference rules. Specifically, the following
tables (sets of tuples) of indexed objects are constructed.

negConjs= {〈C,D,CuD〉 |CuD occurs negatively in O}
negExists= {〈R,C,∃R.C〉 | ∃R.C occurs negatively in O}
concIncs= {〈C,D〉 |C v D ∈O}
roleIncs= {〈R,S〉 | Rv S ∈O}

roleComps= {〈R1,R2,S〉 | R1 ◦R2 v S ∈O}

Example 6 Consider the ontology O from Example 1. Its index contains the following in-
dexed objects with occurrence counts as indicated.7

IdxRole R S
occurs 2 4

IdxConcept > ⊥ A B C D CuD ∃R.(CuD) ∃S.D Au∃S.D
negOccurs 0 0 2 1 0 2 0 0 2 1
posOccurs 0 0 1 1 2 2 1 1 1 1

7 Recall that we treat the equivalence axiom (ax2) as two individual concept inclusion axioms, so, e.g., the
occurrence count of S is 4, not 3.
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The look-up tables contain the following tuples.

negConjs= {〈A,∃S.D,Au∃S.D〉}
negExists= {〈S,D,∃S.D〉}
concIncs= {〈A,∃R.(CuD)〉,〈B,Au∃S.D〉,〈Au∃S.D,B〉,〈∃S.D,C〉}
roleIncs= {〈R,S〉}

roleComps= /0

To give an idea how these index datastructures can be used during the saturation phase,
consider the point in the derivation from Example 4 when the saturation algorithm processes
the expression A v ∃S.D in line (31). To apply rule R+

u to this expression, the algorithm
iterates over those tuples in negConjs whose first or second component is ∃S.D to find all
possible ways to satisfy the side condition. Since negConjs contains 〈A,∃S.D,Au∃S.D〉, the
algorithm checks if Closure already contains A v A, which can be used as the first premise
of R+

u . Since this is the case, the conclusion Av Au∃S.D is added to the Todo queue. Note
that (a pointer to) the indexed conjunction Au∃S.D used in the conclusion can be taken
directly from the table negConjs. This illustrates that conclusions of inference rules can be
constructed by simply following the pointers in the index, and no new indexed objects need
to be created during the saturation phase.

Indexing is a lightweight task that can be performed by a single recursive traversal
through the structure of each axiom in the ontology. Furthermore, the index datastructures
can be constructed incrementally by considering one axiom at a time. Since we keep the
exact counts of negative and positive occurrences of concepts and roles, the index can be
easily updated not only when axioms are added, but also when axioms are removed. This
can be highly useful when working with ontologies that are being modified, e.g., in ontology
editors, as it is sufficient to reindex changed axioms only.

Example 7 Let us see how the index data structures in Example 6 are updated if we re-
move the axiom B≡ Au∃S.D from O. First, the tuples 〈B,Au∃S.D〉 and 〈Au∃S.D,B〉 are
removed from the table concIncs. Second, the counters for both negative and positive occur-
rences of B, Au∃S.D, A, ∃S.D, and D are decremented, and the occurrence counter for S
is decreased by 2. Since the counter for negative occurrences of the conjunction Au∃S.D
becomes zero, the tuple 〈A,∃S.D,Au∃S.D〉 is removed from the table negConjs. The neg-
ative occurrence count of the existential restriction ∃S.D remains positive (the concept still
occurs negatively in (ax3)), so the table negExists remains unchanged. Finally, since there
are no more occurrences of B and Au∃S.D, the corresponding indexed objects are deleted.

4.2.2 Phase 2: Saturation of Roles

In order to efficiently check the side conditions of rules R+
∃ and R◦, we compute the reflexive

transitive closure v∗O of the role inclusion axioms of O, and store it in a table called hier
(for role hierarchy):

hier = {〈R,S〉 | Rv∗O S}.

The table hier can be easily computed from the table roleIncs obtained in the previous phase.
Since the number of roles in real-world ontologies is usually much smaller than the number
of concepts, any reasonable algorithm for computing the transitive closure can be used with
no significant impact on overall performance.
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R0: If inits(C),
then subs(C,C).

R>: If inits(C) & top.negOccurs> 0,
then subs(C,top).

R⊥: If links(E,R,C) & subs(C,bottom),
then subs(E,bottom).

R−u : If subs(C,D) & D instanceOf IdxConjunction,
then subs(C,D.firstConj) and subs(C,D.secondConj).

R+
u : If subs(C,D1) & subs(C,D2) & negConjs(D1,D2,D),

then subs(C,D).

R−∃ : If subs(C,D) & D instanceOf IdxExistential,
then links(C,D.role,D.filler).

R+
∃ : If links(E,R,C) & subs(C,D) & negExists(S,D,F) & hier(R,S),

then subs(E,F).

Rv: If subs(C,D) & concIncs(D,E),
then subs(C,E).

R◦: If links(E,R1,C) & links(C,R2,D) & roleComps(S1,S2,S) & hier(R1,S1) & hier(R2,S2),
then links(E,S,D).

R : If links(E,R,C),
then inits(C).

Fig. 7 The closure properties induced by rules in Fig. 3

Example 8 The reflexive transitive closure of the table roleIncs in Example 6 is

hier = {〈R,R〉,〈R,S〉,〈S,S〉}.

4.2.3 Phase 3: Saturation of Concepts

In this phase, we compute the saturation of Input under the inference rules in Fig. 3 using
a specialized version of Algorithm 1. Recall that our inference rules operate with three
types of expressions: init(C), CvD, and E R→ C. Depending on where these expressions are
saved, we use different representations for them. The expressions in Todo are represented
by objects with the corresponding number of parameters, whereas the expressions in Closure
are represented using three tables inits, subs, and links for the respective types of expressions
as given in Table 2.

Before presenting details of the saturation algorithm, we first reformulate in Fig. 7 the
rules from Fig. 3 as closure properties in the above representation. In these rule formulations,
for each table T and tuple x the expression T (x) stands for x ∈ T .

The main body of the saturation algorithm remains the same as for the abstract saturation
procedure (Algorithm 1, lines 2–6). We only replace the implementation of the function
process(expression) as shown in Algorithm 2. Each expression is processed according to
its type, corresponding to all possible ways the expression can be used as a premise of the
rules in Fig. 7.

4.3 Efficient Join Computation

Iterations over joins of tables are used extensively in Algorithm 2 to retrieve all matching
side conditions and premises of inference rules. We can optimize such iterations by iter-
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Algorithm 2: process(expression)
1 process(Init(C)) :
2 if C /∈ inits then
3 inits.add(C);
4 Todo.add(new Sub(C,C)); // rule R0

5 if top.negOccurs> 0 then
6 Todo.add(new Sub(C,top)); // rule R>

7 process(Sub(C,D)) :
8 if 〈C,D〉 /∈ subs then
9 subs.add(〈C,D〉);

10 if D = bottom then
11 for each E,R with links(E,R,C) do
12 Todo.add(new Sub(E,bottom)); // rule R⊥

13 if D instanceOf IdxConjunction then
14 Todo.add(new Sub(C,D.firstConj));
15 Todo.add(new Sub(C,D.secondConj)); // rule R−u

16 for each D2,E with subs(C,D2) and negConjs(D,D2,E) do
17 Todo.add(new Sub(C,E)); // rule R+

u

18 for each D1,E with subs(C,D1) and negConjs(D1,D,E) do
19 Todo.add(new Sub(C,E)); // rule R+

u

20 if D instanceOf IdxExistential then
21 Todo.add(new Link(C,D.role,D.filler)); // rule R−∃
22 for each E,F,R,S with links(E,R,C) and negExists(S,D,F) and hier(R,S) do
23 Todo.add(new Sub(E,F)); // rule R+

∃
24 for each E with concIncs(D,E) do
25 Todo.add(new Sub(C,E)); // rule Rv

26 process(Link(E,R,C)) :
27 if 〈E,R,C〉 /∈ links then
28 links.add(〈E,R,C〉);
29 if subs(C, bottom) then
30 Todo.add(new Sub(E, bottom)); // rule R⊥

31 for each D,F,S with subs(C,D) and negExists(S,D,F) and hier(R,S) do
32 Todo.add(new Sub(E,F)); // rule R+

∃
33 for each D,R2,S1,S2,S with links(C,R2,D) and roleComps(S1,S2,S) and hier(R,S1) and

hier(R2,S2) do
34 Todo.add(new Link(E,S,D)); // rule R◦

35 for each D,R1,S1,S2,S with links(D,R1,E) and roleComps(S1,S2,S) and hier(R1,S1)
and hier(R,S2) do

36 Todo.add(new Link(D,S,C)); // rule R◦

37 Todo.add(new Init(C)); // rule R 

Table 2 Representation of EL+
⊥ expressions

Expression Representation in Todo Representation in Closure
init(C) Init(C) C ∈ inits
C v D Sub(C,D) 〈C,D〉 ∈ subs
E R→ C Link(E,R,C) 〈E,R,C〉 ∈ links
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ating over smaller tables and precomputing partial joins. In this section we illustrate these
techniques on the application of rules R+

u and R+
∃ .

Consider rule R+
u implemented in Algorithm 2 in lines 16–19. To apply the rule with

an axiom C v D as the first premise, the loop in line 16 iterates over all indexed concepts
D2 and E such that subs(C,D2)∧negConjs(D,D2,E) holds, i.e., such that the subsumption
C v D2 has already been processed and E = DuD2 occurs negatively in the ontology. One
possibility is to iterate over all D2 such that subs(C,D2) holds, and for each of them check
if a (necessarily unique) E with negConjs(D,D2,E) exists. Another possibility is to iterate
over all D2 such that negConjs(D,D2,E) holds (for E = DuD2) and for each of them check
if subs(C,D2) holds. Depending on which iteration is shorter, one method is more efficient
than the other. For this reason, we do not fix the order of iteration upfront; instead, we
dynamically choose the order that results in iterating over the smaller set.

The above approach can be further improved for rules where the same join is computed
multiple times. Consider the application of rule R+

∃ to a link E R→ C as the first premise im-
plemented in Algorithm 2 in lines 31–32. For simplicity, we ignore the role hierarchy in
this discussion. In that case, the loop in line 31 iterates over all D such that subs(C,D)∧
negExists(R,D,F) holds (for F = ∃R.D), i.e., such that the subsumption C v D has already
been processed and F = ∃R.D occurs negatively in the ontology. Since this iteration is in-
dependent of E, the algorithm repeats it for very link E R→ C with the same R and C. To
avoid the repetition, we cache the result as ‘propagations’ props(R,C,F) := subs(C,D) on
negExists(R,D,F), which is updated every time a new subsumption C v D is derived.

4.4 Relations with Implementations of Completion-Based Procedures

As we mentioned in the beginning of Section 4.1, algorithms for computing the closure un-
der inference rules are well studied and commonly used in many areas of computer science.
So it is not surprising that other rule-based reasoners implement procedures similar to Algo-
rithm 1. In this section we point out the main differences between our implementation and
the implementation of completion-based procedures first used in the reasoner CEL [14], and
later adapted by other reasoners such as jcel [72], Snorocket [66], and Cheetah [94].

Recall from Section 3.6, that completion-based procedures work with ontologies con-
taining only normalized axioms. The procedure computes sets S(C) and R(R) for every
atomic concept C and role R by applying the rules in Fig. 4 starting from the initial values
S(C) = {>,C} and R(R) = /0. Like in our case, the CEL procedure uses queues for con-
trolled application of inference rules. Unlike our procedure, however, the queues collect not
conclusions of applied rules, but expressions of the form A1 u ·· · uAn → D that represent
‘remainders’ of the normalized axioms containing the produced subsumer on the left-hand
side [13,15]. For example, when a new subsumer D1 is added to S(C), and the ontology
contains an axiom D1uD2uD3 v D, the procedure adds the remainder ‘D2uD3→ D’ for
D1 in this axiom to the queue of C. When this remainder is processed, it is checked whether
S(C) contains both D2 and D3, and if so, D is added to S(C), which can result in remainders
for D being added to the queue for C in a similar way. This strategy was inspired by the
linear-time algorithm for checking satisfiability of propositional Horn formulas [30].

The CEL procedure can be alternatively described using the inference rules in Fig. 8.
Intuitively, the rules deal with negative occurrences of conjunctions by deriving intermediate
subsumers of the form Di → D (we consider only binary conjunctions, so there is at most
one concept on the left of →). The procedure thus can be seen as an implementation of
Algorithm 1 for these rules, except that the intermediate subsumers produced by the first
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C v D1

C v (D2→ D)
: D1 uD2 v D ∈O C v D2

C v (D1→ D)
: D1 uD2 v D ∈O C v (D2→ D) C v D2

C v D

Fig. 8 Processing negative conjunctions in CEL using intermediate implications

two rules are not saved in Closure, and the conclusion C v D produced by the last rule are
not inserted into Todo, but processed immediately. In order to optimize applications of first
two rules, CEL precomputes remainders for each concept D occurring on the left-hand side
of axioms, and saves them in a set Ô(D). This is similar to indexing of axioms in our case.

The first two rules in Fig. 8, however, may result in many unnecessary inferences. Some
concepts can occur in ontologies in many conjunctions. For example, in SNOMED CT there
are several concepts that occur in over 1,000 negative conjunctions. Typically, these are gen-
eral concepts, such as ‘Drug’ or ‘Disease’, that are used to define more specific concepts,
e.g., HeartDisease≡Diseaseu∃affects.Heart, LiverDisease≡Diseaseu∃affects.Liver. Since
such concepts are general (high in the class hierarchy), they can be derived as subsumers of
many concepts, e.g., HeartDisease v Disease, LiverDisease v Disease, so the first two rules
in Fig. 8 can be applied very often. Each rule application produces as many intermediate
conclusions as there are conjunctions containing the subsumer. Thus, if the subsumer oc-
curs in n conjunctions, and was derived as a subsumer of m concepts, there will be n ·m
conclusions. This can be a big number for large ontologies, such as SNOMED CT.

Cheetah [94] has experimented with a slightly different approach of applying completion
rules. Instead of deriving intermediate ‘remainders’ of axioms, the reasoner counts down
how many subsumers on the left-hand side of axioms are remained to be satisfied. That is, for
every concept C and every axiom α = A1u·· ·uAn v D ∈O the procedure stores a counter
#(C,α) representing the number of concepts Ai such that the subsumption CvAi was not yet
derived. When a new subsumption Cv Ai is derived, this counter is decremented, and when
it reaches 0, the subsumption C v D is produced. This approach does not require producing
the actual ‘remainders’ of axioms, but requires storing and updating the counters for every
C and α . Cheetah has also experimented with a simplified strategy, in which no counters are
used, but instead, every time C v A is derived, for every axiom α = A1 u ·· ·uAn v D ∈ O
having A = Ai for some i (1 ≤ i ≤ n), it is checked whether C v Ai was already derived for
every i (1≤ i≤ n), in which case CvD is produced. This strategy has, in fact, outperformed
the counter-based strategy on existing ontologies, possibly due to a relatively high overhead
of storing and updating the counters and relatively short conjunctions.

The second strategy of Cheetah is similar to our first method of join evaluation for rule
R+
u discussed in Section 4.3, where we first iterate over all negative conjunctions containing

the derived subsumer, and then check if subsumption with the other conjunct is already de-
rived. As we mentioned, this iteration is not very efficient if the subsumer occurs in many
negative conjunctions. Therefore, similar to CEL, both strategies of Cheetah will have prob-
lems in this case. In our implementation, however, it is likely that the second method of join
evaluation will be selected in this case. That is, we first iterate over all existing subsumers
and then check if the conjunction with the produced subsumer occurs negatively in the on-
tology. This method should work faster if the number of subsumers is small compared to the
number of matching negative conjunctions.

Another subtle difference between our procedure and the CEL procedure is processing
of ‘edges’ 〈C,D〉 ∈ R(R), which are created whenever an existential ∃R.D is derived for C.
Unlike links in our case, CEL does not insert the edges into the queue, but processes them
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immediately in a recursive call. This, however, may result in an unbounded recursion (and
subsequent stack overflow), especially when implementing the rule for role compositions.
In Algorithm 1 we do not have recursive methods, so this problem does not occur. Cheetah
also avoids this problem by creating intermediate existential restrictions for the produced
edges, which are then inserted into the queue as ordinary subsumers. This would be similar
had we implemented our procedure using the simplified rules in Fig. 1.

5 Redundancy and Other Optimizations

The basic approach presented in Section 4 may already work well in practice, but the pro-
cedure can be optimized even further. In this section we describe several such optimizations
implemented in ELK that turned out to work well in practice. In Section 5.1 we discuss how
to avoid some redundant applications of the decomposition rules R−∃ and R−u . In Section 5.2
we describe an optimization for the role composition rule R◦. In Section 5.3, we present
an optimized treatment of disjointness axioms, which does not require (possibly quadratic)
binarization. Finally, in Section 5.4 we describe an optimized procedure for taxonomy con-
struction. We empirically evaluate the effect of all these optimizations in Section 8.

5.1 Optimization of Decomposition Rules

The saturation procedure from the previous section computes the full closure under the infer-
ence rules in Fig. 3 without taking advantage of the notion of redundancy from Definition 5.
Although it is certainly possible to add the redundancy conditions as additional negative
premises for rule R−∃ , it is not clear how to check them efficiently. Instead, in ELK we use
the following weaker optimization O∃, which is easy to implement.

O∃ Do not apply rule R−∃ to a subsumption E v ∃S.D that has been derived by rule R+
∃ .

If a subsumption E v ∃S.D has been derived by rule R+
∃ , then some premises E R→ C and

C v E with Rv∗O S of the rule must have been derived earlier, so the application of rule R−∃
to E v ∃S.D is redundant according to Definition 5.

Example 9 Using optimization O∃, the application of rule R−∃ to axiom (31) in Example 4
is redundant. This avoids deriving expressions (33), (36), and (37), and, in particular, even
avoids the need to initialize D.

Interestingly, we can formulate an analogous optimization for rule R−u :

Ou Do not apply rule R−u to a subsumption C v D1uD2 that has been derived by rule R+
u .

If C v D1uD2 has been derived by rule R+
u , then both the premises C v D1 and C v D2 of

the rule must have been derived earlier, so it is clearly redundant to derive them again in rule
R−u . Thus, unlike O∃, optimization Ou does not affect the set of expression derived during
saturation, it can only reduce the number of rule applications.

To implement Ou and O∃ in the saturation algorithm, we introduce a new expression
Sub+(C,D) and change the implementation of rules R+

u and R+
∃ in Algorithm 2 to produce

Sub+ instead of Sub. Processing of Sub+(C,D) is analogous to process(Sub(C,D)) in
Algorithm 2 except that the applications of rules R−u and R−∃ are omitted.



The Incredible ELK 27

5.2 Optimization of the Role Composition Rule

All the inference rules in Fig. 3 have the property that if a conclusion is derivable from
a premise E S→ D, then the same conclusion is also derivable from each stronger premise
E S′→ D with S′ v∗O S. Therefore, the former is superfluous in the presence of the latter. In
this section, we present an optimization of rule R◦ that avoids deriving the conclusion E S→ D
from the premises E R1→ C and C R2→ D if a stronger conclusion E S′→ D with S′ v∗O S is also
derivable by R◦ from the same premises.

First, to simplify the application of rule R◦, we expand all indexed role composition
axioms under the role hierarchy, i.e., we precompute the join

hierComps(R1,R2,S) := roleComps(S1,S2,S)on hier(R1,S1)on hier(R2,S2),

which can be done already during the role saturation phase. The application of rule R◦ in
Fig. 7 then simplifies to the following:

R◦: If links(E,R1,C) & links(C,R2,D) & hierComps(R1,R2,S),
then links(E,S,D).

Second, we eliminate all entries hierComps(R1,R2,S) for which there exists another
entry hierComps(R1,R2,S′) with S′ v∗O S; to avoid the problem of simultaneously removing
all entries with equivalent roles, the entries need to be removed sequentially one at a time.
This optimization prevents the algorithm from deriving two different conclusions E S→ D and
E S′→ D with S′ v∗O S by rule R◦ from the same premises. We denote this optimization O◦.

It is also possible to implement a more aggressive optimization that discards each de-
rived link E S→ D in case a stronger link E S′→ D with S′ v∗O S has already been processed by
the saturation algorithm. Although less restrictive, the practical advantage of O◦ is that, at
a relatively small cost of preprocessing the table hierComps in the role saturation phase, it
avoids even the construction of the weaker link E S→ D in the concept saturation phase.

5.3 Disjointness Axioms

In OWL EL one can write axioms DisjointClasses( C1 . . . Cn ) meaning that the concepts
C1, . . . ,Cn are pairwise disjoint. Although such statements can be straightforwardly trans-
lated to DL axioms Ci uC j v ⊥ for 1 ≤ i < j ≤ n, this translation introduces n(n− 1)/2
axioms, which can be inefficient for large n.

We can treat large disjointness axioms (whose length exceeds a certain threshold) differ-
ently. For each such axiom α = DisjointClasses(C1, . . . ,Cn) we introduce a special ‘marker’
concept Dα and assert Ci v Dα for 1 ≤ i ≤ n. Then, in the saturation phase, whenever we
process a subsumption C v Dα the second time, i.e., whenever we attempt to insert 〈C,Dα〉
into table subs in Algorithm 2 but the tuple is already there, we know that C vCi must have
already been derived for at least two different indexes i, so we derive the conclusion C v⊥.

5.4 Taxonomy Construction

Recall that, for the classification task, we initialize the saturation algorithm with init(A) for
each atomic concept A, and then, by our completeness result, the result of the saturation con-
tains all entailed subsumptions A v B between atomic concepts. The computed saturation,
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however, is not very convenient for navigating over subsumptions. Instead, subsumptions are
usually represented in the form of a taxonomy, which contains equivalent classes of atomic
concepts and direct subsumption relations between them. We say that an atomic concept A
is directly subsumed by an atomic concept B w.r.t. O if O |= A v B and for every atomic
concept C such that O |= A v C v B, either O |= C ≡ A or O |= C ≡ B. The procedure of
computing the ‘direct part’ of a transitive relation is usually called transitive reduction.

In this section we discuss how to perform transitive reduction of a (transitively closed)
set subs of all subsumption relations between atomic concepts. To perform the reduction,
for every atomic concept A we compute the set of its equivalent concepts A.equivalent and
the set of its direct subsumers A.directSubs.

A naive algorithm for computing A.directSubs is shown in Algorithm 3. The algorithm
iterates over all subsumers C of A, and for each of them checks if another subsumer B of A
exists with Av BvC. If no such B exists, then C is a direct subsumer of A. Note that this
approach does not work as expected when A has two equivalent subsumers, in which case
none of them would be found as direct. Apart from this shortcoming, the algorithm is also
inefficient because it performs two nested iterations over the subsumers of A. In realistic
ontologies, the number of all subsumers of A can be sizeable, while the number of direct
subsumers is usually much smaller, often just one. A more efficient algorithm would take
advantage of this and perform the inner iteration only over the set of direct subsumers of
A that have been found so far, as shown in Algorithm 4. Note that it is safe to execute
Algorithm 4 in parallel for multiple concepts A.

Algorithm 3: Naive Transitive Reduction
1 for each C with subs(A,C) do
2 if C 6= A then
3 isDirect← true;
4 for each B with subs(A,B) do
5 if B 6= A and B 6=C and subs(B,C) then
6 isDirect← false;

7 if isDirect then
8 A.directSubs.add(C);

Algorithm 4: Optimized Transitive Reduction
1 for each C with subs(A,C) do
2 if subs(C,A) then
3 A.equivalent.add(C);

4 else
5 isDirect← true;
6 for B ∈ A.directSubs do
7 if subs(B,C) then
8 isDirect← false;
9 break;

10 if subs(C,B) then
11 A.directSubs.remove(B);

12 if isDirect then
13 A.directSubs.add(C);
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The rest of the taxonomy construction is straightforward. We introduce one taxonomy
node for each distinct class of equivalent concepts, and connect the nodes according to the
direct subsumption relation. Care has to be taken to put the top and the bottom node in their
proper positions, even if > or ⊥ do not occur in the ontology.

Example 10 Consider again the ontology from Example 1. The saturation algorithm com-
putes the following subsumptions (projected to atomic concepts):

subs= {〈A,A〉,〈A,B〉,〈A,C〉,〈B,A〉,〈B,B〉,〈B,C〉,〈C,C〉,〈D,D〉},

from which Algorithm 4 computes the following taxonomy (shown to the right):

A.equivalent= {A,B}, A.directSubs= {C},
B.equivalent= {A,B}, B.directSubs= {C},
C.equivalent= {C}, C.directSubs= /0,

D.equivalent= {D}, D.directSubs= /0.

>
C

A≡ B
D

⊥

5.5 Optimizing Completion-Based Procedures

Many of the above optimizations are not specific to our procedure but can be adapted to the
completion-based setting as well, and thus potentially benefit other reasoners. For example,
our handling of large disjointness axioms from Section 5.3 can be readily applied both in
completion- and even tableau-based reasoning.

The optimized implementation O◦ of the role composition rule R◦ from Section 5.2 leads
straightforwardly to an analogous optimization of the completion rule CR11 in Fig. 4. Note,
however, that this optimization is meaningful only if one takes the view that an edge 〈C,D〉 ∈
R(R) also represents all edges 〈C,D〉 ∈ R(S) with R v∗O S and adjusts all completion rules
accordingly, similarly as we did in Section 3.5.

The optimizations of redundant decomposition rules R−∃ and R−u from Section 5.1 are
more problematic. It is still possible to formulate a redundancy condition for rule CR3 anal-
ogous to that of rule R−∃ in Definition 1 (resp. Definition 5):

It is redundant to apply rule CR3 to E ∈ S(C) and E v ∃R.D ∈ O if 〈C,F〉 ∈ R(R)
and D ∈ S(F) for some F .

A practical implementation of (a sufficient condition for) redundancy, like O∃ is, however,
more problematic, due to normalization. A straightforward reformulation of O∃ for comple-
tion rules would give the following sufficient condition:

It is redundant to apply rule CR3 to E ∈ S(C) and E v ∃R.D ∈O if the premise E ∈
S(C) was produced by rule CR4 applied to 〈C,F〉 ∈ R(R), D ∈ S(F), and ∃R.D v
E ∈O for some F .

To implement this optimization, however, it is necessary to keep track not only of the rule by
which E ∈ S(C) was derived, but also of the premise ∃R.DvE ∈O that has been used, since
there can be several such axioms with the same E. Further, the optimization works only if
existential restrictions were normalized using equivalences E ≡ ∃R.D. If more aggressive
normalizations are used, such as those mentioned in Section 3.6, the optimization may not
work. For example, if axiom A≡ Bu∃R.D is normalized like Av B, Av ∃R.D, ∃R.Dv E,
BuE v A, and we derive 〈C,F〉 ∈R(R), D ∈ S(F), and B ∈ S(C), then we obtain E ∈ S(C)
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by CR4, and A ∈ S(C) by CR2, to which CR3 using A v ∃R.D ∈ O is not blocked by the
optimization. If instead of Av ∃R.D we had produced two axioms Av E and E v ∃R.D by
normalization, then a similar inference for E ∈ S(C) would have been blocked.

The problem of efficient taxonomy construction has been well studied in the literature
(see, e.g., [11,34]). The CEL reasoner, in particular, employs an optimized procedure sim-
ilar to Algorithm 4, which also iterates in the inner loop over direct subsumers instead of
all subsumers [15]. However, there is a subtle difference between the two procedures. In
Algorithm 4 we iterate in the inner loop over the (current) direct subsumers of A (see line 6)
and update these direct subsumers using the new subsumer C. The CEL algorithm, on the
other hand, iterates over direct subsumers of C and ‘marks’ all such subsumers. The direct
subsumers of A are then determined as those subsumers of A that have not been marked.
Practically, this means that the direct subsumers of all strict subsumers C of A should be
computed first. CEL does that in a recursive call of the method (which is again dangerous
due to a potential stack overflow). Algorithm 4, on the other hand, can compute the direct
subsumers of A without need to compute direct subsumers of other concepts. This makes
Algorithm 4 better suitable for goal-directed transitive reduction (when direct subsumers
need to be computed only for some given concepts, but not all of them), and also for par-
allel taxonomy construction (when direct subsumers of different concepts can be computed
independently of each other).

6 Concurrent Saturation

In Section 5 we have presented several optimization techniques which can make ontology
classification faster by reducing the number of operations to perform. However, it is also
possible to accelerate the classification procedure by performing several operations in par-
allel. This way one can effectively make use of multi-core and multi-processor systems that
become increasingly widespread. In this section, we discuss the key modifications of our
saturation algorithm that are necessary for this. First, in Section 6.1 we discuss some com-
mon pitfalls about concurrent algorithms and datastructures, then in Section 6.2 we present
a concurrent modification of our general saturation procedure, and finally, in Section 6.3 we
describe a particular implementation of this procedure for EL+

⊥.

6.1 Thread-safe Algorithms and Datastructures

Consider the abstract saturation procedure described in Algorithm 1. Suppose there are sev-
eral independent ‘workers’ that execute the while loop (lines 4–6) on different processors
with the shared Todo and Closure. Will this procedure perform correctly?

The first problem is that with multiple workers, the instruction on line 5 may be executed
even if the queue Todo is empty, despite the explicit check on emptiness before that. This is
because other workers could have emptied the queue between the time when the worker has
checked the queue on emptiness and the time it takes the next element from the queue. This
illustrates one of the typical situations when correct serial algorithms stop working correctly
in multi-threaded settings. Fortunately, it possible to fix this problem by testing the queue
on emptiness when taking the next element from the queue, as shown in Algorithm 5. Here
we assume that if Todo is empty, then Todo.takeNextElement() returns a distinguished
element null, which can be used in the condition of the while loop for the emptiness test.
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Algorithm 5: Thread-safe while loop of the abstract saturation algorithm
1 while (expression← Todo.takeNextElement()) 6= null do /* close */
2 process(expression);

A similar problem occurs in the implementation of the method process(expression) on
lines 9, 10 of Algorithm 1: it may happen that two workers process the same expression
at the same time, both see that it does not occur in Closure, and consequently apply the
inference rules two times. Although the outcome of the procedure will still be correct, there
will be inefficiency due to the duplicate work. It is likewise possible to avoid this problem
by inserting an element in the set and testing if it occurs there at the same time. To this end,
we assume that the method Closure.add(expression), in addition to inserting expression into
Closure, returns true if expression did not occur in Closure and false otherwise. It is then
easy to see that we can avoid this problem by moving Closure.add(expression) from line 10
to the condition of the if statement on line 9 of Algorithm 1.

The above modifications, however, are not enough to ensure that our algorithm behaves
correctly with multiple workers, i.e., that it is thread-safe. It is also necessary that all oper-
ations with Todo and Closure work as expected even if called from multiple workers at the
same time. That is, the datastructures implementing those collections must also be thread-
safe. For example, when calling Closure.add(expression) from multiple workers for the same
expression, this operation should return true for at most one worker. Standard implementa-
tion for collections may internally use similar control structures like in Algorithm 1, there-
fore, they are subject to the issues discussed above. It is possible to make sure that Closure
and Todo are never accessed from multiple workers using locks. But this largely defeats
the purpose of parallelization since the workers would have to wait for each other in order
to progress. Truly thread-safe datastructures that allow multiple workers to perform opera-
tions concurrently are difficult to implement, and even if implemented, may exhibit certain
overheads when compared to conventional datastructures, which can reduce or even cancel
out the potential gains. Existing programming libraries, however, typically include efficient
thread-safe implementations of common datastructures used in concurrent programming,
such as queues. In the next section, we demonstrate how to modify Algorithm 1 so that only
Todo is required to be thread-safe, but not necessarily Closure.

6.2 The Abstract Concurrent Saturation Procedure

In this section we describe a concurrent modification of the saturation algorithm for comput-
ing the closure, which uses just concurrent queues and Booleans with atomic ‘compare and
swap’ operations. The main idea is to distribute expressions according to ‘contexts’ in which
the expressions can be used as premises of inference rules, and which can be processed in-
dependently by the workers. To this end, we assume that there is a finite set of contexts and
a function getContexts(expression) assigning to every expression a subset of contexts such
that, whenever an inference between several expressions is possible, at least one common
context is assigned to all of these expressions. In Section 6.3 we present a concrete context
assignment satisfying this requirement for the EL+

⊥ rules in Fig. 3.
Intuitively, the concurrent saturation procedure works as follows. When an expression is

derived, it is ‘sent’ to all contexts assigned to this expression. Whenever a context receives
an expression, it is ‘activated’ to be processed by some worker. Whenever a worker becomes
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Algorithm 6: The abstract concurrent saturation procedure
1 while (expression← Input.takeNextElement()) 6= null do
2 for c ∈ getContexts(expression) do
3 c.enqueue(expression);

4 while (c← activeContexts.takeNextElement()) 6= null do
5 while (expression← c.Todo.takeNextElement()) 6= null do
6 c.process(expression);

7 deactivate(c);

8 c.process(expression) :
9 if c.Closure.add(expression) then

10 for inference ∈ inferences(expression,c.Closure) do
11 for c′ ∈ getContexts(inference.conclusion) do
12 c′.enqueue(inference.conclusion)

13 c.enqueue(expression) :
14 c.Todo.add(expression);
15 activate(c);

16 activate(c) :
17 if c.isActive.compareAndSet(false, true) then
18 activeContexts.add(c);

19 deactivate(c) :
20 c.isActive← false;
21 if c.Todo 6= /0 then activate(c);

available, it takes the next activated context and applies all inference rules, but only to the
expressions which were sent to this context. The conclusions of such inferences can be sent
again to multiple contexts and this process repeats.

This idea is realized in Algorithm 6. We assume that every context c has a separate queue
c.Todo and a separate set c.Closure, whose purpose is similar to those of Todo and Closure
from Algorithm 1, but they only contain expressions to which c is assigned. In addition, the
procedure maintains a queue activeContexts to keep all contexts c for which c.Todo is not
empty. Queuing of expressions for processing is now done by calling, for every context c
assigned to the given expression, the function c.enqueue(expression) (lines 13–15) which
inserts expression into c.Todo and activates c. Activation of a context c should result in
context c being added to activeContexts (see line 18, ignore line 17 for now). Each activated
context is then repeatedly processed by workers in the main loop of Algorithm 6 (lines 4–7)
similarly as in the main loop of Algorithm 1, except that the inferences are performed with
the elements of context-local Todo and Closure. Since by our assumption, expressions can
participate in inferences only if they are assigned to some common context, no inferences
will be lost in this way. Note that the set of contexts and context assignment are always fixed
and do not change during the saturation (but some contexts might never be activated).

In Algorithm 6 we assume that the queues Input, c.Todo for every c, and activeContexts
are thread-safe, but we do not require thread-safety for any c.Closure. Instead, we ensure
that each c.Closure is never accessed by more than one worker at a time. Note that c.Closure
can only be accessed from within the method c.process(expression), which is only called
after c is taken from the activeContexts queue in the main loop of the algorithm (lines 4–
7). Therefore, it is sufficient to ensure that c can never be inserted into activeContexts if it
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already occurs there or the method c.process(expression) is being called by some worker.
For this purpose, we use a Boolean flag c.isActive, which is set to true every time c is
inserted into activeContexts and set back to false after c has been processed by some worker.

Take a look at the instruction on line 17 of method activate(c). There are two things
that happen in this instruction. First, it is checked if the value of c.isActive is false, and if this
is the case, it is set to true. Second, if the value of c.isActive has changed (from false to true),
then the context c is inserted into activeContexts. This mechanism makes sure that (i) if c
occurs in activeContexts then c.isActive is true, and (ii) c is inserted into activeContexts
only if c.isActive was false. This way, c cannot be inserted into activeContexts if it already
occurs there or being processed by a worker (during which c.isActive remains true).

It is, however, essential that the flag c.isActive is compared and changed in one instruc-
tion. Take a look at Algorithm 7, which provides a seemingly equivalent implementation
of the method activate(c). This implementation is no-longer thread safe. Indeed, if two

Algorithm 7: Non-thread-safe activation of contexts
1 activate(c) :
2 if c.isActive = false then
3 c.isActive← true;
4 activeContexts.add(c);

workers call activate(c) for some c at the same time, they can both see that c.isActive is
false, set it to true, and insert c into activeContexts two times, after which c may be simulta-
neously processed by two different workers. This cannot happen with the implementation in
Algorithm 6: if several workers call isActive.compareAndSet(false, true) at the same time,
only for one of them this method can return true.

Note that the implementation of the queues c.Todo and activeContexts must still be
thread-safe since several workers can insert elements into these queues at the same time
during the calls of the function c.enqueue(expression). Also note that activation of a context
c on line 15 of method c.enqueue(expression) should happen after inserting expression into
c.Todo, not before that (that is, one cannot swap lines 14 and 15). Otherwise c may be
inserted into activeContexts, processed by another worker, and deactivated before expression
is inserted into c.Todo, and we end up with a context whose Todo queue is not empty, but it is
not activated. Also note that line 21 is necessary because after deactivate(c) is called and
before c.isActive is set to false, some other worker could insert an expression into c.Todo,
so c must be reactivated in this case. These issues demonstrate that designing thread-safe
algorithms is a difficult task and such algorithms are highly fragile.

6.3 The Concurrent Saturation Procedure for EL+
⊥

In this section we discuss how to turn the saturation procedure for EL+
⊥ presented in Sec-

tion 4.2.3 into a concurrent one using Algorithm 6. First, we need to find a suitable context
assignment that satisfies the requirement for the inference rules in Fig. 3 (that the premises
of every rule should be assigned to at least one common context). A simple solution would
be to use the inference rules themselves as contexts and assign to every expression the set
of inference rules in which the expression can participate. This strategy, however, provides
only for as many contexts as there are inference rules, so it may not be very effective with
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Table 3 Representation of EL+
⊥ expressions within contexts

Expression Context c Representation in c.Todo Representation in c.Closure
init(C) C Init C.Init= true
C v D C Sub(D) D ∈C.subs

E R→ C
C BackLink(R,E) 〈R,E〉 ∈C.backLinks
E ForwLink(R,C) 〈R,C〉 ∈ E.forwLinks

many workers. To find a better solution, note that all premises of the rules in Fig. 3 always
have a common concept denoted as C. So, instead of assigning expressions to rules, we can
assign expressions to the corresponding concepts. This gives us a much finer granularity
for concurrent processing: there can be as many contexts as there are concepts in the input
ontology. This should translate into a better scalability even with a large number of workers.

This context assignment determined by the rules in Fig. 3 is thus as follows: expressions
of the form init(C), C v D, or E R→ C are assigned to the context C. Additionally, E R→ C is
also assigned to the context E because the expression may be used as the second premise of
rule R◦. Note that this assignment of contexts is optimal in the sense that every inference is
possible in exactly one context (since the context C is uniquely determined by the inference),
so the overall number of inferences performed by the workers does not increase.

Since the contexts c under our assignment are parts of expressions, it is possible to
further ‘compress’ the representations of elements in c.Todo and c.Closure by removing
the arguments that are uniquely determined by the context c as presented in Table 3. The
context-local version of function process(expression) from Algorithm 2 that uses this con-
text assignment and representation is given in Algorithm 8.

Example 11 In this example we show how the inferences from Example 4 are transformed
when applying the concurrent saturation procedure in Algorithm 6. In Table 4 we have
listed all conclusions (23)–(37) in their Todo representation in the order they are derived
in the respective contexts. The rules applied to these conclusions by Algorithm 8 are listed
in the last column of the table. The rules indicate in which contexts they are applied to
the current expression (assuming all the previous expressions have been processed), and
which table entries from Examples 6 and 8 that were precomputed during the phases 1 and
2 of the saturation procedure (see Section 4.2) are used in the inferences. The conclusion of
every inference appears in the respective context below the current line, unless it has already
been derived (we do not list duplicate conclusions because no inference applies to them).
Contexts are activated when the first unprocessed conclusion is derived in the context and
deactivated when no unprocessed conclusions are left. For example, context A is activated
when Init is produced, deactivated after ForwLink(R,CuD) is processed, activated again
when Sub(∃S.D) is derived, and, finally, deactivated after Sub(B) is processed. Note that the
contexts A and D can be active at the same time, and thus can be processed in parallel.

7 System Overview

A practical implementation of the reasoning methods that we explained above is provided
in the form of the ontology reasoner ELK, which is described in this section. ELK is a Java-
based system to reason with OWL ontologies under Direct Semantics, which can be viewed
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Algorithm 8: C.process(expression)

1 C.process(Init) :
2 if C.Init.compareAndSet(false,true) then
3 C.enqueue(new Sub(C)); // rule R0

4 if top.negOccurs> 0 then
5 C.enqueue(new Sub(top)); // rule R>

6 C.process(Sub(D)) :
7 if C.subs.add(D) then
8 if D = bottom then
9 for each E,R with C.backLinks(E,R) do

10 E.enqueue(add(new Sub(bottom))); // rule R⊥

11 if D instanceOf IdxConjunction then
12 C.enqueue(new Sub(D.firstConj));
13 C.enqueue(new Sub(D.secondConj)); // rule R−u

14 for each D2,E with C.subs(D2) and negConjs(D,D2,E) do
15 C.enqueue(new Sub(E)); // rule R+

u

16 for each D1,E with C.subs(D1) and negConjs(D1,D,E) do
17 C.enqueue(new Sub(E)); // rule R+

u

18 if D instanceOf IdxExistential then
19 D.filler.enqueue(new BackLink(D.role,C));
20 C.enqueue(new ForwLink(D.role,D.filler)) ; // rule R−∃
21 for each E,F,R,S with C.backLinks(R,E) and negExists(S,D,F) and hier(R,S) do
22 E.enqueue(new Sub(F)); // rule R+

∃
23 for each E with concIncs(D,E) do
24 C.enqueue(new Sub(E)); // rule Rv

25 C.process(BackLink(R,E)) :
26 if C.backLinks.add(〈R,E〉) then
27 if C.subs.contains(bottom) then
28 E.enqueue(new Sub(bottom)); // rule R⊥

29 for each D,F,S with C.subs(D) and negExists(S,D,F) and hier(R,S) do
30 E.enqueue(new Sub(F)); // rule R+

∃
31 for each D,R2,S1,S2,S with C.forwLinks(R2,D) and roleComps(S1,S2,S) and

hier(R,S1) and hier(R2,S2) do
32 D.enqueue(new BackLink(S,E));
33 E.enqueue(new ForwLink(S,D)); // rule R◦

34 C.enqueue(Init); // rule R 

35 C.process(ForwLink(R,D)) :
36 if C.forwLinks.add(〈R,D〉) then
37 for each E,R1,S1,S2,S with C.backLinks(R1,E) and roleComps(S1,S2,S) and

hier(R1,S1) and hier(R,S2) do
38 D.enqueue(new BackLink(S,E));
39 E.enqueue(new ForwLink(S,D)); // rule R◦
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Table 4 The rule applications from Example 4 using the concurrent saturation procedure

Context A Context CuD Context D Context : Rule[Precomputed Table Entries]
Init A : R0

Sub(A) A : Rv[concIncs(A,∃R.(CuD))]
Sub(∃R.(CuD)) A : R−∃

ForwLink(R,CuD) BackLink(R,A) CuD : R 
Init CuD : R0

Sub(CuD) CuD : R−u
Sub(C)
Sub(D) CuD : R+

∃ [negExists(S,D,∃S.D),hier(R,S)]

Sub(∃S.D) A : R−∃ , R
+
u [negConjs(A,∃S.D,Au∃S.D)],

Rv[concIncs(∃S.D,C)]
ForwLink(S,D) BackLink(S,A) D : R 
Sub(Au∃S.D) Init A : R−u ,Rv[concIncs(Au∃S.D,B)] | D : R0

Sub(C) Sub(D) D : R+
∃ [negExists(S,D,∃S.D),hier(S,S)]

Sub(B) A : Rv[concIncs(B,Au∃S.D)]

as a slightly richer syntax for the DL ontologies discussed in this paper. ELK is free and
open source, using a commercial-friendly Apache 2 license.8

As of this paper, the latest stable release ELK 0.3.2 supports all features of EL+
⊥, that

is, conjunction (ObjectIntersectionOf), existential restriction (ObjectSomeValuesFrom), top
(owl:Thing), bottom (owl:Nothing), and complex role inclusions (property chains). This
also covers transitive and reflexive properties and disjoint classes, for which OWL provides
syntactic shortcuts. Moreover, ELK implements support for ABoxes and ObjectHasValue
restrictions as discussed in Appendix A. Finally, ELK provides some preliminary support
for datatypes, using a simplified syntactic matching to compare values. The reasoning tasks
supported in ELK are ontology consistency checking, TBox classification, and ABox real-
ization.

ELK implements the concurrent saturation algorithm described in Section 6 and all op-
timization techniques detailed in Section 5. The number of concurrent workers used by ELK
can be configured, where the same number will be used for all reasoning tasks (saturation
of roles (properties), saturation of concepts (classes), transitive reduction). The default is
to use the number of cores reported by the operating system; this usually includes virtual
cores. In addition, ELK generally uses one parallel worker to generate the ontology index
(Section 4.2.1) while loading an ontology.

ELK is a flexible system that can be used in a variety of configurations. This is supported
by a modular program structure that is organized using the Apache Maven9 build manager
for Java. Maven can be used to automatically download, configure, and build ELK and its
dependencies, but there are also pre-built packages for the most common configurations.
The modular structure also separates the consequence-based reasoning engine from the re-
maining components, which facilitates extension of the system with new language features.

The main software modules of ELK are shown in Fig. 9. The arrows illustrate the infor-
mation flow during classification. The two independent entry points are the command-line
client and the Protégé plug-in to the left. The former extracts OWL ontologies from files
in OWL Functional-Style Syntax (FSS), while the latter communicates with Protégé [57]
through the OWL API [44]. All further processing is based on ELK’s own representation

8 Download at http://code.google.com/p/elk-reasoner/
9 http://maven.apache.org

http://code.google.com/p/elk-reasoner/
http://maven.apache.org
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Fig. 9 Main software modules of ELK and information flow during classification

of OWL objects (axioms and expressions) that does not depend on the (more heavyweight)
OWL API. The core of ELK is its reasoning module, which was described in Sections 4–6.

ELK is distributed in three pre-built packages, each of which includes the reasoner mod-
ule. The standalone client includes the command-line client and the FSS parser for reading
OWL ontologies. The Protégé plugin allows ELK to be used as a reasoner in Protégé and
compatible tools such as Snow Owl.10 The OWL API bindings package allows ELK to be
used as a software library that is controlled via the OWL API interfaces.

8 Experimental Evaluation

In this section, we evaluate the classification algorithm and the optimizations presented in
this paper on existing ontologies. In Section 8.1, we compare the performance of ELK in
its default settings (all optimizations turned on) with other commonly used OWL and OWL
EL reasoners. To evaluate the effect of individual optimizations, in Section 8.2 we repeat
the experiments with certain optimizations turned off. In Section 8.3 we evaluate the effect
of varying the number of concurrent workers. Finally, in Section 8.4 we compare the two
transitive reduction algorithms from Section 5.4.

The experiments were executed on a laptop with Intel Core i7-2630QM 2GHz quad-
core CPU and 6GB RAM running Microsoft Windows 7. On this architecture, ELK de-
faults to using 8 concurrent workers in the saturation phase. We ran Java 1.6 with the
-XX:+AggressiveHeap flag and 4GB of heap space. All figures reported in this paper were
obtained as the average over 5 runs of the experiment.

Our test ontology suite contains SNOMED CT obtained from the official January 2012
international release by converting from the native syntax (RF2) to FSS using the supplied
converter. Additionally, we used a new experimental version ANATOMY, which remod-
els the ‘body structure’ hierarchy of SNOMED CT using role composition axioms. Both
of these ontologies are freely available for research and evaluation.11 We included several
versions of OpenGALEN.12 GALEN7 and GALEN8 were obtained from versions 7 and 8
respectively by removing all inverse role and functional role axioms, and replacing all data
property restrictions with new atomic concepts. The role composition axioms of GALEN7
and GALEN8 do not satisfy the regularity condition imposed by OWL2 and therefore are not
proper OWL EL ontologies. Although this is not problematic for ELK, these ontologies are
rejected by most OWL reasoners. We have additionally included GALEN-OWL, a proper
OWL EL version of GALEN, which is obtained from the CO-ODE version of GALEN13 by
removing inverse role and functional role axioms. This version of the ontology has been used
extensively in the past for evaluating reasoners [29,51,53,73,94]. It is similar to GALEN7

10 http://www.b2international.com/portal/snow-owl
11 http://www.ihtsdo.org/licensing/
12 http://www.opengalen.org/sources/sources.html
13 http://www.co-ode.org/galen/

http://www.b2international.com/portal/snow-owl
http://www.ihtsdo.org/licensing/
http://www.opengalen.org/sources/sources.html
http://www.co-ode.org/galen/
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Table 5 Ontology metrics: number of axioms

C v D C ≡ D Disj(C,D) Rv S R≡ S Trans(R) R1 ◦R2 v S
Complex:

SNOMED CT 227,961 66,507 - 11 - - 1
ANATOMY 17,551 21,831 - 4 - 3 2
GALEN-OWL 25,563 9,968 - 958 - 58 -
GALEN7 27,820 15,270 - 972 14 - 385
GALEN8 53,449 113,622 - 996 14 - 385
GO2 66,216 7,361 6 2 - 2 3

Simple:
GO1 28,896 - - - - 1 -
ChEBI 67,182 - - - - 2 -
EMAP 13,730 - - - - - -
FMA 126,544 - - 3 - 1 -
Fly Anatomy 19,137 - 61 10 - 3 -
Molecule Role 9,627 - - - - 2 -

Table 6 Ontology metrics: number of concepts, roles, and constructors by occurrence polarities

A pos. u neg. u pos. ∃ neg. ∃ R
Complex:

SNOMED CT 294,469 251,428 140,554 105,373 75,666 62
ANATOMY 37,757 49,092 4,729 25,880 21,387 10
GALEN-OWL 23,136 13,006 12,542 14,115 7,549 950
GALEN7 28,482 13,079 12,982 15,105 7,973 964
GALEN8 128,483 141,592 140,542 106,065 93,241 988
GO2 36,215 7,363 7,363 10,157 6,581 7

Simple:
GO1 20,465 - - 1,796 - 1
ChEBI 31,190 - - 14,053 - 9
EMAP 13,731 - - 4,821 - 1
FMA 80,469 - - 13,691 - 15
Fly Anatomy 7,797 - - 2,558 - 40
Molecule Role 9,217 - - 2,238 - 4

but its only role compositions are transitivity axioms. We also used two versions of the Gene
Ontology14 which we call GO1 and GO2. The older GO1, published in 2006, has been used
in many performance experiments [14,29,34,51,73,94,104]. GO2 is the version of March
2012 and uses significantly more features than GO1, including negative occurrences of con-
junctions and existential restrictions, and even a few disjointness axioms. To obtain further
test data, we selected some of the largest ontologies listed at the OBO Foundry [97] and the
Ontobee [111] websites that were in OWL EL but were not just plain taxonomies, i.e., in-
cluded some non-atomic concepts. This gave us the Chemical Entities of Biological Interest
(ChEBI), the e-Mouse Atlas Project (EMAP), the Foundational Model of Anatomy (FMA),
the Fly Anatomy, and the Molecule Role ontology. All ontologies that we are allowed to
publish can be downloaded from the ELK website.15

Tables 5 and 6 show various statistics about the ontologies from our benchmark suite.
Table 5 shows the number of various axiom types; the only logical axiom not mentioned in
the table is one reflexive role axiom in ANATOMY. Table 6 shows the number of atomic
concepts, roles, and the number of positive and negative occurrences of conjunctions and
existentials. It turns out that many of the smaller ontologies in our suite contain only concept

14 http://www.geneontology.org
15 http://code.google.com/p/elk-reasoner/wiki/TestOntologies

http://www.geneontology.org
http://code.google.com/p/elk-reasoner/wiki/TestOntologies


The Incredible ELK 39

inclusion axioms of the very simple form A v B and A v ∃R.B, where A and B are atomic
concepts. We will refer to these ontologies as simple and to other as complex as indicated in
Tables 5 and 6. It is interesting to note that the simple ontologies can be fully classified just
by computing the transitive closure of the told subsumptions Av B ignoring the remaining
axioms. To the best of our knowledge, no reasoner currently takes advantage of this fact.
ELK also applies rule R+

∃ to the positive existentials in these ontologies even though, due to
lack of negative existentials, the resulting links can never participate in rule R−∃ .

All of our experiments are focused on terminological reasoning, which is currently the
most common reasoning problem used in applications involving EL ontologies [33,39,48,
81,85]. Although the OWL EL standard comprises many features, such as assertions, nom-
inals, and datatypes, these are difficult to find in existing OWL EL ontologies. One of the
reason is that many ontologies were not developed in OWL from the beginning, but have
been converted to OWL from other formats, such as OBO [28], Grail [86], or frame-like
languages, which did not have those features. In our previous experiments with nominals
[56], we had to resort to synthetically generated data, but, arguably, such experiments are
of a limited value. For the same reason, we also do not evaluate the optimized reasoning
with disjointness axioms described in Section 5.3. For a quick (synthetic) evaluation, we
modified SNOMED CT by declaring all leaf concepts (i.e., concepts that do not subsume
other atomic concepts) disjoint, leading to a disjointness axiom with about 200,000 con-
cepts. This did not lead to any significant difference in ELK’s classification time compared
to the original ontology.

8.1 Performance Comparison with Other Reasoners

We compared ELK 0.3.2 to the specialized OWL EL reasoners CEL 1.1.2 [14], jcel 0.18.0
[72], the REL reasoner from TrOWL 1.2 [102], and Snorocket 2.0.5 [66], to general OWL
reasoners FaCT++ 1.6.0 [103], HermiT 1.3.6 [76], JFact 0.9,16 Pellet 2.3.0 [96], and Racer-
Pro 2.0 build 20121209 [36], and to experimental consequence-based reasoners CB r.12 [51]
and ConDOR r.12 [95]. We did not perform experiments with Cheetah [94] because by the
time of writing, this reasoner was not released. We ran all reasoners in their default settings.

CEL, jcel, REL, and Snorocket are typical OWL EL systems that implement completion-
based procedures [9]. CB and ConDOR are prototype implementations of consequence-
based algorithms for logics that are more expressive than EL. FaCT++, JFact, Pellet, and
RacerPro use tableau algorithms, and HermiT is based on a hypertableau calculus. The gen-
eral OWL reasoners may also use other more efficient reasoning methods when applied
to EL ontologies. Section 9 provides further details, and also discusses various other sys-
tems that we have not included in this evaluation. Recent versions of Snorocket implement
a context-based concurrent procedure which is similar to ours; like ELK, on our architec-
ture Snorocket defaults to using 8 concurrent workers. The remaining reasoners do not take
advantage of concurrency.

Due to the technical differences between the systems, we have used two different ex-
perimental setups for our evaluation. Most reasoners could be evaluated using the standard
interface of the OWL API [44], which allows us to access the reasoners uniformly and facil-
itates fair comparison. For the case of CB, CEL, ConDOR, and RacerPro, this general setup
was not appropriate, for a variety of reasons as explained below. The results obtained in

16 http://jfact.sourceforge.net/

http://jfact.sourceforge.net/
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Table 7 Classification time in seconds, measured using the OWL API

ELK jcel REL Snorocket FaCT++ HermiT JFact Pellet
SNOMED CT 5.1 651.4 116.2 25.8 425.2 time time mem
ANATOMY 4.0 180.0 stack 27.8 N/A N/A N/A N/A
GALEN-OWL 1.2 30.0 27.8 2.9 time time time mem
GALEN7 1.5 57.9 stack 7.9 N/A N/A N/A N/A
GALEN8 5.8 time stack mem N/A N/A N/A N/A
GO2 1.1 8.2 11.3 2.5 time 41.2 time 65.7
GO1 0.5 2.2 0.9 1.1 6.8 2.6 10.0 2.5
ChEBI 0.7 7.6 3.2 1.9 3.5 12.5 7.7 exc
EMAP 0.3 0.9 0.5 0.6 20.0 2.0 37.7 0.8
FMA 1.0 16.4 8.8 7.1 5.6 20.7 13.2 736.4
Fly Anatomy 0.4 2.2 1.0 0.8 0.7 1.8 2.8 23.1
Molecule Role 0.3 1.0 0.4 0.6 5.4 1.4 9.4 0.9

Table 8 Loading + classification time in seconds, measured using the OWL API

ELK jcel REL Snorocket FaCT++ HermiT JFact Pellet
SNOMED CT 9.3 674.3 126.2 38.2 431.3 time time mem
ANATOMY 5.0 182.3 stack 29.2 N/A N/A N/A N/A
GALEN-OWL 2.0 32.3 29.2 4.3 time time time mem
GALEN7 2.3 60.2 stack 9.2 N/A N/A N/A N/A
GALEN8 11.1 time stack mem N/A N/A N/A N/A
GO2 2.1 9.9 12.1 3.8 time 44.0 time 67.9
GO1 1.0 3.0 1.2 1.7 7.3 3.7 10.3 3.6
ChEBI 1.3 8.8 3.6 2.7 4.2 13.9 8.2 exc
EMAP 1.0 1.6 0.7 1.0 20.4 3.0 38.0 1.8
FMA 2.2 18.6 9.3 8.4 7.4 23.1 14.0 741.8
Fly Anatomy 0.8 2.9 1.3 1.3 1.1 2.8 3.2 24.1
Molecule Role 0.6 1.6 0.5 1.0 5.7 2.1 9.6 1.5

these cases can still be useful indicators of general performance, but some caution is needed
when using them to compare systems.

In the first experimental setup, we parsed and loaded the ontologies using the OWL
API 3.4. Table 7 shows the wall-clock time each reasoner spent executing the classification
method precomputeInferences(CLASS_HIERARCHY). Note, however, that a reasoner may
perform certain computations already during ontology loading before calling the classifica-
tion method; these typically include normalization and indexing of axioms. For this reason,
in Table 8 we also show the overall wall-clock time for loading and classification. Possible
failures for a reasoner are time (no result after 30min), mem (out-of-memory error), stack
(stack overflow), N/A (reasoner rejects the ontology due to non-regular role compositions),
and exc (program error).

In our second experimental setup, we measured classification times using a specific
method for each reasoner. We ran CB as a plugin in Protégé 4.2, ConDOR and CEL from
the command line, and RacerPro using its client RacerPorter. For CB, ConDOR, and Racer-
Pro, these are the setups suggested by the developers for most accurate evaluation. CEL re-
quires a Unix-like operating system; we used Linux Mint 13 on the same hardware as in all
other experiments. CB, ConDOR, and RacerPro were evaluated on the same Microsoft Win-
dows 7 platform as all other systems. Table 9 shows the classification times as reported by
the reasoners. The only form of role composition supported by CB and ConDOR is tran-
sitivity, hence they are not applicable to any complex ontology apart from GALEN-OWL.
However, the single role composition in SNOMED CT is redundant in the sense that rule
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Table 9 Classification time in seconds, reported by the reasoners not supporting OWL API

CB ConDOR CEL RacerPro
SNOMED CT 36.5 43.8 772.3 778.5
ANATOMY N/A N/A 144.0 N/A
GALEN-OWL 3.7 4.4 103.9 time
GALEN7 N/A N/A 88.0 N/A
GALEN8 N/A N/A time N/A
GO2 N/A N/A 24.0 mem
GO1 0.5 0.4 0.6 4.2
ChEBI 2.1 2.2 81.8 stack
EMAP 0.2 0.1 0.1 13.3
FMA 3.1 2.0 216.8 22.7
Fly Anatomy 0.3 0.2 1.5 mem
Molecule Role 0.2 0.1 0.1 3.5

R◦ is never applied during classification, so we decided to measure the running times of CB
and ConDOR on SNOMED CT even though they discard this role composition.

Overall, the results of the evaluation show that ELK compares favorably with the other
reasoners. While many reasoners in our comparison show similar running times on the sim-
ple ontologies, ELK has a significant advantage on the complex ontologies. In particular,
ELK is the only reasoner that can classify GALEN8. It can load and classify SNOMED CT
in under 10 seconds. Since ELK can update its index structure incrementally without hav-
ing to reload the whole ontology, subsequent reclassification of SNOMED CT due to small
changes in the ontology is likely to take only about 5 seconds as reported in Table 7. Re-
garding memory requirements, we can report that in our experiments ELK could classify
SNOMED CT with only 2GB of heap space when used through the OWL API, and with as
little as 1GB of heap space when used standalone.

8.2 Optimizations of Inference Rules

In our next experiment we evaluated the effect of the optimizations Ou and O∃ from Sec-
tion 5.1, and of the optimization O◦ from Section 5.2. We excluded the simple ontologies
from this experiment: they have no negative occurrences of conjunctions and existential re-
strictions, so Ou and O∃ do not apply, and, although some of the simple ontologies contain
transitive roles, there are no subrole relationships between transitive roles in these ontolo-
gies, so O◦ does not apply either.

We evaluated five configurations of the classification algorithm: with none of the three
optimizations Ou, O∃, and O◦, with one of these optimizations turned on at a time, and with
all the three optimizations together (the default setting). We measured the overall classifica-
tion time with one concurrent worker, the number of derived axioms including multiplicity,
and the number of uniquely derived axioms. The results are shown in Table 10.

First, observe that on SNOMED CT no link C R→ D is derived more than once. This is
because, even though SNOMED CT contains one role composition axiom, rule R◦ is never
applied on this ontology. The links are therefore derived only by rule R−∃ , which can never
produce the same link twice. Next, we discuss each individual optimization in turn.

The optimization Ou avoids the decomposition of CvD1uD2 into CvDi for i= 1,2 in
case the former subsumption has been obtained by the composition of the latter two. Thus,
the optimization can decrease the multiplicity but not the number of unique subsumptions,
and it has no effect on links at all. Furthermore, the optimization makes the multiplicity
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Table 10 Classification time in seconds (1 working thread) and number of derived axioms

time speedup derived C v D unique C v D derived C R→ D unique C R→ D
SNOMED CT
no optimization 26.31 1.00 47,435,318 13,840,227 3,969,744 3,969,744
with Ou 25.48 1.03 41,770,050 13,840,227 3,969,744 3,969,744
with O∃ 19.75 1.33 28,438,072 13,840,227 984,775 984,775
with O◦ 26.37 1.00 47,435,318 13,840,227 3,969,744 3,969,744
with Ou, O∃, O◦ 18.71 1.41 22,772,804 13,840,227 984,775 984,775
ANATOMY
no optimization 28.63 1.00 16,529,447 3,618,582 97,927,757 2,515,236
with Ou 29.01 0.99 16,495,539 3,618,582 97,927,757 2,515,236
with O∃ 16.38 1.75 12,045,017 3,618,582 46,301,813 1,511,399
with O◦ 21.83 1.31 16,529,447 3,618,582 62,674,413 2,515,236
with Ou, O∃, O◦ 11.70 2.45 12,011,440 3,618,582 25,295,665 1,511,418
GALEN-OWL
no optimization 3.31 1.00 2,860,224 1,147,483 759,473 405,955
with Ou 3.26 1.01 2,340,868 1,147,483 759,473 405,955
with O∃ 2.65 1.25 2,182,677 1,147,483 251,312 177,185
with O◦ 3.42 0.97 2,856,130 1,147,483 713,681 399,956
with Ou, O∃, O◦ 2.53 1.31 1,644,288 1,147,483 208,749 167,623
GALEN7
no optimization 6.84 1.00 7,277,608 2,058,039 5,045,114 941,723
with Ou 6.74 1.01 6,410,540 2,058,039 5,045,114 941,723
with O∃ 4.67 1.46 5,240,770 2,058,039 1,521,973 374,043
with O◦ 6.21 1.10 6,909,517 2,058,039 3,043,228 837,402
with Ou, O∃, O◦ 4.22 1.62 3,976,718 2,058,039 572,405 286,239
GALEN8
no optimization 50.39 1.00 69,138,922 14,248,354 46,241,197 7,443,869
with Ou 48.63 1.04 62,822,068 14,248,354 46,241,197 7,443,869
with O∃ 25.21 2.00 37,267,987 14,248,354 8,871,203 1,922,583
with O◦ 43.83 1.15 63,882,676 14,248,354 26,741,691 6,627,105
with Ou, O∃, O◦ 20.65 2.44 26,111,096 14,248,354 2,749,394 1,389,498
GO2
no optimization 2.02 1.00 1,992,627 718,866 315,633 199,001
with Ou 2.01 1.01 1,990,869 718,866 315,633 199,001
with O∃ 2.03 1.00 1,983,811 718,866 291,833 193,477
with O◦ 2.00 1.01 1,992,627 718,866 315,381 199,001
with Ou, O∃, O◦ 1.96 1.03 1,982,053 718,866 291,599 193,477

of subsumptions sensitive to the order of rule applications: the decomposition of C v D1 u
D2 is avoided only if the subsumption is derived by rule R+

u before it is derived by any
other rule. The optimization decreases the multiplicity of subsumptions on each ontology
in this experiment, albeit for ANATOMY and GO2 the difference is small. In all cases, the
differences in classification times were only marginal.

The optimization O∃ avoids the decomposition of C v ∃R.D into init(D) and C R→ D in
case the first subsumption has been obtained by composition, but in this case it is possible
that the avoided conclusions will not be derived by the algorithm at all. Since the optimiza-
tion can even avoid initialization of concepts, it can decrease all the four numbers shown in
Table 10; furthermore, it makes all the four numbers sensitive to the order of rule applica-
tions. Even though for the classification task each atomic concept is already initialized on
input, the optimization can still avoid initialization of complex concepts in existential re-
strictions. We have, however, not observed this on any of the ontologies in this experiment,
which is why we have obtained the same number of uniquely derived subsumptions both
with and without O∃. On the other hand, the optimization has substantially reduced the re-
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maining three numbers in Table 10 on all the test ontologies apart from GO2, with a speedup
of 1.33 on SNOMED CT, 1.75 on ANATOMY, 1.25 on GALEN-OWL, 1.46 on GALEN7,
and as much as 2.00 on GALEN8.

The optimization O◦ avoids the derivation of some links by rule R◦ without affecting
the set of subsumptions that are derivable by the algorithm. Therefore, the optimization
can decrease the multiplicity and the number of unique links, and then, due to R+

∃ , also
the multiplicity of (but not the number of unique) subsumptions. Indeed, the optimization
decreases all these three numbers on all the versions of GALEN, with some improvement
in classification times for GALEN7 and GALEN8. Since rule R◦ is never applicable on
SNOMED CT, the optimization has no effect on this ontology. Finally, for ANATOMY
and GO2 we only see a decrease in the multiplicity of links: this is negligible for GO2
but considerable for ANATOMY where the speedup reaches 1.31. Unlike the previous two
optimizations, R◦ is not sensitive to the order of rule applications.

Finally, we discuss the case of using all three optimizations together. Since there is no
interaction between Ou and the remaining two optimizations, adding Ou to O∃ and/or O◦
results in exactly the same reduction in the multiplicity of subsumptions as with Ou alone.
More interestingly, O∃ and O◦ optimize the derivation of links in two different ways, and
our experiments show their combined effect can be considerably larger than the effect of
either of the two optimizations alone.

Although all the three optimizations had only limited effect on GO2, they proved to be
effective on the remaining ontologies, altogether speeding up classification by a factor of
1.41 on SNOMED CT and as much as 2.45 on ANATOMY and GALEN8. Out of the three
optimizations considered in this section, O∃ appears to be the most useful one, while Ou
does not seem to be very significant in practice. On the other hand, it is trivial to include Ou
if one already implements O∃. The last optimization O◦ is effective only on ontologies that
have subrole relations between roles occurring in role compositions, such as ANATOMY
and the variants of GALEN in our experiments.

8.3 Concurrency

Next, we evaluated the effect of increasing the number of concurrent workers in ELK. Since
the machine on which we performed the experiments has 4 physical cores which, due to
hyper-threading, appear to the operating system as 8 virtual cores, we experimented with up
to 8 concurrent workers. The measured classification times are shown in Table 11.17

The results show that increasing the number of workers improves the performance of
ELK, and that the improvement is more pronounced on the largest ontologies: while ELK
achieves a speedup for 8 workers by a factor of 3.83 on SNOMED CT and 3.40 on GALEN8,
the speedups are below 2 on many of the smaller ontologies. To further test the hypothesis
that the speedup improves with increasing the size of an ontology, we repeated this experi-
ment on the union of all the simple ontologies. As shown in the last row of Table 11 under
the name UNION, this resulted in a speedup by a factor of 2.45 which is considerably higher
than for any of the individual ontologies.

Our experiments confirm that concurrent processing can offer improvements for on-
tology classification on common computing hardware. On the other hand, the experiments
demonstrate that the improvement factor is far from linear, and that it appears to be higher

17 For a fair comparison with other reasoners, we ran ELK in the experiments in Section 8.1 through OWL
API. In the remaining experiments, however, we accessed it directly using its own interfaces. This explains
the slight difference between the running times in the last column of Table 11 and those in Table 7.



44 Yevgeny Kazakov et al.

Table 11 Classification time in seconds and relative speedup for increasing number of concurrent workers

workers
1 2 3 4 5 6 7 8

SNOMED CT time 18.62 10.07 7.37 6.35 5.76 5.49 5.09 4.85
speedup 1.00 1.85 2.53 2.93 3.23 3.39 3.66 3.84

ANATOMY time 11.58 7.27 5.51 4.63 4.34 4.03 3.80 3.64
speedup 1.00 1.59 2.10 2.50 2.67 2.88 3.04 3.18

GALEN-OWL time 2.49 1.64 1.32 1.27 1.27 1.28 1.25 1.23
speedup 1.00 1.51 1.88 1.95 1.96 1.94 1.98 2.02

GALEN7 time 4.12 2.57 2.05 1.85 1.74 1.68 1.60 1.67
speedup 1.00 1.60 2.01 2.23 2.36 2.45 2.58 2.46

GALEN8 time 20.56 12.73 9.21 7.67 7.13 6.71 6.32 6.06
speedup 1.00 1.62 2.23 2.68 2.88 3.07 3.26 3.40

GO2 time 1.97 1.21 1.05 1.13 1.14 1.11 1.16 1.14
speedup 1.00 1.63 1.88 1.74 1.73 1.76 1.70 1.72

GO1 time 0.78 0.53 0.52 0.54 0.54 0.54 0.52 0.56
speedup 1.00 1.47 1.48 1.44 1.44 1.43 1.50 1.38

ChEBI time 1.50 0.96 0.78 0.79 0.78 0.78 0.80 0.80
speedup 1.00 1.56 1.92 1.91 1.93 1.92 1.88 1.88

EMAP time 0.68 0.48 0.44 0.45 0.45 0.41 0.42 0.44
speedup 1.00 1.42 1.57 1.52 1.51 1.67 1.61 1.57

FMA time 1.72 1.09 0.95 0.89 0.93 0.90 0.94 0.85
speedup 1.00 1.58 1.81 1.94 1.85 1.91 1.84 2.02

Fly Anatomy time 0.71 0.52 0.47 0.47 0.50 0.48 0.47 0.49
speedup 1.00 1.36 1.52 1.49 1.41 1.48 1.49 1.45

Molecule Role time 0.62 0.46 0.39 0.41 0.38 0.34 0.37 0.36
speedup 1.00 1.37 1.59 1.52 1.63 1.81 1.70 1.72

UNION times 2.88 1.69 1.41 1.28 1.24 1.21 1.18 1.17
speedup 1.00 1.71 2.04 2.25 2.32 2.38 2.45 2.45

on larger ontologies. There can be many causes for this effect, such as dynamic CPU clock-
ing, shared Java memory management and garbage collection, hardware bottlenecks in CPU
caches and data transfer, or JIT compilation overheads.

8.4 Transitive Reduction

Finally, we evaluated the difference between the ‘naive’ Algorithm 3 and the ‘optimized’
Algorithm 4 for transitive reduction from Section 5.4. For this experiment, we implemented
the two algorithms exactly as shown in Section 5.4 even though the naive algorithm is incor-
rect in the presence of equivalent concepts. For each of the two algorithms, Table 12 shows
the running time and the number of passes through the inner for loop of the algorithm.

The experiments show that the optimized algorithm is about 2–3 times faster than the
naive algorithm on SNOMED CT, ANATOMY, GALEN7, and GALEN8. The optimized
algorithm always requires substantially fewer passes through the inner loop, with the ex-
ception of the EMAP ontology, which entails no non-trivial subsumptions between atomic
concepts at all so that the transitive reduction task is trivial. Interestingly, this reduced num-
ber of passes does not always translate into the corresponding performance improvement,
possibly because the optimized algorithm performs more set additions and removals, which
are more expensive than membership checks performed by the ‘naive’ algorithm.
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Table 12 Running time in seconds and the number of passes through the inner loop of the two transitive
reduction algorithms from Section 5.4

naive algorithm optimized algorithm
time passes time passes speedup

SNOMED CT 4.11 35,745,244 1.61 6,723,839 2.55
ANATOMY 1.37 14,674,573 0.43 2,244,702 3.19
GALEN-OWL 0.42 3,012,583 0.26 614,103 1.62
GALEN7 0.84 89,951,79 0.31 1,535,003 2.71
GALEN8 2.92 27,208,529 1.24 4,789,837 2.35
GO2 0.28 2,172,161 0.20 474,042 1.40
GO1 0.24 782,504 0.23 177,966 1.04
ChEBI 0.45 4,322,716 0.22 843,412 2.05
EMAP 0.11 0 0.11 0 1.00
FMA 0.42 3,754,823 0.26 954,998 1.62
Fly Anatomy 0.22 335,522 0.21 78,209 1.05
Molecule Role 0.17 63,083 0.11 13,974 1.55

9 Related Work

We discuss related work for three different aspects of our contribution: OWL EL reason-
ing (Section 9.1), consequence- and rule-based reasoning (Section 9.2), and concurrent and
distributed reasoning (Section 9.3).

9.1 Reasoning in OWL EL and Beyond

Favorable computational properties have long been an important motivation for the study of
the EL family of description logics [6,12]. Most OWL EL implementations use variations of
completion-based procedures, which we described in more detail in Section 3.6. First such
procedures were proposed for ELH [22] and EL++ [8]; later works extend this approach
to also cover reflexive roles and range restrictions [9], Boolean role constructors [88], and
local reflexivity [60].

A number of reasoners have been implemented for the EL family. The first such sys-
tem was CEL [13,14,15], whose implementation we described in Section 4.4. Various later
systems have reimplemented the ‘CEL algorithm’18 in order to provide better compatibility
with tools, such as the OWL API and Protégé, or to improve performance for some on-
tologies, such as SNOMED CT. These systems include Snorocket [66], TrOWL REL [102],
and jcel [71]. A prototype reasoner Cheetah [94] was used to investigate the application of
linear-time algorithms for propositional Horn logic in EL+ reasoning. As discussed in Sec-
tion 4.4, the results suggest that, at least for current EL ontologies, the performance gains of
this optimization do not outweigh the implementation overhead. We have arrived at similar
conclusions when experimenting with prototype versions of ELK for reasoning with role
chains [54] and (unrestricted) nominals [56]. For example, it is hard to come up with exam-
ples that would require non-safe use of nominals in OWL EL ontologies. The procedure for
safe nominals, as described in Appendix A of this paper, should be, therefore, sufficient in
most of the cases.

Other systems have experimented with alternative approaches to reasoning with EL on-
tologies. The reasoners DB [29] and OREL [63] explored the use of relational database

18 http://www.w3.org/2007/OWL/wiki/Implementations

http://www.w3.org/2007/OWL/wiki/Implementations
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systems in EL reasoning. While feasible in principle, this approach does not match the per-
formance or scalability of the best in-memory EL reasoners. Another recent approach shows
the applicability of Answer Set Programming engines to OWL EL reasoning [31], using the
DReW reasoner [112] to implement a rule-based calculus for OWL EL [60]. The approach
aims at providing efficient use of OWL EL ontologies in dl-programs, thus enabling a form
of rule-ontology integration. Most recently, a prototype implementation for EL reasoning on
embedded devices has been studied [35]. A particular challenge in this context is the very
low amount of available memory that allows only very small ontologies to be classified.

Finally, a number of more general-purpose systems provide some dedicated optimiza-
tions for (fragments of) OWL EL. FaCT++ [103] reduces the number of subsumption tests
for completely defined concepts, which frequently occur in GO1 and SNOMED CT [104].
An extension of this optimization with structural pseudo-model embedding has been suc-
cessfully used by RacerPro to classify SNOMED CT [74]. HermiT [76] uses an optimiza-
tion that can completely avoid subsumption tests for deterministic ontologies (including
EL) [34]: subsumptions can be just read out of the models produced for concept satisfiabil-
ity tests. The latest version of Pellet [96] can apparently switch to a specialized procedure
when the ontology is within a fragment of OWL EL.19 HermiT and Pellet, however, were
still unable to classify SNOMED CT in our experiments. CB reasoner uses a consequence-
based algorithm for Horn-SHIF [51], which works similarly to the procedure presented in
this paper when restricted to EL (except for concurrency). A similar support for functional
and inverse roles (which are outside of OWL EL) has recently been added to jcel [72].

While most works focus on ontology classification and standard reasoning problems,
EL-type logics have also been considered for other reasoning tasks, notably conjunctive
query answering [58,64], least common subsumer computation [12,17], unification [7], and
interpolation [79]. These reasoning services have yet to make it into common tools, although
some prototype implementations exist.

9.2 Rule-, Consequence-, and Saturation-Based Reasoning

Rules of inference are a versatile approach to automated deduction, and saturation under a
set of inference rules is prominently used in several areas. In databases, this is called materi-
alization and has applications in data integration, constraint repair, and query answering [1].
In theorem proving, saturation is a key technique for many resolution-based calculi [18]. In
production rule systems, similar ideas are applied to forward-chaining of rules [32].

The abstract saturation procedure described in Section 4.1 is inspired by the given clause
approach/set of support strategy in theorem proving [109], which is similar to the semi-naive
evaluation of Datalog queries [1]. Production rule systems typically employ a variant of
the Rete algorithm for applying rules, which largely avoids iterations over processed facts
by creating more complex structures in working memory [32]. Related methods are the
linear evaluation strategy for Horn rules studied in Cheetah [94], and ELK’s partial join
computation described in Section 4.3. These results show that this approach can be useful
in OWL reasoning but does not pay off in all cases.

The EL reasoning procedure described herein is most closely related to consequence-
based procedures. The first such procedure was described for Horn-SHIQ ontologies and
implemented in the CB reasoner [51]. Later, similar procedures have been formulated for

19 http://weblog.clarkparsia.com/2009/11/16/pellet-20-release/

http://weblog.clarkparsia.com/2009/11/16/pellet-20-release/
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Horn-SROIQ [80], and (non-Horn) ALCH [95]. The differences between completion-
based, consequence-based procedures [8,9,22], and the proof-theoretic procedure by Hof-
mann [41] are discussed in detail in Section 3.6.

Rule-based approaches have also been applied to reasoning in the OWL 2 Profiles [62].
OWL EL was discussed in Section 9.1 before. Another common use of rule-based calculi is
instance retrieval in OWL RL [75] and its sublanguages, especially pD∗ (a.k.a. OWL-Horst)
[47] and RDFS [24]. These calculi include inference rules that are sound only under the
RDF-Based Semantics of OWL; sound calculi for the DL-based Direct Semantics of OWL
are easily obtained by omitting these rules. Various (partial) implementations of OWL RL
rule calculi have been used in distributed reasoning, discussed in more detail below. It has
also been argued that rule-based reasoning is suitable for embedded devices that have very
limited resources; this has been explored for both OWL EL [35] and OWL RL [93,100].
Most works on OWL RL reasoning focus on instance retrieval. Sound and complete rule-
based calculi for classification in OWL RL have been developed only recently [61].

For further optimizing the application of rules, various works on OWL RL distinguish
between static/pre-computed and dynamic/inferred premises of inference rules [43,106].
This can be compared to our distinction of side conditions and premises, which serves a
similar purpose. The OWL RL reasoner SAOR pre-instantiates static premises (side condi-
tions) of rules to obtain so-called rule templates, and indexes these templates for quick ac-
cess based on the relevant dynamic premise [43]. While conceptually different, this method
leads to indexing structures for rule applications similar to the ones in ELK.

In general, the efficient implementation of rule-based computations is also related to
the topic of database query optimization, since rule bodies can be considered as conjunctive
queries. General methods of optimizing conjunctive queries (i.e., join-project-select queries)
are thus applicable; see, e.g., [1, Chapter 6]. Approaches that use a fixed set of rules like ELK
can optimize join computation already when designing the algorithm, as done in Sections 5.2
and 4.3. Our concrete join implementation in ELK corresponds to a nested loop join that
uses hash-based indexing structures to largely eliminate the inner loop. Selecting the smaller
relation for the outer loop in Section 4.3 is a simple form of join order optimization.

9.3 Concurrent, Distributed, and Parallel Reasoning

Our work is not the first to address the problem of concurrent OWL reasoning. Notable
earlier works include an approach for parallelizing (incomplete) structural reasoning al-
gorithms [19], tableau procedures that explore non-deterministic choices concurrently [20,
67,70,110], a resolution calculus for ALCHIQ where inferences are exchanged between
distributed workers [89], and a distributed classification algorithm that can be used to con-
currently invoke (serial) OWL reasoners for checking relevant subsumptions [4,5]. Exper-
imental evaluations in each case indicate potential advantages on selected examples, but
further implementation and evaluation is often needed to demonstrate a clear performance
advantage over state-of-the-art systems.

Several other works have studied concurrency in lightweight ontology languages. Clos-
est to our approach is a distributed MapReduce-based algorithm for EL+ [77]. However,
this idea has not been empirically evaluated, and it has been argued that it ignores several
practical problems [90]. Saturation-based reasoning with shared memory has recently been
explored for RDFS [38]. This approach also investigates the use of alternative computa-
tion platforms, such as many-core GPUs, which bears some challenges related to memory
management.
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Other works focus on distributed reasoning over many machines, instead of shared-
memory parallelism on one machine. A direct approach for achieving this is to pre-partition
the input and to distribute the partitions to several processing nodes for reasoning. Some
form of message transfer between nodes is usually required to exchange certain inferences.
Relevant theoretical results have been developed for the general case of first-order deduction
[2]. Several works on partition-based ontology reasoning focus on (subsets of) OWL RL [78,
98]. Another approach to partitioning in OWL is the computation of modules [27], which
has also been considered for distribution and related optimizations recently [3,105].

Other prominent approaches to distributed reasoning use MapReduce as a computational
framework. Many related works focus on the distribution of reasoning with assertional data
using weaker schema-level modeling languages pD∗ and (fragments of) RDFS [42,59,107,
108]. These works are distinguished from our approach by their goal to manage large-scale
data (in the range of billions of axioms), which is beyond the memory capacity of a single
machine. Accordingly, computation is distributed to many servers without memory sharing.
Yet, we can find similarities in term-based distribution strategies [42,43,77,106,107,108]
and indexing of rules [43] with our strategy of assigning contexts to axioms.

Our abstract saturation procedure from Section 4.1 is closely related to saturation-based
theorem proving [18,109], and it may seem that concurrent extensions of this procedure
as described in Section 6.2 should be known in this area. Surprisingly, this appears not to
be the case. The closest to our approach is the strategy used in the theorem prover ROO
[68], in which several workers apply inference and simplification rules in parallel and store
the result in a shared fact database. It is assumed, however, that the access to the database is
serialized, which can be the main bottleneck of the procedure when many facts are produced
at the same time. More recently, from version 2.0.0, Snorocket implements a context-based
concurrent procedure inspired by our approach [53].20

10 Conclusions

In this paper we have presented many details of the ELK reasoner ranging from theory to
implementation that make ELK one of the most competitive ontology reasoning systems
available today. Despite its relatively short history, ELK has already been used in many
biomedical applications [37,39,40,48,81,101], in which often it was the only reasoner that
is able to handle the large volumes of data involved with a reasonable performance.

From our experiments in Section 8, we can summarize that the most significant perfor-
mance improvement was due to the use of the concurrent saturation procedure (Section 6.3),
achieving a speedup factor as high as 3.8. This improvement, however, may depend on the
number of processors/cores available. Optimization of inference rules, in particular, avoiding
decomposition of negative existential restrictions (Section 5.1) comes second. The speedup
factor here was reaching 2.5. The combinations of these techniques can result in more than
8 times speedup, such as in the case of GALEN8. It is difficult to estimate the improvements
gained by other optimizations, such as indexing (Section 4.2.1) or efficient joint compu-
tation (Section 4.3), and in general, by our inference rules in Fig. 3 and our approach for
computing the closure using Algorithm 1, since those features cannot be easily switched
off. Thus, one can only speculate about possible reasons why completion-based reasoners,
such as CEL and jcel were considerably slower in our experiments even for ELK without

20 http://protegewiki.stanford.edu/wiki/Snorocket_2.0.0
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optimizations. The most likely reason seems to be the differences in strategies for rule ap-
plications, as discussed in Section 4.4. Also the difference in the inference rules may play a
significant role, in particular dealing with role hierarchies as discuss in Section 3.5. Finally,
the difference may be due to some poor implementation practices, such as unbounded recur-
sive calls mentioned in Sections 4.4 and 5.5. Snorocket, for example, exhibits a much better
performance even though it is claimed to implement the same procedure as CEL [66].

Many optimizations and improvements that make ELK so ‘incredible’ are not limited to
just EL. The consequence-based reasoners CB and ConDOR, which use similar techniques
as ELK, support more complex (EXPTIME) DLs [51,95] and yet retain a comparable per-
formance (when disregarding concurrency). Thus, polynomial complexity of EL does not
really explain the efficiency of our procedures in practice. In fact, the estimates obtained at
the end of Section 3.5 for the rules in Fig. 3 are not even remotely similar to the numbers
obtained by our experiments in Table 10. For example, for SNOMED CT the analysis would
give a bound of about 90 billion unique subsumptions and 5 trillion links, whereas in our
experiments even without optimizations we obtain less then 15 million and 4 million, re-
spectively. The number of inferences predicted by this analysis is even more astronomical.
If our procedure would behave according to this estimate, it would consume petabytes of
memory and take millions of years to finish.

Some ideas presented in this paper are not even specific to DLs at all. For example, the
abstract concurrent saturation procedure described in Section 6.2 can be used for parallel
computation of the deductive closure under essentially any inference system.

This paper mainly focuses on techniques that contribute to the performance of ELK. This
does not mean that there are no other interesting enhancements. For example, ELK supports
interrupting and restarting of reasoning tasks, which was recently argued to be important
in certain applications [35]. There is a mechanism for batch processing of saturation jobs
that lets the system recognize when the saturation for an input concept is computed without
waiting for all input concepts to be processed. This is used to execute other tasks in a par-
allel way, such as the computation of direct subsumers for concepts. While not necessarily
improving performance, these features may certainly widen possible uses of ELK.

ELK is currently under heavy development. Therefore, at this time, we do not present
more specific application details, such as description of the API, summary of the classes, or
source code, as this information may quickly become outdated. Although this paper cannot
serve as a developer manual, it can still be a good starting point for those wishing developing
or using the system. ELK is an open source project, and any contribution is welcome.

There are many interesting directions for future work. Not all OWL EL features are
currently covered by ELK. We have recently studied ‘pay-as-you-go’ extensions of our ap-
proach to nominals [56], but there are some technical problems yet to be solved before this
feature is fully integrated into the mainstream. To support datatypes, we plan to integrate the
rules for safe numerical datatypes [69]. This result can be used even with datatype restric-
tions outside of the OWL EL profile. The notion of context introduced in Section 6 provides
a natural way to localizing inferences. This can be used not only to perform inferences in
parallel, but potentially also for incremental reasoning [26], axiom pinpointing [16,83], and
debugging [49,91]. Some preliminary work in this direction is already done [52].

As an interesting theoretical problem, one can mention the question of whether the no-
tion of redundancy introduced in Section 3.2 can be generalized to other rules than R−∃ .
Specifically, can applications of rules RH and R◦ likewise be avoided if they produce links
E R→ C such that {E R→ D, DvC} ⊆ Closure for some D?

Tractable algorithms are only a first step towards efficient ontology reasoning systems.
Careful design, optimization, implementation, and analysis are at least as significant. Thus,
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similar to other reasoning approaches, such as tableau or resolution, implementation and
optimization techniques for consequence-based procedures are important research topics.
This work makes one of the first contributions to this area.
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A ABoxes and Safe Nominals

In the main parts of this paper, we have only considered terminological reasoning in EL+
⊥. Like other

completion-based systems [21,99], our systems in Fig. 1, Fig. 2, and Fig. 3 can also be extended with rules for
dealing with concept and role assertions. To avoid repeating proofs, optimizations and algorithmic details for
reasoning with assertions, however, we do not present the additional rules separately. Instead, we demonstrate
how ABoxes reasoning can be reduced to terminological reasoning. We also demonstrate that our reduction
works for a restricted but quite commonly used pattern of nominals in OWL EL ontologies.

To this end, within this section we consider ontologies with nominals. A nominal is a concept of the form
C = {a} where a is an individual, which is interpreted by the singleton set CI = {aI}. We denote by ELO+

⊥
the extension of EL+

⊥ in which concepts can be constructed using nominals. Note that the assertions C(a)
and R(a,b) are semantically equivalent to concept inclusions with nominals {a} v C and {a} v ∃R.{b},
respectively. Within this section we also assume that the set of atomic concepts contains a distinguished
atomic concept Na for every individual a in our vocabulary. For x an ELO+

⊥ concept, axiom, or an ontology,
we define N(x) to be the result of replacing each occurrence of each nominal {a} in x by Na. The next lemma
shows that this reduction provides us with a sufficient condition for checking entailment in O.

Lemma 5 Let O be an ELO+
⊥ ontology and α an ELO+

⊥ axiom that do not contain atomic concepts of the
form Na. Then N(O) |= N(α) implies O |= α .

Proof Suppose to the contrary that N(O) |= N(α) but O 6|= α . Then there exists an interpretation I such that
I |=O but I 6|= α . Let us define an interpretation J by setting ∆J = ∆I , NJ

a = {aI}, AJ = AI for A 6= Na,
and RJ = RI . Since the transformation N(·) merely replaces each {a} by Na and we have {a}I = NJ

a , for
every axiom β that does not contain concepts Na we have I |= β iff J |= N(β ). Since I |=O and I 6|= α , in
particular, we have J |= N(O) and J 6|= N(α), which contradicts our assumption N(O) |= N(α). ut

As a particular case of the previous lemma, we can have the following sufficient condition for checking
unsatisfiability of ontologies with assertions.

Corollary 2 Let O be an ELO+
⊥ ontology that does not contain atomic concepts of the form Na. If N(O) |=

Na v⊥ for some Na, then O is inconsistent.

Proof Take α := {a} v ⊥. Clearly, α does not contain any atomic concepts of the form Na. Since N(α) =
Na v⊥, we have N(O) |= N(α). Therefore, by Lemma 5, O |= α . Since I |= α for no interpretation I, this
is only possible if O is inconsistent. ut

The converses of Corollary 2 and Lemma 5 do not hold in general, but they hold if the occurrence of
nominals is restricted in the following way.

Definition 6 (Nominal Safety) An ELO+
⊥ concept C is safe if C has only occurrences of nominals in sub-

concepts of the form ∃R.{a}; C is negatively safe (short n-safe) if C is either safe or a nominal. A concept
inclusion C v D is safe if C is n-safe and D is safe. An ELO+

⊥ ontology is safe if all its concept inclusions
are safe.
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The restricted use of nominals still allows to express assertion axioms C(a) and R(a,b) since the corre-
sponding concept inclusions {a}vC and {a}v∃R.{b} are safe. It also captures another common constructor
in OWL EL ontologies ObjectHasValue( R a ), which corresponds to the concept ∃R.{a}.

Theorem 4 Let O be a safe ELO+
⊥ ontology containing no atomic concepts of the form Na. Assume that

N(O) 6|= Na v ⊥ for every Na. Then O is consistent. Furthermore, for every safe concept inclusion α con-
taining no atomic concepts of the form Na, if O |= α , then N(O) |= N(α).

Proof Let Closure be the set of subsumptions derivable by the rules in Fig. 2 w.r.t. N(O) and J the canonical
model defined w.r.t. Closure according to Definition 2. Since the rules in Fig. 2 are sound, we have Na v⊥ /∈
Closure for every Na, thus, J is well-defined, and its domain contains a distinguished element xNa ∈ NJ

a
for every individual a. Since Closure is closed under the rules in Fig. 2 (and thus closed under R−∃ up to
redundancy), by Theorem 1, J |= N(O). Define an interpretation I with ∆I = ∆J , AI = AJ for atomic
concepts, RI = RJ for roles, and aI = xNa for the individuals. Then for every ELO+

⊥ concept D we have:

Claim (i) if D is safe then DI = N(D)J .

Claim (ii) if D is n-safe then DI ⊆ N(D)J .

The proof of Claim (i) is by induction on the structure of D. The only non-trivial case in the induction
is for D = ∃R.{a}. To prove that (∃R.{a})I ⊆ (∃R.Na)

J , consider any xC ∈ (∃R.{a})I . Since aI = xNa , we
have 〈xC,xNa 〉 ∈ RI = RJ . Since xNa ∈NJ

a by Corollary 1, the desired xC ∈ (∃R.Na)
J follows. To prove that

(∃R.Na)
J ⊆ (∃R.{a})I , consider any xC ∈ (∃R.Na)

J . Then there exists xE ∈ ∆J such that 〈xC,xE 〉 ∈ RJ

and xE ∈NJ
a . Then by the definition of the canonical model, C R→ E ∈Closure and E vNa ∈Closure. Due to

closure under R+
∃ and R−∃ , C R→ Na ∈ Closure, and so 〈xC,xNa 〉 ∈ RJ as well. Since aI = xNa and RI = RJ ,

the desired xC ∈ (∃R.{a})I follows. This concludes the proof of (i).
Claim (ii) follows immediately from (i) if D is safe. Otherwise, D = {a} is a nominal and N(D) = Na;

in this case we have DI = {aI}= {xNa} ⊆ NJ
a = N(D)J , as required.

It is now easy to show that I |=O. Indeed, for every role inclusion or role composition axiom α ∈O,
since J |= N(O), N(α) = α and I interprets roles like J , we have I |= α . It remains to show that I |= α

for every concept inclusion α =C v D ∈O. By the assumption of the theorem each such α is safe, i.e., C is
n-safe and D is safe. Then by Claim (ii), CI ⊆ N(C)J and by Claim (i), DI = N(D)J . Since J |= N(O)
and α ∈O, we have N(C)J ⊆ N(D)J . Therefore, CI ⊆ N(C)J ⊆ N(D)J = DI , hence I |= C v D. This
proves that I is a model of O and, in particular, O is consistent.

To conclude the proof of the theorem, let α = C v D be an arbitrary safe concept inclusion such that
O |= α . If N(C)v⊥ ∈ Closure then clearly N(O) |= N(α) because the inference rules in Fig. 2 are sound.
Otherwise, xN(C) ∈ ∆J = ∆I . We show that xN(C) ∈ CI . Indeed, if C is safe then xN(C) ∈ N(C)J = CI

by Corollary 1 and Claim (i); otherwise, if C = {a}, we have xN(C) = xNa = aI ∈ {aI} = CI . Now, since
I |=O |= α , we have xN(C) ∈CI ⊆ DI = N(D)J . Hence, by Lemma 2, we have N(C)v N(D) ∈ Closure,
and thus N(O) |= N(C)v N(D). ut

Remark 2 Theorem 4 fails if the use of nominals is not safe. Take, for example, the ontology

O = {Av {a}, Bv {a}, Av ∃R.B}.

Clearly, O is consistent. Moreover, O |= A v B since for every model I of O we have either AI = /0 or
AI = BI = {aI}, and so, I |= Av B. However, for N(O) = {Av Na, Bv Na, Av ∃R.B}, we have N(O) 6|=
Av B = N(Av B).

Remark 3 Note that if Na does not occur in N(O), then N(O) |= Na v⊥ iff N(O) |= >v ⊥. Therefore, in
Theorem 4 it is sufficient to test whether N(O) 6|= Na v⊥ only for the individuals a occurring in O or, if O
contains no individuals, whether N(O) =O 6|=>v⊥.

By combining Theorems 3 and 4, we can describe a ‘one pass’ ontology realization procedure for com-
puting all entailed instances of atomic concepts occurring in a safe ELO+

⊥ ontology O. This can be accom-
plished by computing the closure of Input containing init(Na) for every individual a occurring in O under
the rules in Fig. 3 w.r.t. N(O). If Na v ⊥ is derived for at least one individual a, then O is inconsistent.
Otherwise, for every atomic concept A, the derived subsumptions of the form Na v A correspond exactly to
the entailed instances A(a). As in the case of ontology classification, this procedure can be implemented in
polynomial time.
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