
Artificial Intelligence, Computational Logic

PROBLEM SOLVING AND SEARCH
IN ARTIFICIAL INTELLIGENCE

Lecture 10 Tree Decompositions

Sarah Gaggl

Dresden

Agenda

1 Introduction
2 Uninformed Search versus Informed Search (Best First Search, A*

Search, Heuristics)
3 Local Search, Stochastic Hill Climbing, Simulated Annealing
4 Tabu Search
5 Answer-set Programming (ASP)
6 Constraint Satisfaction Problems (CSP)
7 Evolutionary Algorithms/ Genetic Algorithms
8 Structural Decomposition Techniques (Tree/Hypertree Decompositions)

TU Dresden PSSAI slide 2 of 41

Fixed-Parameter Tractability (FPT) –
Motivation

Some Observations
• For intractable problems, computational costs often depend primarily on

some problem parameters rather than on the mere size of the instances.
• Many hard problems become tractable if some problem parameter is fixed

or bounded by a fixed constant.
• Typical parameters for graphs: treewidth and cliquewidth.

– Meta-theorems allow for rather easy proofs of FPT results w.r.t.
these parameters

– Dedicated dynamic algorithms required for practical realization!

FPT is one branch in the area of Parameterized Complexity
• Downey & Fellows: Parameterized Complexity. Springer, 1999
• Flum & Grohe: Parameterized Complexity Theory. Springer, 2006
• Niedermeier: Invitation to Fixed-Parameter Algorithms. OUP, 2006

TU Dresden PSSAI slide 3 of 41

Introduction

• Many instances of constraint satisfaction problems can be solved in
polynomial time if their treewidth (or hypertree width) is small.

• Solving of problems with bounded width includes two phases:
– Generate a (hyper)tree decomposition with small width;
– Solve a problem (based on generated decomposition) with a

particular algorithm such as for example dynamic programming.
• Main idea: decomposing a problem into sub-problems of limited size

allows to solve the whole problem more efficiently
• The efficiency of solving of problem based on its (hyper)tree

decomposition depends on the width of (hyper)tree decomposition.
• It is of high importance to generate (hyper)tree decompositions with small

width.

TU Dresden PSSAI slide 4 of 41

CSP: Map-Coloring

Western
Australia

Northern
Territory

South
Australia

Queensland

New South Wales

Victoria

Tasmania

Variables WA, NT, Q, NSW, V, SA, T

Domains Di = {red, green, blue}
Constraints: adjacent regions must have different colors e.g., WA 6= NT, or

(WA, NT) ∈ {(red, green), (red, blue), (green, red), (green, blue), . . .}

TU Dresden PSSAI slide 5 of 41

Constraint Graph

Binary CSP: each constraint relates at most two variables
Constraint graph: nodes are variables, arcs show constraints

Victoria

WA

NT

SA

Q

NSW

V

T

General-purpose CSP algorithms use the graph structure
to speed up search. E.g., Tasmania is an independent sub-problem!

TU Dresden PSSAI slide 6 of 41

Tree-structured CSPs

A
B

C
D

E

F

Theorem
If the constraint graph has no loops, the CSP can be solved in O(n d2) time.

• Compare to general CSPs, where worst-case time is O(dn)

• This property also applies to logical and probabilistic reasoning: an
important example of the relation between syntactic restrictions and the
complexity of reasoning.

TU Dresden PSSAI slide 7 of 41

CSP: SAT Problem
(x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ ¬x4 ∨ x5 ∨ x6) ∧ · · · ∧ (x3 ∨ x4 ∨ x7 ∨ x8) . . .
Possible CSP fomulation:

Variables x1, x2, x3, . . .
Domains 0, 1

Constraints – C1: (x1 ∨ x2 ∨ ¬x3)→ true
– C2: (x1 ∨ ¬x4 ∨ x5 ∨ x6)→ true
– . . .

TU Dresden PSSAI slide 8 of 41

CSP and Hypergraph

(x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ ¬x4 ∨ x5 ∨ x6) ∧ (x3 ∨ x4 ∨ x7 ∨ x8) . . .

In general worst case complexity: 2NumberOfVariables = 219

TU Dresden PSSAI slide 9 of 41

Hypergraph and its Primal Graph

TU Dresden PSSAI slide 10 of 41

CSP and (Hyper)treewidth

• In general exponential worst case complexity.
• Can we solve this instance more efficiently (or in polynomial time)?
• Yes, if it has a small (hyper) treewidth!!!

TU Dresden PSSAI slide 11 of 41

Tree Decomposition

Tree Decomposition
Let G = (V, E) be a graph. A tree decomposition of G is a pair (T,χ), where
T = (I, F) is a tree with node set I and edge set F, and χ = {χi : i ∈ I} is a
family of subsets of V, one for each node of T, such that

1
⋃

i∈I χi = V,

2 for every edge (v, w) ∈ E, there is an i ∈ I with v ∈ χi and w ∈ χi, and
3 for all i, j, k ∈ I, if j is on the path from i to k in T, then χi ∩ χk ⊆ χj.

The width of a tree decomposition is maxi∈I |χi| − 1.
The treewidth of a graph G, denoted by tw(G), is the minimum width over all
possible tree decompositions of G.

TU Dresden PSSAI slide 12 of 41

Tree Decomposition - Example

All pairs of vertices that are connected appear in some node of the tree.
Connectedness condition for vertices

TU Dresden PSSAI slide 13 of 41

Elimination Ordering

• For the given problem find the tree decomposition with minimal width ->
NP hard.

• There exists a perfect elimination ordering which produces tree
decomposition with treewidth (smallest width).

• Tree decomposition problem→ search for the best elimination ordering of
vertices!

• Permutation Problem→ similar to TSP.

Possible elimination ordering for graph in previous slide:
10, 9, 8, 7, 2, 3, 6, 1, 5, 4

TU Dresden PSSAI slide 14 of 41

Perfect Elimination Ordering

Vertex 10 is eliminated from the graph. All neighbors of 10 are connected and a
tree node is created that contains vertex 10 and its neighbors.

Elimination ordering: 10, 9, 8, 7, 2, 3, 6, 1, 5, 4

TU Dresden PSSAI slide 15 of 41

Perfect Elimination Ordering ctd.

The tree decomposition node with
vertices [7,9,10] is connected with the
tree decomposition node which is
created when the next vertex which
appears in [7,9,10] is eliminated (in this
case vertex 9)

Vertex 9 is eliminated from the graph. All neighbors of vertex 9 are connected
and a new tree node is created.

Elimination ordering: 10, 9, 8, 7, 2, 3, 6, 1, 5, 4

TU Dresden PSSAI slide 16 of 41

Perfect Elimination Ordering ctd.

Elimination ordering: 10, 9, 8, 7, 2, 3, 6, 1, 5, 4

TU Dresden PSSAI slide 17 of 41

Perfect Elimination Ordering ctd.

Elimination ordering: 10, 9, 8, 7, 2, 3, 6, 1, 5, 4

TU Dresden PSSAI slide 18 of 41

Perfect Elimination Ordering ctd.

Elimination ordering: 10, 9, 8, 7, 2, 3, 6, 1, 5, 4

TU Dresden PSSAI slide 19 of 41

Perfect Elimination Ordering ctd.

Elimination ordering: 10, 9, 8, 7, 2, 3, 6, 1, 5, 4

TU Dresden PSSAI slide 20 of 41

Perfect Elimination Ordering ctd.

Elimination ordering: 10, 9, 8, 7, 2, 3, 6, 1, 5, 4

TU Dresden PSSAI slide 21 of 41

Perfect Elimination Ordering ctd.

Elimination ordering: 10, 9, 8, 7, 2, 3, 6, 1, 5, 4

TU Dresden PSSAI slide 22 of 41

Perfect Elimination Ordering ctd.

Elimination ordering: 10, 9, 8, 7, 2, 3, 6, 1, 5, 4

TU Dresden PSSAI slide 23 of 41

Perfect Elimination Ordering ctd.

Elimination ordering: 10, 9, 8, 7, 2, 3, 6, 1, 5, 4

TU Dresden PSSAI slide 24 of 41

Perfect Elimination Ordering ctd.

Elimination ordering: 10, 9, 8, 7, 2, 3, 6, 1, 5, 4

TU Dresden PSSAI slide 25 of 41

Tree Decomposition of a Graph

Width: max(vertices in tree node)−1 = 3.

Treewidth: minimal width over all possible tree decomposition.

TU Dresden PSSAI slide 26 of 41

Example (Another Tree Decomposition)

Elimination ordering: 4, 3, 10, 5, 6, 7, 1, 2, 9, 8
Group-Work! What is the worst case complexity to solve the CSP on the
constructed TD?

TU Dresden PSSAI slide 27 of 41

Bounded Treewidth for CSP

If a graph has treewidth k, and we are given the corresponding tree
decomposition, then the problem can be solved in O(ndk+1) time.

n - number of variables,

d - maximum domain size of any variable in the CSP.

But, finding the decomposition with minimal treewidth is NP-hard.

→ Heuristic methods work well in practice!

TU Dresden PSSAI slide 28 of 41

Solving Problems based on TD

Victoria

WA

NT

SA

Q

NSW

V

T

• Naive approach: try all possibilities dn combinations
• Make tree decomposition and solve each subproblem independently

(blackboard)
• If one subproblem has no solution⇒ the whole problem has no solution
• Elimination ordering: V, NSW, Q, NT, T, WA, SA

TU Dresden PSSAI slide 29 of 41

Algorithms for Finding Good Elimination
Ordering

• Exact Methods
– Branch and bound
– A∗

• (Meta)Heuristic Methods
– Maximum Cardinality Search (MCS)
– Min-Fill Heuristic
– Tabu Search
– Genetic Algorithms
– Iterated Local Search

TU Dresden PSSAI slide 30 of 41

Maximum Cardinality Search (MCS)

1 Select a random vertex in graph to be the first in elimination ordering
2 Pick next vertex that has highest connectivity with vertices previously

selected in elimination ordering (ties are broken randomly)
3 Repeat Step 2 until whole ordering is complete

Example (Graph Coloring)

Victoria

WA

NT

SA

Q

NSW

V

T

On blackboard!
TU Dresden PSSAI slide 31 of 41

Min-Fill Heuristic

1 Select vertex which adds smallest number of edges when eliminated (ties
are broken randomly) to be first vertex in elimination ordering

2 Pick next vertex that adds the minimum number of edges when eliminated
from graph

3 Repeat Step 2 until whole ordering is constructed

Note
When the vertex is eliminated from graph, all its neighbors are connected (new
edges are inserted in the graph)

TU Dresden PSSAI slide 32 of 41

Tabu Search
Moves:

• Swap to nodes in the elimination ordering
• Neighborhood: All possible solutions that can be obtained with swap of

two vertices
• Tabu list: moved nodes are made tabu for several iterations

(Diversification of search)
• Aspiration criterion: override tabu if solution is outstanding
• Frequency-based memory

TU Dresden PSSAI slide 33 of 41

Genetic Algorithms

• Population of randomly created individuals
• Tournament selection selects an individual by randomly choosing a group

of several individuals from former population
• Individual of highest fitness (smallest width) within group is selected for

next population
• Applied until enough individuals have entered next population

TU Dresden PSSAI slide 34 of 41

Crossover Operators

Order Crossover (OX)
• Selects crossover area within the parents by randomly selecting two

positions within the ordering
• Elements in crossover area of first parent are copied to offspring
• Starting at end of crossover area all elements outside the area are

inserted in same order in which they occur in second parent

1 2 3 4 5 6 7 8
2 4 6 8 7 5 3 1 ⇒ 8 7 3 4 5 1 2 6

4 5 6 8 7 1 2 3

TU Dresden PSSAI slide 35 of 41

Crossover Operators ctd.

Order-based Crossover (OBX)
• Selects at random several positions in the parent orderings by tossing a

coin for each position
• Elements of first parent at these positions are inserted in first child in the

order of the second parent
• Elements of second parent at these positions are inserted in second child

in the order of the first parent

1 2 3 4 5 6 7 8
2 4 6 8 7 5 3 1 ⇒ 1 2 3 4 6 5 7 8

2 4 3 8 7 5 6 1

TU Dresden PSSAI slide 36 of 41

Mutation Operators

Exchange Mutation Operator (EM)
Randomly selects two elements and exchanges them.

1 2 3 4 5 6 7 8 ⇒ 1 2 6 4 5 3 7 8

TU Dresden PSSAI slide 37 of 41

Mutation Operators

Exchange Mutation Operator (EM)
Randomly selects two elements and exchanges them.

1 2 3 4 5 6 7 8 ⇒ 1 2 6 4 5 3 7 8

Insertion Mutation Operator (ISM)
Randomly chooses an element and moves it to randomly selected position.

1 2 3 4 5 6 7 8 ⇒ 1 2 4 5 6 7 3 8

TU Dresden PSSAI slide 38 of 41

Which Algorithm to Use?

• If width is not critical then MCS or Min-fill
• For exact solutions and small examples: Branch and Bound or A∗

• For longer examples and better width: MCS, Min-Fill, Iterated local search
or GA

TU Dresden PSSAI slide 39 of 41

Summary

• Problems with small treewidth are solvable in polynomial time (if
treedecomposition is given)

• Idea of decomposing a problem in smaller sub-problems to solve them
more efficiently

• Width of treedecomposition depends on the elimination ordering
• Finding treewidth is NP hard
• Tree decomposition problem⇒ search for the best elimination ordering of

vertices!
– Branch and bound
– A∗

– Maximum Cardinality Search (MCS)
– Min-Fill Heuristic
– Tabu Search
– Genetic Algorithms
– Iterated Local Search

• Literature and Benchmark Instances for tree decomposition: TreewidthLIB
http://www.staff.science.uu.nl/~bodla101/treewidthlib/
index.php

TU Dresden PSSAI slide 40 of 41

http://www.staff.science.uu.nl/~bodla101/treewidthlib/index.php
http://www.staff.science.uu.nl/~bodla101/treewidthlib/index.php

References

Thomas Hammerl, Nysret Musliu and Werner Schafhauser.
Metaheuristic Algorithms and Tree Decomposition, Handbook of
Computational Intelligence, pp 1255–1270, Springer, 2015.

Hans L. Bodlaender, Arie M.C.A. Koster.
Treewidth computations I. Upper bounds, Comput. 208(2): 259–275,
2010.

TU Dresden PSSAI slide 41 of 41

