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Agenda

1 Introduction
2 Uninformed Search versus Informed Search (Best First Search, A*

Search, Heuristics)
3 Local Search, Stochastic Hill Climbing, Simulated Annealing
4 Tabu Search
5 Answer-set Programming (ASP)
6 Constraint Satisfaction Problems (CSP)
7 Evolutionary Algorithms/ Genetic Algorithms
8 Structural Decomposition Techniques (Tree/Hypertree Decompositions)
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Fixed-Parameter Tractability (FPT) –
Motivation

Some Observations
• For intractable problems, computational costs often depend primarily on

some problem parameters rather than on the mere size of the instances.
• Many hard problems become tractable if some problem parameter is fixed

or bounded by a fixed constant.
• Typical parameters for graphs: treewidth and cliquewidth.

– Meta-theorems allow for rather easy proofs of FPT results w.r.t.
these parameters

– Dedicated dynamic algorithms required for practical realization!

FPT is one branch in the area of Parameterized Complexity
• Downey & Fellows: Parameterized Complexity. Springer, 1999
• Flum & Grohe: Parameterized Complexity Theory. Springer, 2006
• Niedermeier: Invitation to Fixed-Parameter Algorithms. OUP, 2006
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Introduction

• Many instances of constraint satisfaction problems can be solved in
polynomial time if their treewidth (or hypertree width) is small.

• Solving of problems with bounded width includes two phases:
– Generate a (hyper)tree decomposition with small width;
– Solve a problem (based on generated decomposition) with a

particular algorithm such as for example dynamic programming.
• Main idea: decomposing a problem into sub-problems of limited size

allows to solve the whole problem more efficiently
• The efficiency of solving of problem based on its (hyper)tree

decomposition depends on the width of (hyper)tree decomposition.
• It is of high importance to generate (hyper)tree decompositions with small

width.
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CSP: Map-Coloring

Western
Australia

Northern
Territory

South
Australia

Queensland

New South Wales

Victoria

Tasmania

Variables WA, NT, Q, NSW, V, SA, T

Domains Di = {red, green, blue}
Constraints: adjacent regions must have different colors e.g., WA 6= NT, or

(WA, NT) ∈ {(red, green), (red, blue), (green, red), (green, blue), . . .}
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Constraint Graph

Binary CSP: each constraint relates at most two variables
Constraint graph: nodes are variables, arcs show constraints

Victoria

WA

NT

SA

Q

NSW

V

T

General-purpose CSP algorithms use the graph structure
to speed up search. E.g., Tasmania is an independent sub-problem!
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Tree-structured CSPs

A
B

C
D

E

F

Theorem
If the constraint graph has no loops, the CSP can be solved in O(n d2) time.

• Compare to general CSPs, where worst-case time is O(dn)

• This property also applies to logical and probabilistic reasoning: an
important example of the relation between syntactic restrictions and the
complexity of reasoning.
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CSP: SAT Problem
(x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ ¬x4 ∨ x5 ∨ x6) ∧ · · · ∧ (x3 ∨ x4 ∨ x7 ∨ x8) . . .
Possible CSP fomulation:

Variables x1, x2, x3, . . .
Domains 0, 1

Constraints – C1: (x1 ∨ x2 ∨ ¬x3)→ true
– C2: (x1 ∨ ¬x4 ∨ x5 ∨ x6)→ true
– . . .
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CSP and Hypergraph

(x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ ¬x4 ∨ x5 ∨ x6) ∧ (x3 ∨ x4 ∨ x7 ∨ x8) . . .

In general worst case complexity: 2NumberOfVariables = 219
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Hypergraph and its Primal Graph
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CSP and (Hyper)treewidth

• In general exponential worst case complexity.
• Can we solve this instance more efficiently (or in polynomial time)?
• Yes, if it has a small (hyper) treewidth!!!
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Tree Decomposition

Tree Decomposition
Let G = (V, E) be a graph. A tree decomposition of G is a pair (T,χ), where
T = (I, F) is a tree with node set I and edge set F, and χ = {χi : i ∈ I} is a
family of subsets of V, one for each node of T, such that

1
⋃

i∈I χi = V,

2 for every edge (v, w) ∈ E, there is an i ∈ I with v ∈ χi and w ∈ χi, and
3 for all i, j, k ∈ I, if j is on the path from i to k in T, then χi ∩ χk ⊆ χj.

The width of a tree decomposition is maxi∈I |χi| − 1.
The treewidth of a graph G, denoted by tw(G), is the minimum width over all
possible tree decompositions of G.
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Tree Decomposition - Example

All pairs of vertices that are connected appear in some node of the tree.
Connectedness condition for vertices
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Elimination Ordering

• For the given problem find the tree decomposition with minimal width ->
NP hard.

• There exists a perfect elimination ordering which produces tree
decomposition with treewidth (smallest width).

• Tree decomposition problem→ search for the best elimination ordering of
vertices!

• Permutation Problem→ similar to TSP.

Possible elimination ordering for graph in previous slide:
10, 9, 8, 7, 2, 3, 6, 1, 5, 4
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Perfect Elimination Ordering

Vertex 10 is eliminated from the graph. All neighbors of 10 are connected and a
tree node is created that contains vertex 10 and its neighbors.

Elimination ordering: 10, 9, 8, 7, 2, 3, 6, 1, 5, 4
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Perfect Elimination Ordering ctd.

The tree decomposition node with
vertices [7,9,10] is connected with the
tree decomposition node which is
created when the next vertex which
appears in [7,9,10] is eliminated (in this
case vertex 9)

Vertex 9 is eliminated from the graph. All neighbors of vertex 9 are connected
and a new tree node is created.

Elimination ordering: 10, 9, 8, 7, 2, 3, 6, 1, 5, 4
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Perfect Elimination Ordering ctd.

Elimination ordering: 10, 9, 8, 7, 2, 3, 6, 1, 5, 4
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Perfect Elimination Ordering ctd.

Elimination ordering: 10, 9, 8, 7, 2, 3, 6, 1, 5, 4
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Perfect Elimination Ordering ctd.

Elimination ordering: 10, 9, 8, 7, 2, 3, 6, 1, 5, 4
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Perfect Elimination Ordering ctd.

Elimination ordering: 10, 9, 8, 7, 2, 3, 6, 1, 5, 4
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Perfect Elimination Ordering ctd.

Elimination ordering: 10, 9, 8, 7, 2, 3, 6, 1, 5, 4

TU Dresden PSSAI slide 21 of 41



Perfect Elimination Ordering ctd.

Elimination ordering: 10, 9, 8, 7, 2, 3, 6, 1, 5, 4
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Perfect Elimination Ordering ctd.

Elimination ordering: 10, 9, 8, 7, 2, 3, 6, 1, 5, 4
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Perfect Elimination Ordering ctd.

Elimination ordering: 10, 9, 8, 7, 2, 3, 6, 1, 5, 4
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Perfect Elimination Ordering ctd.

Elimination ordering: 10, 9, 8, 7, 2, 3, 6, 1, 5, 4
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Tree Decomposition of a Graph

Width: max(vertices in tree node)−1 = 3.

Treewidth: minimal width over all possible tree decomposition.
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Example (Another Tree Decomposition)

Elimination ordering: 4, 3, 10, 5, 6, 7, 1, 2, 9, 8
Group-Work! What is the worst case complexity to solve the CSP on the
constructed TD?
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Bounded Treewidth for CSP

If a graph has treewidth k, and we are given the corresponding tree
decomposition, then the problem can be solved in O(ndk+1) time.

n - number of variables,

d - maximum domain size of any variable in the CSP.

But, finding the decomposition with minimal treewidth is NP-hard.

→ Heuristic methods work well in practice!
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Solving Problems based on TD

Victoria

WA

NT

SA

Q

NSW

V

T

• Naive approach: try all possibilities dn combinations
• Make tree decomposition and solve each subproblem independently

(blackboard)
• If one subproblem has no solution⇒ the whole problem has no solution
• Elimination ordering: V, NSW, Q, NT, T, WA, SA
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Algorithms for Finding Good Elimination
Ordering

• Exact Methods
– Branch and bound
– A∗

• (Meta)Heuristic Methods
– Maximum Cardinality Search (MCS)
– Min-Fill Heuristic
– Tabu Search
– Genetic Algorithms
– Iterated Local Search
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Maximum Cardinality Search (MCS)

1 Select a random vertex in graph to be the first in elimination ordering
2 Pick next vertex that has highest connectivity with vertices previously

selected in elimination ordering (ties are broken randomly)
3 Repeat Step 2 until whole ordering is complete

Example (Graph Coloring)

Victoria

WA

NT

SA

Q

NSW

V

T

On blackboard!
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Min-Fill Heuristic

1 Select vertex which adds smallest number of edges when eliminated (ties
are broken randomly) to be first vertex in elimination ordering

2 Pick next vertex that adds the minimum number of edges when eliminated
from graph

3 Repeat Step 2 until whole ordering is constructed

Note
When the vertex is eliminated from graph, all its neighbors are connected (new
edges are inserted in the graph)
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Tabu Search
Moves:

• Swap to nodes in the elimination ordering
• Neighborhood: All possible solutions that can be obtained with swap of

two vertices
• Tabu list: moved nodes are made tabu for several iterations

(Diversification of search)
• Aspiration criterion: override tabu if solution is outstanding
• Frequency-based memory
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Genetic Algorithms

• Population of randomly created individuals
• Tournament selection selects an individual by randomly choosing a group

of several individuals from former population
• Individual of highest fitness (smallest width) within group is selected for

next population
• Applied until enough individuals have entered next population
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Crossover Operators

Order Crossover (OX)
• Selects crossover area within the parents by randomly selecting two

positions within the ordering
• Elements in crossover area of first parent are copied to offspring
• Starting at end of crossover area all elements outside the area are

inserted in same order in which they occur in second parent

1 2 3 4 5 6 7 8
2 4 6 8 7 5 3 1 ⇒ 8 7 3 4 5 1 2 6

4 5 6 8 7 1 2 3
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Crossover Operators ctd.

Order-based Crossover (OBX)
• Selects at random several positions in the parent orderings by tossing a

coin for each position
• Elements of first parent at these positions are inserted in first child in the

order of the second parent
• Elements of second parent at these positions are inserted in second child

in the order of the first parent

1 2 3 4 5 6 7 8
2 4 6 8 7 5 3 1 ⇒ 1 2 3 4 6 5 7 8

2 4 3 8 7 5 6 1
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Mutation Operators

Exchange Mutation Operator (EM)
Randomly selects two elements and exchanges them.

1 2 3 4 5 6 7 8 ⇒ 1 2 6 4 5 3 7 8
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Mutation Operators

Exchange Mutation Operator (EM)
Randomly selects two elements and exchanges them.

1 2 3 4 5 6 7 8 ⇒ 1 2 6 4 5 3 7 8

Insertion Mutation Operator (ISM)
Randomly chooses an element and moves it to randomly selected position.

1 2 3 4 5 6 7 8 ⇒ 1 2 4 5 6 7 3 8
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Which Algorithm to Use?

• If width is not critical then MCS or Min-fill
• For exact solutions and small examples: Branch and Bound or A∗

• For longer examples and better width: MCS, Min-Fill, Iterated local search
or GA
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Summary

• Problems with small treewidth are solvable in polynomial time (if
treedecomposition is given)

• Idea of decomposing a problem in smaller sub-problems to solve them
more efficiently

• Width of treedecomposition depends on the elimination ordering
• Finding treewidth is NP hard
• Tree decomposition problem⇒ search for the best elimination ordering of

vertices!
– Branch and bound
– A∗

– Maximum Cardinality Search (MCS)
– Min-Fill Heuristic
– Tabu Search
– Genetic Algorithms
– Iterated Local Search

• Literature and Benchmark Instances for tree decomposition: TreewidthLIB
http://www.staff.science.uu.nl/~bodla101/treewidthlib/
index.php
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