Concurrency Theory

Lecture 8: Bisimilarity and Testing

Stephan Mennicke Knowledge-Based Systems Group

May 28, 2024

Recap: CCS

$$\mathcal{N} = \{a, b, c, \ldots\}$$
 ... set of names $(\tau \notin \mathcal{N})$

$$\overline{\mathcal{N}} = \{\overline{\alpha} \mid \alpha \in \mathcal{N}\}$$
 . . . set of conames

$$Act = \mathcal{N} \cup \overline{\mathcal{N}} \cup \{\tau\}$$
 (note, there is no $\overline{\tau}$ and for $\alpha \in Act \setminus \{\tau\}$, $\overline{\alpha} = \alpha$)

The set of (CCS) processes Pr is defined by

$$P ::= \mathbf{0} \mid \mu.P \mid P+P \mid P \mid P \mid (\nu a)(P) \mid K$$

where $\mu \in Act$, $a \in \mathcal{N}$, and $K \in \mathcal{K}$.

Define the language CCS parameterized over Act, K, and $T_K \subseteq K \times Act \times Pr$.

$$\mathsf{CCS}(Act, \mathcal{K}, \mathcal{T}_{\mathcal{K}})$$

Recap: SOS of CCS

 $\operatorname{CCS}(Act, \mathcal{K}, \mathcal{T}_{\mathcal{K}})$ specifies an LTS $(Pr, Act, \to \cup \mathcal{T}_{\mathcal{K}})$ where $\to \subseteq (Pr \setminus \mathcal{K}) \times Act \times Pr$ is the smallest relation satisfying the following rules:

$$(\operatorname{Pref}) \xrightarrow{\mu.P \xrightarrow{\mu} P}$$

$$(\operatorname{SumL}) \xrightarrow{P \xrightarrow{\mu} P'} \qquad (\operatorname{SumR}) \xrightarrow{Q \xrightarrow{\mu} Q'}$$

$$(\operatorname{ParL}) \xrightarrow{P \xrightarrow{\mu} P'} \qquad (\operatorname{ParR}) \xrightarrow{Q \xrightarrow{\mu} Q'}$$

$$(\operatorname{ParR}) \xrightarrow{Q \xrightarrow{\mu} Q'} \qquad (\operatorname{ParR}) \xrightarrow{Q \xrightarrow{\mu} Q'}$$

$$(\operatorname{Com}) \xrightarrow{P \xrightarrow{\mu} P' \qquad Q \xrightarrow{\overline{\mu}} Q'} \qquad (\operatorname{Res}) \xrightarrow{(\nu a) (P) \xrightarrow{\mu} (\nu a) (P')} \text{ if } a \notin \{\mu, \overline{\mu}\}$$

What about Interaction? Testing (1/2)

- Two processes are equivalent if no experiment distinguishes them
- Experiment = test, a pattern of demands on the process
- Observer reports about *success* or *failure* of the test, depending on the process behavior
- Our goal: set up a testing scenario such that the distinguishing power of tests is exactly that of bisimilarity

What about Interaction? Testing (2/2)

- As before, we consider a single LTS (Pr, Act, \rightarrow) .
- Additionally, we'll assume image-finiteness for the transition system.
- ullet Tests are objects T that are performed on a process as a form of experiment.
- ullet We use $oxed{\top}$ to indicate success and $oxed{\bot}$ for lack of success.
- Because of nondeterminism, different runs may produce different results.
- ullet For tests T and processes P we, thus, look at observations

$$\mathcal{O}(T,P)\subseteq\{\top,\bot\}$$

• Two processes P and Q are behaviorally equivalent iff $\mathcal{O}(T,P)=\mathcal{O}(T,Q)$ for all tests T.

Testing: Syntax and Semantics

A test T is an expression of the following grammar:

$$T ::= \ \mathsf{SUCC} \ \middle| \ \mathsf{FAIL} \ \middle| \ \mu.T \ \middle| \ \tilde{\mu}.T \ \middle| \ T \land T \ \middle| \ T \lor T \ \middle| \ \forall T \ \middle| \ \exists T$$

For an arbitrary process P and test T, define the observations admitted by P through T as:

Concurrency Theory – Testing for Bisimilarity

Testing: Syntax and Semantics

$$T ::= \operatorname{SUCC} \left| \operatorname{FAIL} \right| a.T \left| \tilde{a}.T \right| T \wedge T \left| T \vee T \right| \forall T \left| \exists T \right| \mathcal{O}(\operatorname{SUCC}, P) = \{\top\}$$

$$\mathcal{O}(\operatorname{FAIL}, P) = \{\bot\}$$

$$\mathcal{O}(a.T, P) = \begin{cases} \{\bot\} & \text{if } P \xrightarrow{a} \\ \bigcup \{\mathcal{O}(T, P') \mid P \xrightarrow{a} P'\} \end{cases} & \text{otherwise.}$$

$$\mathcal{O}(\tilde{a}.T, P) = \begin{cases} \{\top\} & \text{if } P \xrightarrow{a} \\ \bigcup \{\mathcal{O}(T, P') \mid P \xrightarrow{a} P'\} \end{cases} & \text{otherwise.}$$

$$\mathcal{O}(T_1 \wedge T_2, P) = \mathcal{O}(T_1, P) \wedge^* \mathcal{O}(T_2, P)$$

$$\mathcal{O}(T_1 \vee T_2, P) = \mathcal{O}(T_1, P) \vee^* \mathcal{O}(T_2, P)$$

$$\mathcal{O}(\forall T, P) = \begin{cases} \{\bot\} & \text{if } \bot \in \mathcal{O}(T, P) \\ \{\top\} & \text{otherwise} \end{cases}$$

$$\mathcal{O}(\exists T, P) = \begin{cases} \{\top\} & \text{if } \top \in \mathcal{O}(T, P) \\ \{\bot\} & \text{otherwise} \end{cases}$$

Properties of Tests and Observation (1/)

Theorem 1

Every test T has an inverse test \overline{T} , such that for all processes P,

- 1. $\bot \in \mathcal{O}(T, P)$ if, and only if, $\top \in \mathcal{O}(\overline{T}, P)$ and
- 2. $\top \in \mathcal{O}(T, P)$ if, and only if, $\bot \in \mathcal{O}(\overline{T}, P)$.

Proof (of 1): Define \overline{T} by

Proof by induction on the structure of T. Let P be a process.

Base:
$$T = \mathsf{FAIL}$$
. Then $\mathcal{O}(T, P) = \{\bot\}$ and $\mathcal{O}(\overline{T}, P) = \mathcal{O}(\mathsf{SUCC}, P) = \{\top\}$.

Properties of Tests and Observations (2/)

Step: By case distinction.

- $T = T_1 \wedge T_2$: $\bot \in \mathcal{O}(T,P)$ iff $\bot \in \mathcal{O}(T_1,P)$ or $\bot \in \mathcal{O}(T_2,P)$ iff $(\mathsf{IH}) \top \in \mathcal{O}(\overline{T_1},P)$ or $\top \in \mathcal{O}(\overline{T_2},P)$ iff $\top \in \mathcal{O}(\overline{T_1} \vee \overline{T_2},P)$ iff $\top \in \mathcal{O}(\overline{T},P)$
- $T = T_1 \vee T_2$: $\bot \in \mathcal{O}(T,P)$ iff $\bot \in \mathcal{O}(T_1,P)$ and $\bot \in \mathcal{O}(T_2,P)$ iff(IH) $\top \in \mathcal{O}(\overline{T_1},P)$ and $\top \in \mathcal{O}(\overline{T_2},P)$ iff $\top \in \mathcal{O}(\overline{T_1} \wedge \overline{T_2},P)$ iff $\top \in \mathcal{O}(\overline{T_1},P)$

Properties of Tests and Observations (3/)

Step: By case distinction.

- $T = \exists T' \colon \bot \in \mathcal{O}(T, P) \text{ iff } \mathcal{O}(T', P) = \{\bot\} \text{ iff(IH) } \mathcal{O}(\overline{T'}, P) = \{\top\} \text{ iff } \top \in \mathcal{O}(\forall \overline{T'}, P) \text{ iff } \top \in \mathcal{O}(\overline{T}, P).$
- $T = \forall T' \colon \bot \in \mathcal{O}(T, P) \text{ iff } \bot \in \mathcal{O}(T', P) \text{ iff(IH)} \top \in \mathcal{O}(\overline{T'}, P) \text{ iff } \top \in \mathcal{O}(\exists \overline{T'}, P) \text{ iff } \top \in \mathcal{O}(\overline{T}, P).$

Properties of Tests and Observations (4/)

Step (cont'd): By case distinction.

- T=a.T': $\bot \in \mathcal{O}(T,P)$ iff (a) $P \not\stackrel{q}{\Rightarrow}$ or (b) $\bot \in \mathcal{O}(T',P')$ for some P' with $P \stackrel{a}{\Rightarrow} P'$. In case (a), $\mathcal{O}(\tilde{a}.\overline{T'},P)=\{\top\}$. In case (b), $\top \in \mathcal{O}(\overline{T'},P')$ by IH. Hence, $\top \in \mathcal{O}(\tilde{a}.\overline{T'},P)$ by the arguments for (a) and (b).
- $T = \tilde{a}.T'$: $\bot \in \mathcal{O}(T,P)$ iff $P \xrightarrow{a} P'$ (for some P') and $\bot \in \mathcal{O}(T',P')$ iff $\top \in \mathcal{O}(\overline{T'},P')$ iff $\top \in \mathcal{O}(a.\overline{T'},P)$ iff $\top \in \mathcal{O}(\overline{T},P)$.

Properties of Tests and Observation (5/5)

Definition 2

 $P \sim_T Q$ if, and only if, $\mathcal{O}(T,P) = \mathcal{O}(T,Q)$ for all tests T.

Theorem 3

If $P \not\sim_T Q$, then there is a test case T, such that $\mathcal{O}(T,P) = \{\bot\}$ and $\mathcal{O}(T,Q) = \{\top\}$.

Proof: Since $P \not\sim_T Q$, there is at least one test case T_0 with $\mathcal{O}(T_0, P) \neq \mathcal{O}(T_0, Q)$.

Transform T_0 into the required T by the following procedure:

- 1. If $\mathcal{O}(T_0,Q)=\{\top\}$, set $T=\forall T_0$. If $\mathcal{O}(T_0,Q)=\{\bot\}$, set $\mathcal{O}(\forall \overline{T_0})$.
- 2. Otherwise, if $\mathcal{O}(T_0,P)=\{\bot\}$, set $T=\exists T_0$ and if $\mathcal{O}(T_0,P)=\{\top\}$, set $T=\exists \overline{T_0}$.

Theorem 4

 $\Leftrightarrow = \sim_T$ on image-finite processes.

Relationship to Modal Logic (1/3)

Hennessy-Milner Logic (HML) is the model logic formed by the following grammar:

$$\varphi \; ::= \; \mathit{true} \; \middle| \; \mathit{false} \; \middle| \; \varphi \wedge \varphi \; \middle| \; \varphi \vee \varphi \; \middle| \; [\mu] \, \varphi \; \middle| \; \langle \mu \rangle \, \varphi$$

A process P satisfies an HML formula φ , denoted $P \models \varphi$, iff

- $\varphi = true$;
- $\varphi = \psi_1 \wedge \psi_2$, and $P \models \psi_1$ and $P \models \psi_2$;
- $\varphi = \psi_1 \vee \psi_2$, and $P \models \psi_1$ or $P \models \psi_2$;
- $\varphi = [\mu] \psi$ and for all P' with $P \xrightarrow{\mu} P'$, $P' \models \psi$;
- $\varphi = \langle \mu \rangle \psi$ and there is a P' with $P \xrightarrow{\mu} P'$ and $P' \models \psi$.

Relationship to Modal Logic (2/3)

Hennessy-Milner Logic (HML) is the model logic formed by the following grammar:

$$\varphi \; ::= \; \mathit{true} \; \middle| \; \mathit{false} \; \middle| \; \varphi \wedge \varphi \; \middle| \; \varphi \vee \varphi \; \middle| \; [\mu] \, \varphi \; \middle| \; \langle \mu \rangle \, \varphi$$

Define a test in our framework from every HML formula via structural induction:

- [true] = SUCC and [false] = FAIL;
- $\llbracket \psi_1 \wedge \psi_2 \rrbracket = \llbracket \psi_1 \rrbracket \wedge \llbracket \psi_2 \rrbracket$ and $\llbracket \psi_1 \vee \psi_2 \rrbracket = \llbracket \psi_1 \rrbracket \vee \llbracket \psi_2 \rrbracket$;
- $\bullet \ \ \llbracket [\mu] \ \psi \rrbracket = \forall \mu. \ \llbracket \psi \rrbracket \ \ \text{and} \ \ \llbracket \langle \mu \rangle \ \psi \rrbracket = \exists \mu. \ \llbracket \psi \rrbracket.$

Relationship to Modal Logic (3/3)

- [true] = SUCC and [false] = FAIL;
- $[\![\psi_1 \wedge \psi_2]\!] = [\![\psi_1]\!] \wedge [\![\psi_2]\!]$ and $[\![\psi_1 \vee \psi_2]\!] = [\![\psi_1]\!] \vee [\![\psi_2]\!];$
- $\llbracket [\mu] \psi \rrbracket = \forall \mu$. $\llbracket \psi \rrbracket$ and $\llbracket \langle \mu \rangle \psi \rrbracket = \exists \mu$. $\llbracket \psi \rrbracket$.

Theorem 5

For every HML formula φ and process P,

- 1. $P \models \varphi \text{ iff } \mathcal{O}(\llbracket \varphi \rrbracket, P) = \{\top\};$
- 2. $P \not\models \varphi \text{ iff } \mathcal{O}(\llbracket \varphi \rrbracket, P) = \{\bot\}.$

Two processes P and Q are HML-equivalent, denoted $P \sim_{\mathsf{HML}} Q$, iff for all HML formulae φ , $P \models \varphi$ iff $Q \models \varphi$.

Theorem 6 (Hennessy-Milner Theorem)

On image-finite processes, \sim_{HML} and \Leftrightarrow coincide.

What about (Completed) Traces?

The Hennessy-Milner Logic:

$$\varphi \ ::= \ \operatorname{\it true} \left| \ \operatorname{\it false} \right| \varphi \wedge \varphi \ \middle| \ \varphi \vee \varphi \ \middle| \ [\mu] \, \varphi \ \middle| \ \langle \mu \rangle \, \varphi$$

The Trace Logic:

$$\varphi$$
 ::= true $\langle \mu \rangle \varphi$

The Completed Trace Logic:

$$\varphi ::= true \mid \langle \mu \rangle \varphi \mid [Act] false$$

Summary & Outlook

- Tests and logical formulae characterize bisimilarity
- They give insights in what is needed to distinguish processes for a certain equivalence relation

Next:

- Alternative model: Carl Adam Petri and his Nets
- What is decidable about Petri nets?
- Enhancing CCS: the π -calculus

