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Previously . . .
• Definite Horn clauses possess the

model intersection property.
• Thus each definite logic programhas a unique least Herbrand

model.
• The least fixpoint of a program’s

one-step consequence operator
TP coincides with its least Herbrandmodel.

• First-order clauses in combinationwith SLD resolution constitute a
Turing-complete computationmechanism.

Consider the program
P = {p←, q← p, r ← r}.
The operator TP maps as
follows: I TP(I)

∅

{p} {q} {r}

{p,q} {p, r} {q, r}
{p,q, r}
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Pure Prolog vs. Logic Programming
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Syntax of Pure Prolog

• clause p(a)← (fact) expressed in Prolog as
p(a).

• clause p(x,a) ← q(x), r(x, yi) expressed as
p(X,a) :- q(X), r(X,Yi).

• % Comment

• ambivalent syntax:
p(p(a,b), [c,p(a)]).

predicate p/2, functions p/1, p/2
• anonymous variables:

p(X,a) :- q(X), r(X,_).
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Specifics of Prolog

• leftmost selection rule⇝ LD resolution, LD resolvent, . . .
• a program is a sequence of clauses
• unification without occur check
• depth-first search (with backtracking)
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LD Trees and Prolog Trees
Finitely branching trees of queries, possibly marked with “success” or“failure”, produced as follows:
Definition
Let P be a program and Q0 be a query.• Start with tree TQ0 , which contains Q0 as unique node• LD tree for P∪ {Q0}:repeatedly apply to current tree T and every unmarked leaf Q in T theoperation expand(T,Q)(⇝ LD tree obeys leftmost selection rule)
• Prolog tree for P∪ {Q0}:repeatedly apply to current tree T and leftmost unmarked leaf Q in T theoperation expand(T,Q)(⇝ Prolog tree additionally obeys order of clauses and depth-first search)
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Operation Expand

Definition
Operation expand(T,Q) is defined by:
• if Q = □, then mark Q with “success”;
• if Q has no LD-resolvents, then mark Q with “failure”;
• else add for each clause that is applicable to the leftmost atom of Q anLD-resolvent as descendant of Q. Respect the order in which the clausesappear in the program if a Prolog tree is constructed.
(⇝ implements leftmost selection rule)

Pure Prolog (Lecture 6)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 8 of 34 Computational
Logic ∴ Group



Outcomes of Prolog Computations (1)
Definition
Let P be a program and Q0 be a query.• Q0 universally terminates :⇐⇒ LD tree for P∪ {Q0} is finite• Q0 diverges :⇐⇒ LD tree for P∪ {Q0} contains an infinite branchto the left of any success node
• Q0 potentially diverges:⇐⇒ LD tree for P∪ {Q0} contains a success node,all branches to its left are finite, an infinite branch exists to its right
• Q0 produces infinitely many answers:⇐⇒ LD tree for P∪ {Q0} has infinitely many success nodes,all infinite branches lie to the right of them
• Q0 fails :⇐⇒ LD tree for P∪ {Q0} is finitely failed
Note: We assume here that also in LD trees the order of clauses in the program is respected.
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Lists in Prolog
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Some List Processing Predicates (1)
% app(Xs,Ys,Zs) :- Zs is the concatenation of lists Xs and Ys
app([],Ys,Ys).
app([X|Xs],Ys,[X|Zs]) :- app(Xs,Ys,Zs).

% rev1(Xs,Ys) :- Ys is the reversal of list Xs
rev1([],[]).
rev1([X|Xs],Ys) :- rev1(Xs,Zs), app(Zs,[X],Ys).

% rev2(Xs,Ys) :- Ys is the reversal of list Xs
rev2(Xs,Ys) :- rev(Xs,[],Ys).
rev([],Ys,Ys).
rev([X|Xs],Ys,Zs) :- rev(Xs,[X|Ys],Zs).

% sub(Xs,Ys) :- Xs is a sublist of list Ys
sub(Xs,Ys) :- app(Xs,_,Zs), app(_,Zs,Ys).
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Some List Processing Predicates (2)
% perm(Xs,Ys) :- Ys is a permutation of list Xs
perm([],[]).
perm(Xs,[X|Ys]) :- app(X1s,[X|X2s],Xs), app(X1s,X2s,Zs), perm(Zs,Ys).

% quick(Xs,Ys) :- Ys is obtained by sorting Xs using quicksort
quick([],[]).
quick([X|Xs],Ys) :- small(Xs,X,Ss), quick(Ss,X1s), great(Xs,X,Gs),
quick(Gs,X2s), app(X1s,[X|X2s],Ys).

small([],_,[]).
small([Y|Ys],X,[Y|Zs]) :- Y<X, small(Ys,X,Zs).
small([Y|Ys],X,Zs) :- Y>=X, small(Ys,X,Zs).

great([],_,[]).
great([Y|Ys],X,[Y|Zs]) :- Y>=X, great(Ys,X,Zs).
great([Y|Ys],X,Zs) :- Y<X, great(Ys,X,Zs).
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Adding Arithmetics to Pure Prolog
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Arithmetic Expressions

Definition
An arithmetic expression is a term over variables and the followingfunction symbols:

0, 1, -1, 2, -2, . . . (nullary)
–, abs (unary)
+, – , ∗ , //, mod (binary)

A ground arithmetic expression (gae) is a variable-free arithmeticexpression.
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Comparison Relations and GAEs (1)

Comparison relations are defined only for gaes.

| ?- 5*2 > 3+4.
yes

| ?- [] < 5.
DOMAIN ERROR: []<5 - arg 1: expected expression, found []

| ?- X < 5.
INSTANTIATION ERROR: _33<5 - arg 1
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Comparison Relations and GAEs (2)
Comparison relations are defined only for gaes.

max(X, Y, X) :- X > Y.
max(X, Y, Y) :- X =< Y.

| ?- max(2, 3, Z).
Z = 3

| ?- max(Z, 7, 7).
INSTANTIATION ERROR: _33=<7 - arg 1

| ?- max(Z, 7, 8).
Z = 8
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Evaluation of GAEs
The evaluation of gaes is triggered by the sub-query

s is t

▷ t is a gae with value val(t)
⇝ case distinction on s:
▷▷ s is a gae syntactically identical to val(t)
⇝ sub-query succeeds with cas ε

▷▷ s is a variable
⇝ sub-query succeeds with cas {s/val(t)}

▷ t is not a gae
⇝ runtime error
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Evaluation of GAEs – Examples
| ?- 7 is 3+4.
yes

| ?- X is 3+4.

| ?- X = 3+4.

X = 7

X = 3+4

| ?- 8 is 3+4.
no

| ?- 3+4 is 3+4.
no

| ?- X is Y+1.
INSTANTIATION ERROR: _36 is _33+1 - arg 2
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Quiz: Lists and GAEs

Quiz
Consider the following Prolog program: . . .
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Adding the Cut to Prolog
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The Cut – Motivation (1)
Consider the following program:
countdown(X, Y, []) :- X < Y.
countdown(X, Y, [X|L]) :- X1 is X-1, countdown(X1, Y, L).

Upon query countdown(m,n,L) form,n ∈ IN withm ≥ n, it produces the list[m,m – 1, . . . ,n].
However, it also produces [m,m – 1, . . . ,n,n – 1], [m,m – 1, . . . ,n,n – 1,n – 2], . . .
In this concrete case, we could replace the program by
countdown(X, Y, []) :- X < Y.
countdown(X, Y, [X|L]) :- X >= Y, X1 is X-1, countdown(X1, Y, L).

Problem solved?
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The Cut – Motivation (2)
Imagine a similar program:
count_until(X, Y, []) :- complex_computation(X, Y).
count_until(X, Y, [X|L]) :- X1 is X-1, count_until(X1, Y, L).

What now?
• There might not be a negation of complex_computation.
• Even if there was, we would like to avoid repeating (parts of) the

complex_computation in every clause body.
Solution: Remove unwanted answers by disallowing backtracking fromcertain points on – the cut.
count_until(X, Y, []) :- complex_computation(X, Y), !.
count_until(X, Y, [X|L]) :- X1 is X-1, count_until(X1, Y, L).
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The Cut – Advantages and Disadvantages
The cut operator is a nullary predicate symbol, denoted by “!”, which canprune off subtrees of Prolog trees.
Advantages:
▷ Efficiency gain, since search space is reduced.
▷ Simplification of programs (e.g. of programs dealing with sets).
Disadvantages:
▷ Major source of errors in Prolog programs (e.g. if successful branchesare pruned off or wrong answers are delivered).
▷ Harder verification of programs, since procedural interpretation mustbe used (declarative interpretation cannot be used, since semantics of cutdepends on leftmost selection rule and clause ordering).
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Informal Semantics of Cut
Let P be a Prolog program containing exactly the following k clauses for apredicate p:

p(t1,1, . . . , t1,n) ← A⃗1...
p(ti,1, . . . , ti,n) ← B⃗, !, C⃗...
p(tk,1, . . . , tk,n) ← A⃗k

Let some atom p(t1, . . . , tn) in a query be resolved using the i-th clause for pand let later on the cut atom thus introduced become the leftmost atom.Then:
• The indicated occurrence of ! succeeds immediately.
• All other ways of resolving atoms of B⃗ are discarded.
• All derivations of p(t1, . . . , tn) using the (i + 1)-st to k-th clause for p arediscarded.

Pure Prolog (Lecture 6)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 24 of 34 Computational
Logic ∴ Group



Formal Semantics of Cut
Definition
Let Q be a node in an initial fragment of a Prolog tree T with cut as leftmostatom in Q. The origin of this cut occurrence is the youngest ancestor of Q in
T that contains less cut atoms than Q.
Roughly: origin =̂ query whose selected (leftmost) atom introduced the cut.
Definition
Prolog trees with cuts are constructed by extending the operation
expand(T,Q):
• if Q = !, A⃗ and Q′ is the origin of this cut occurrence,then add A⃗ as only direct descendant of Q and remove from T all thenodes that are descendants of Q′ and lie to the right of the pathconnecting Q′ and Q.
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Cut: Example and Visualization (1)

p :- q, !, s.
p :- r.

q :- x.
q.
q :- y.

s :- r, !.
s :- x.
s :- p.

r.

p

q, !, s r

x, !, s !, s y, !, s □

s

r, ! x p

! . . .

□
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Cut: Example and Visualization (2)

p :- q, s.
p :- t.

q :- x.
q.

s :- r, !.
s :- x.
s :- p.

r.
r :- x.

t.

p

q, s t

x, s s □

r, ! x p

x, !! . . .

□
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Sets in Prolog (1)
member(X,[X|_]).
member(X,[_|Xs]) :- member(X,Xs).

set([],[]).
set([X|Xs],Ys) :- member(X,Xs), !, set(Xs,Ys).
set([X|Xs],[X|Ys]) :- set(Xs,Ys).

| ?- set([1,2,1],Us).
Us = [2,1] ? ;
no

| ?- set([1,2,1],[2,1]).
yes

| ?- set([1,2,1],[1,2]).
no
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Sets in Prolog (2)

member(X,[X|_]).
member(X,[_|Xs]) :- member(X,Xs).

union([],Ys,Ys).
union([X|Xs],Ys,Zs) :- member(X,Ys), !, union(Xs,Ys,Zs).
union([X|Xs],Ys,[X|Zs]) :- union(Xs,Ys,Zs).

| ?- union([1,2],[1,3],Us).
Us = [2,1,3] ? ;
no
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Incorrect Use of Cut (1)
Pruning Successful Branches

only_b(a) :- !, test(a).
only_b(b) :- !, test(b).
test(b).

| ?- only_b(a).
no

| ?- only_b(b).
yes

| ?- only_b(X).
no
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Incorrect Use of Cut (2)
Allowing Wrong Answers

% max(X,Y,Z) :- Z is the maximum of X and Y
max(X,Y,Y) :- X =< Y, !.
max(X,_,X).

| ?- max(2,5,Z).
Z = 5

| ?- max(2,1,Z).
Z = 2

| ?- max(2,5,2).
yes
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Meta-Variables
Ameta-variable is a variable in the position of an atom.
Meta-variables must become instantiated before they are selected!

p(a).
a.

| ?- p(X), X.
X = a

| ?- p(X), Y.
INSTANTIATION ERROR: call(user:_34) - arg 1

| ?- X, p(X).
INSTANTIATION ERROR: call(user:_34) - arg 1

Pure Prolog (Lecture 6)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 32 of 34 Computational
Logic ∴ Group



Using Meta-Variables
or(X, _) :- X.
or(_, Y) :- Y.
% or is also predefined in Prolog: :- op(1100, xfy, ;).
% or(X,Y) is written as: X ; Y

if_then_else(P, Q, _) :- P, !, Q.
if_then_else(_, _, R) :- R.
% if_then_else is also predefined in Prolog: :- op(1050, xfy, ->).
% if_then_else(P,Q,R) is written as: P -> Q ; R

not(X) :- X, !, fail.
not(_).
% atom fail always fails
% not is also predefined in Prolog: :- op(900, fy, \+).
% not(X) is written as: \+ X
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Conclusion
Summary
• Prolog employs SLD resolution with the leftmost selection rule(⇝ LD resolution), traverses the search space using depth-first search(with backtracking), and regards a program as a sequence of clauses.
• Prolog also offers list processing and arithmetics.
• The cut prunes certain branches of Prolog trees, and can lead to moreefficient programs, but also to programming errors.
Suggested action points:
• Repair the incorrect uses of cut on slides 30 and 31 (using the cutcorrectly).
• Define a unary predicate is_set that succeeds iff its argument is a list ofterms without duplicates. Write versions with(out) !, and with(out) \+.
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