
Computational
Logic ∴ Group

Hannes Strass (based on slides by Michael Thielscher)
Faculty of Computer Science, Institute of Artificial Intelligence, Computational Logic Group

Pure Prolog
Lecture 6, 13th Nov 2023 // Foundations of Logic Programming, WS 2023/24

https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2023)

Previously . . .
• Definite Horn clauses possess the

model intersection property.
• Thus each definite logic programhas a unique least Herbrand

model.
• The least fixpoint of a program’s

one-step consequence operator
TP coincides with its least Herbrandmodel.

• First-order clauses in combinationwith SLD resolution constitute a
Turing-complete computationmechanism.

Consider the program
P = {p←, q← p, r ← r}.
The operator TP maps as
follows: I TP(I)

∅

{p} {q} {r}

{p,q} {p, r} {q, r}
{p,q, r}

Pure Prolog (Lecture 6)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 2 of 34 Computational
Logic ∴ Group

Overview

Pure Prolog vs. Logic Programming
Lists in Prolog
Adding Arithmetics to Pure Prolog
Adding the Cut to Prolog

Pure Prolog (Lecture 6)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 3 of 34 Computational
Logic ∴ Group

Pure Prolog vs. Logic Programming

Pure Prolog (Lecture 6)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 4 of 34 Computational
Logic ∴ Group

Syntax of Pure Prolog

• clause p(a)← (fact) expressed in Prolog as
p(a).

• clause p(x,a) ← q(x), r(x, yi) expressed as
p(X,a) :- q(X), r(X,Yi).

• % Comment

• ambivalent syntax:
p(p(a,b), [c,p(a)]).

predicate p/2, functions p/1, p/2
• anonymous variables:

p(X,a) :- q(X), r(X,_).

Pure Prolog (Lecture 6)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 5 of 34 Computational
Logic ∴ Group

Specifics of Prolog

• leftmost selection rule⇝ LD resolution, LD resolvent, . . .
• a program is a sequence of clauses
• unification without occur check
• depth-first search (with backtracking)

Pure Prolog (Lecture 6)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 6 of 34 Computational
Logic ∴ Group

LD Trees and Prolog Trees
Finitely branching trees of queries, possibly marked with “success” or“failure”, produced as follows:
Definition
Let P be a program and Q0 be a query.• Start with tree TQ0 , which contains Q0 as unique node• LD tree for P∪ {Q0}:repeatedly apply to current tree T and every unmarked leaf Q in T theoperation expand(T,Q)(⇝ LD tree obeys leftmost selection rule)
• Prolog tree for P∪ {Q0}:repeatedly apply to current tree T and leftmost unmarked leaf Q in T theoperation expand(T,Q)(⇝ Prolog tree additionally obeys order of clauses and depth-first search)

Pure Prolog (Lecture 6)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 7 of 34 Computational
Logic ∴ Group

Operation Expand

Definition
Operation expand(T,Q) is defined by:
• if Q = □, then mark Q with “success”;
• if Q has no LD-resolvents, then mark Q with “failure”;
• else add for each clause that is applicable to the leftmost atom of Q anLD-resolvent as descendant of Q. Respect the order in which the clausesappear in the program if a Prolog tree is constructed.
(⇝ implements leftmost selection rule)

Pure Prolog (Lecture 6)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 8 of 34 Computational
Logic ∴ Group

Outcomes of Prolog Computations (1)
Definition
Let P be a program and Q0 be a query.• Q0 universally terminates :⇐⇒ LD tree for P∪ {Q0} is finite• Q0 diverges :⇐⇒ LD tree for P∪ {Q0} contains an infinite branchto the left of any success node
• Q0 potentially diverges:⇐⇒ LD tree for P∪ {Q0} contains a success node,all branches to its left are finite, an infinite branch exists to its right
• Q0 produces infinitely many answers:⇐⇒ LD tree for P∪ {Q0} has infinitely many success nodes,all infinite branches lie to the right of them
• Q0 fails :⇐⇒ LD tree for P∪ {Q0} is finitely failed
Note: We assume here that also in LD trees the order of clauses in the program is respected.

Pure Prolog (Lecture 6)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 9 of 34 Computational
Logic ∴ Group

Lists in Prolog

Pure Prolog (Lecture 6)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 10 of 34 Computational
Logic ∴ Group

Some List Processing Predicates (1)
% app(Xs,Ys,Zs) :- Zs is the concatenation of lists Xs and Ys
app([],Ys,Ys).
app([X|Xs],Ys,[X|Zs]) :- app(Xs,Ys,Zs).

% rev1(Xs,Ys) :- Ys is the reversal of list Xs
rev1([],[]).
rev1([X|Xs],Ys) :- rev1(Xs,Zs), app(Zs,[X],Ys).

% rev2(Xs,Ys) :- Ys is the reversal of list Xs
rev2(Xs,Ys) :- rev(Xs,[],Ys).
rev([],Ys,Ys).
rev([X|Xs],Ys,Zs) :- rev(Xs,[X|Ys],Zs).

% sub(Xs,Ys) :- Xs is a sublist of list Ys
sub(Xs,Ys) :- app(Xs,_,Zs), app(_,Zs,Ys).

Pure Prolog (Lecture 6)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 11 of 34 Computational
Logic ∴ Group

Some List Processing Predicates (2)
% perm(Xs,Ys) :- Ys is a permutation of list Xs
perm([],[]).
perm(Xs,[X|Ys]) :- app(X1s,[X|X2s],Xs), app(X1s,X2s,Zs), perm(Zs,Ys).

% quick(Xs,Ys) :- Ys is obtained by sorting Xs using quicksort
quick([],[]).
quick([X|Xs],Ys) :- small(Xs,X,Ss), quick(Ss,X1s), great(Xs,X,Gs),
quick(Gs,X2s), app(X1s,[X|X2s],Ys).

small([],_,[]).
small([Y|Ys],X,[Y|Zs]) :- Y<X, small(Ys,X,Zs).
small([Y|Ys],X,Zs) :- Y>=X, small(Ys,X,Zs).

great([],_,[]).
great([Y|Ys],X,[Y|Zs]) :- Y>=X, great(Ys,X,Zs).
great([Y|Ys],X,Zs) :- Y<X, great(Ys,X,Zs).

Pure Prolog (Lecture 6)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 12 of 34 Computational
Logic ∴ Group

Adding Arithmetics to Pure Prolog

Pure Prolog (Lecture 6)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 13 of 34 Computational
Logic ∴ Group

Arithmetic Expressions

Definition
An arithmetic expression is a term over variables and the followingfunction symbols:

0, 1, -1, 2, -2, . . . (nullary)
–, abs (unary)
+, – , ∗ , //, mod (binary)

A ground arithmetic expression (gae) is a variable-free arithmeticexpression.

Pure Prolog (Lecture 6)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 14 of 34 Computational
Logic ∴ Group

Comparison Relations and GAEs (1)

Comparison relations are defined only for gaes.

| ?- 5*2 > 3+4.
yes

| ?- [] < 5.
DOMAIN ERROR: []<5 - arg 1: expected expression, found []

| ?- X < 5.
INSTANTIATION ERROR: _33<5 - arg 1

Pure Prolog (Lecture 6)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 15 of 34 Computational
Logic ∴ Group

Comparison Relations and GAEs (2)
Comparison relations are defined only for gaes.

max(X, Y, X) :- X > Y.
max(X, Y, Y) :- X =< Y.

| ?- max(2, 3, Z).
Z = 3

| ?- max(Z, 7, 7).
INSTANTIATION ERROR: _33=<7 - arg 1

| ?- max(Z, 7, 8).
Z = 8

Pure Prolog (Lecture 6)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 16 of 34 Computational
Logic ∴ Group

Evaluation of GAEs
The evaluation of gaes is triggered by the sub-query

s is t

▷ t is a gae with value val(t)
⇝ case distinction on s:
▷▷ s is a gae syntactically identical to val(t)
⇝ sub-query succeeds with cas ε

▷▷ s is a variable
⇝ sub-query succeeds with cas {s/val(t)}

▷ t is not a gae
⇝ runtime error

Pure Prolog (Lecture 6)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 17 of 34 Computational
Logic ∴ Group

Evaluation of GAEs – Examples
| ?- 7 is 3+4.
yes

| ?- X is 3+4.

| ?- X = 3+4.

X = 7

X = 3+4

| ?- 8 is 3+4.
no

| ?- 3+4 is 3+4.
no

| ?- X is Y+1.
INSTANTIATION ERROR: _36 is _33+1 - arg 2

Pure Prolog (Lecture 6)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 18 of 34 Computational
Logic ∴ Group

Quiz: Lists and GAEs

Quiz
Consider the following Prolog program: . . .

Pure Prolog (Lecture 6)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 19 of 34 Computational
Logic ∴ Group

Adding the Cut to Prolog

Pure Prolog (Lecture 6)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 20 of 34 Computational
Logic ∴ Group

The Cut – Motivation (1)
Consider the following program:
countdown(X, Y, []) :- X < Y.
countdown(X, Y, [X|L]) :- X1 is X-1, countdown(X1, Y, L).

Upon query countdown(m,n,L) form,n ∈ IN withm ≥ n, it produces the list[m,m – 1, . . . ,n].
However, it also produces [m,m – 1, . . . ,n,n – 1], [m,m – 1, . . . ,n,n – 1,n – 2], . . .
In this concrete case, we could replace the program by
countdown(X, Y, []) :- X < Y.
countdown(X, Y, [X|L]) :- X >= Y, X1 is X-1, countdown(X1, Y, L).

Problem solved?
Pure Prolog (Lecture 6)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 21 of 34 Computational

Logic ∴ Group

The Cut – Motivation (2)
Imagine a similar program:
count_until(X, Y, []) :- complex_computation(X, Y).
count_until(X, Y, [X|L]) :- X1 is X-1, count_until(X1, Y, L).

What now?
• There might not be a negation of complex_computation.
• Even if there was, we would like to avoid repeating (parts of) the

complex_computation in every clause body.
Solution: Remove unwanted answers by disallowing backtracking fromcertain points on – the cut.
count_until(X, Y, []) :- complex_computation(X, Y), !.
count_until(X, Y, [X|L]) :- X1 is X-1, count_until(X1, Y, L).

Pure Prolog (Lecture 6)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 22 of 34 Computational
Logic ∴ Group

The Cut – Advantages and Disadvantages
The cut operator is a nullary predicate symbol, denoted by “!”, which canprune off subtrees of Prolog trees.
Advantages:
▷ Efficiency gain, since search space is reduced.
▷ Simplification of programs (e.g. of programs dealing with sets).
Disadvantages:
▷ Major source of errors in Prolog programs (e.g. if successful branchesare pruned off or wrong answers are delivered).
▷ Harder verification of programs, since procedural interpretation mustbe used (declarative interpretation cannot be used, since semantics of cutdepends on leftmost selection rule and clause ordering).

Pure Prolog (Lecture 6)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 23 of 34 Computational
Logic ∴ Group

Informal Semantics of Cut
Let P be a Prolog program containing exactly the following k clauses for apredicate p:

p(t1,1, . . . , t1,n) ← A⃗1...
p(ti,1, . . . , ti,n) ← B⃗, !, C⃗...
p(tk,1, . . . , tk,n) ← A⃗k

Let some atom p(t1, . . . , tn) in a query be resolved using the i-th clause for pand let later on the cut atom thus introduced become the leftmost atom.Then:
• The indicated occurrence of ! succeeds immediately.
• All other ways of resolving atoms of B⃗ are discarded.
• All derivations of p(t1, . . . , tn) using the (i + 1)-st to k-th clause for p arediscarded.

Pure Prolog (Lecture 6)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 24 of 34 Computational
Logic ∴ Group

Formal Semantics of Cut
Definition
Let Q be a node in an initial fragment of a Prolog tree T with cut as leftmostatom in Q. The origin of this cut occurrence is the youngest ancestor of Q in
T that contains less cut atoms than Q.
Roughly: origin =̂ query whose selected (leftmost) atom introduced the cut.
Definition
Prolog trees with cuts are constructed by extending the operation
expand(T,Q):
• if Q = !, A⃗ and Q′ is the origin of this cut occurrence,then add A⃗ as only direct descendant of Q and remove from T all thenodes that are descendants of Q′ and lie to the right of the pathconnecting Q′ and Q.

Pure Prolog (Lecture 6)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 25 of 34 Computational
Logic ∴ Group

Cut: Example and Visualization (1)

p :- q, !, s.
p :- r.

q :- x.
q.
q :- y.

s :- r, !.
s :- x.
s :- p.

r.

p

q, !, s r

x, !, s !, s y, !, s □

s

r, ! x p

! . . .

□

Pure Prolog (Lecture 6)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 26 of 34 Computational
Logic ∴ Group

Cut: Example and Visualization (2)

p :- q, s.
p :- t.

q :- x.
q.

s :- r, !.
s :- x.
s :- p.

r.
r :- x.

t.

p

q, s t

x, s s □

r, ! x p

x, !! . . .

□

Pure Prolog (Lecture 6)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 27 of 34 Computational
Logic ∴ Group

Sets in Prolog (1)
member(X,[X|_]).
member(X,[_|Xs]) :- member(X,Xs).

set([],[]).
set([X|Xs],Ys) :- member(X,Xs), !, set(Xs,Ys).
set([X|Xs],[X|Ys]) :- set(Xs,Ys).

| ?- set([1,2,1],Us).
Us = [2,1] ? ;
no

| ?- set([1,2,1],[2,1]).
yes

| ?- set([1,2,1],[1,2]).
no

Pure Prolog (Lecture 6)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 28 of 34 Computational
Logic ∴ Group

Sets in Prolog (2)

member(X,[X|_]).
member(X,[_|Xs]) :- member(X,Xs).

union([],Ys,Ys).
union([X|Xs],Ys,Zs) :- member(X,Ys), !, union(Xs,Ys,Zs).
union([X|Xs],Ys,[X|Zs]) :- union(Xs,Ys,Zs).

| ?- union([1,2],[1,3],Us).
Us = [2,1,3] ? ;
no

Pure Prolog (Lecture 6)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 29 of 34 Computational
Logic ∴ Group

Incorrect Use of Cut (1)
Pruning Successful Branches

only_b(a) :- !, test(a).
only_b(b) :- !, test(b).
test(b).

| ?- only_b(a).
no

| ?- only_b(b).
yes

| ?- only_b(X).
no

Pure Prolog (Lecture 6)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 30 of 34 Computational
Logic ∴ Group

Incorrect Use of Cut (2)
Allowing Wrong Answers

% max(X,Y,Z) :- Z is the maximum of X and Y
max(X,Y,Y) :- X =< Y, !.
max(X,_,X).

| ?- max(2,5,Z).
Z = 5

| ?- max(2,1,Z).
Z = 2

| ?- max(2,5,2).
yes

Pure Prolog (Lecture 6)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 31 of 34 Computational
Logic ∴ Group

Meta-Variables
Ameta-variable is a variable in the position of an atom.
Meta-variables must become instantiated before they are selected!

p(a).
a.

| ?- p(X), X.
X = a

| ?- p(X), Y.
INSTANTIATION ERROR: call(user:_34) - arg 1

| ?- X, p(X).
INSTANTIATION ERROR: call(user:_34) - arg 1

Pure Prolog (Lecture 6)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 32 of 34 Computational
Logic ∴ Group

Using Meta-Variables
or(X, _) :- X.
or(_, Y) :- Y.
% or is also predefined in Prolog: :- op(1100, xfy, ;).
% or(X,Y) is written as: X ; Y

if_then_else(P, Q, _) :- P, !, Q.
if_then_else(_, _, R) :- R.
% if_then_else is also predefined in Prolog: :- op(1050, xfy, ->).
% if_then_else(P,Q,R) is written as: P -> Q ; R

not(X) :- X, !, fail.
not(_).
% atom fail always fails
% not is also predefined in Prolog: :- op(900, fy, \+).
% not(X) is written as: \+ X

Pure Prolog (Lecture 6)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 33 of 34 Computational
Logic ∴ Group

Conclusion
Summary
• Prolog employs SLD resolution with the leftmost selection rule(⇝ LD resolution), traverses the search space using depth-first search(with backtracking), and regards a program as a sequence of clauses.
• Prolog also offers list processing and arithmetics.
• The cut prunes certain branches of Prolog trees, and can lead to moreefficient programs, but also to programming errors.
Suggested action points:
• Repair the incorrect uses of cut on slides 30 and 31 (using the cutcorrectly).
• Define a unary predicate is_set that succeeds iff its argument is a list ofterms without duplicates. Write versions with(out) !, and with(out) \+.

Pure Prolog (Lecture 6)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 34 of 34 Computational
Logic ∴ Group

	Pure Prolog vs. Logic Programming
	Lists in Prolog
	Adding Arithmetics to Pure Prolog
	Adding the Cut to Prolog

