

ACADEMIC SKILLS: HOW TO READ A RESEARCH PAPER?

Recent Topics in Knowledge Graphs

Philipp Hanisch
TU Dresden, Knowledge-Based Systems Group

24th April 2025

RESEARCH PUBLICATIONS

What is research?

An OECD publication¹ derives the following key characteristics:

Research

The activity must be:

- **novel** [aimed at new findings, not known yet]
- **creative** [based on original, non-obvious concepts/hypotheses]
- **uncertain** [outcome and/or successfullness unknown]
- **systematic** [planned and consciously managed; rigorous]
- **transferable** and/or **reproducible** [results could be reproduced].

¹ Frascati Manual 2015: Guidelines for Collecting and Reporting Data on Research and Experimental Development; doi: 10.1787/9789264239012-en

Dimensions of research

Theoretical research

- ① Define objects of study
- ② State a conjecture
- ③ Construct a proof
- ④ Discuss and interpret the results

Dimensions of research

Theoretical research

- ① Define objects of study
- ② State a conjecture
- ③ Construct a proof
- ④ Discuss and interpret the results

Experimental research

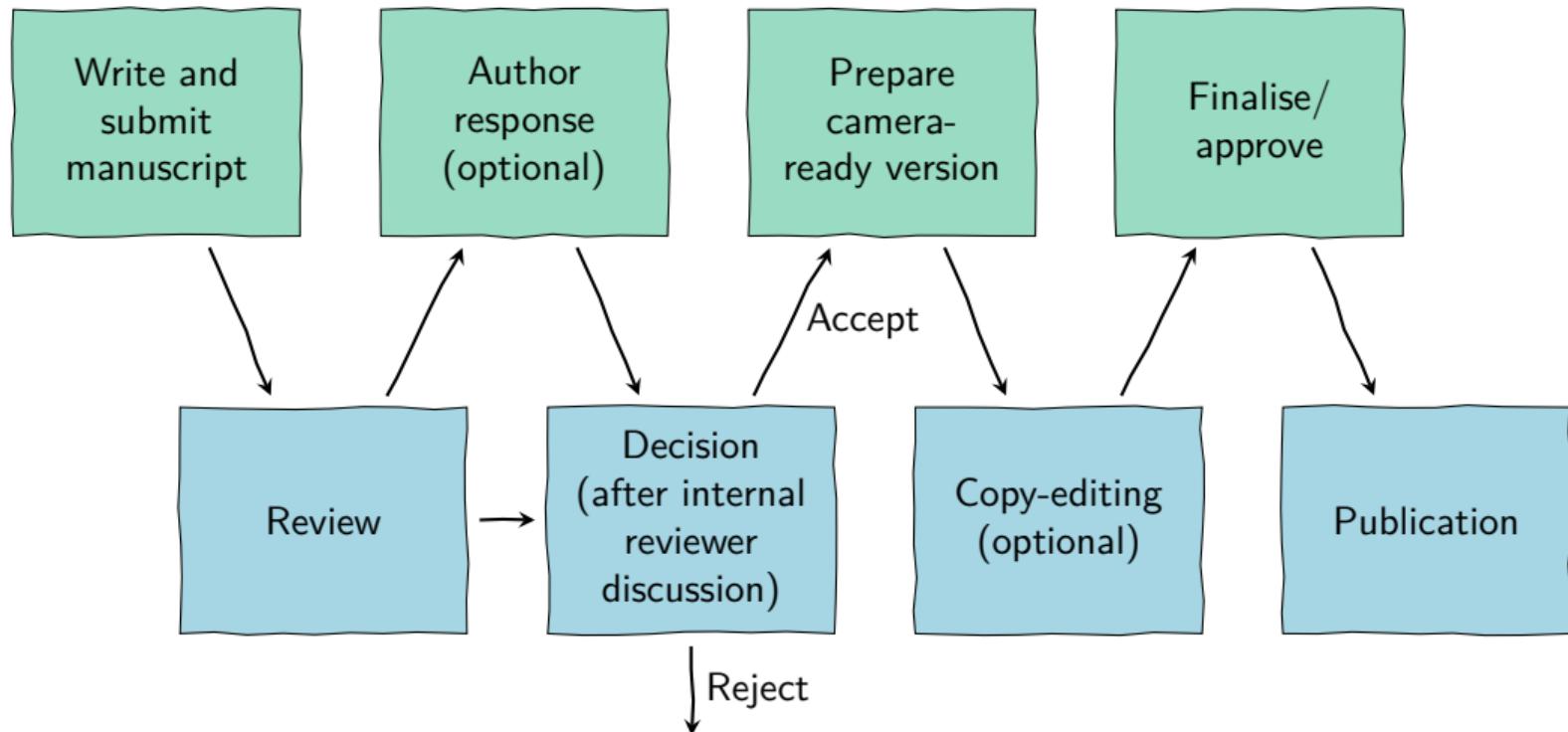
- ① Construct an initial theory (hypothesis, model)
- ② Make a prediction based on the initial theory
- ③ Design and carry out experiments to test the prediction
- ④ Analyse and compare outcome of the experiments with prediction

Dimensions of research

Theoretical research

- ① Define objects of study
- ② State a conjecture
- ③ Construct a proof
- ④ Discuss and interpret the results

Experimental research


- ① Construct an initial theory (hypothesis, model)
- ② Make a prediction based on the initial theory
- ③ Design and carry out experiments to test the prediction
- ④ Analyse and compare outcome of the experiments with prediction

Design-oriented research

- ① State or derive requirements
- ② Design a system

- ③ Implement and evaluate the system
- ④ Analyse results and draw conclusions about system design

Publication Procedure (Conference)

Types of publication

The following basic types of text publications should be distinguished:

- ① **Formal research venues:** articles in journals and proceedings of research conferences, with established academic standards and rigorous quality control
- ② **Informal research venues:** proceedings of workshops, meeting notes, etc.
- ③ **Monographs and collections:** books, including textbooks, and edited collections of invited research articles
- ④ **Theses:** Texts written for obtaining an academic degree
- ⑤ **Technical reports:** self-published research papers that may not have undergone any quality control yet, but are usually archived and stable
- ⑥ **Other online texts:** blog posts and other web pages
- ⑦ **Fake publications:** Fraudulent or pseudo-scientific texts that try to look like research

Publication in Computer Science

Conference proceedings:

- Fixed timeline (paper has to be accepted before event happens)
- Length restrictions (to allow timely review)
- Short time to publication (typical: two months submission–acceptance)

Publication in Computer Science

Conference proceedings:

- Fixed timeline (paper has to be accepted before event happens)
- Length restrictions (to allow timely review)
- Short time to publication (typical: two months submission–acceptance)

Journal articles:

- Open timeline (reviewers can ask for minor or major changes)
- Usually no length restrictions (to allow detailed, rigorous presentation)
- Possibly significant time to publication

Publication in Computer Science

Conference proceedings:

- Fixed timeline (paper has to be accepted before event happens)
- Length restrictions (to allow timely review)
- Short time to publication (typical: two months submission–acceptance)

Journal articles:

- Open timeline (reviewers can ask for minor or major changes)
- Usually no length restrictions (to allow detailed, rigorous presentation)
- Possibly significant time to publication

Workshop, posters, short papers:

- “Workshops” in computer science are often mini-conferences for preliminary works
- Emphasis of such events is on exchange; little relevance as publication venues

Evaluation Heuristics

Some questions can help to estimate quality before reading in detail:

- Where was it published?
- Who are the authors?
- When was it published?
- Are other researchers referring to it?
- What do others say about it?
- How is it presented?

Evaluation Heuristics

Some questions can help to estimate quality before reading in detail:

- Where was it published?
- Who are the authors?
- When was it published?
- Are other researchers referring to it?
- What do others say about it?
- How is it presented?

Caution

- These practically useful prejudices can help us to focus on the most promising works, but they cannot replace critical reading of the actual paper.
- Conferences and journals might actively eliminate them, e.g., via double-blind reviews.

Evaluation criteria

The evaluation of publications includes several criteria:

- **Relevance:** Does the contribution fit the conference/journal? Is it relevant to the research area it was submitted in?
- **Significance:** Are the results significant (big enough)? Does it advance our knowledge a lot?
- **Originality:** Is the work novel (new results, new methods, etc.)? Also compared to prior publications by the same authors.
- **Correctness:** Are the claims likely to be true? Are the proofs free of errors? Are the experimental designs sound? Are the conclusions valid?
- **Presentation:** Is the paper readable and clear?
- **Related work:** Does the work clarify how it compares to previous works in this area? Are all relevant references cited?

Reading with Intention

Reading a research text always has **two** goals:

- **Learn:** understand what was done and why, get new insights, find out which ideas/sources/people are important in this field
- **Judge:** assess the quality of the work, identify weaknesses and limitations, rate how credible/transferable/trustworthy it is

Reading with Intention

Reading a research text always has **two** goals:

- **Learn:** understand what was done and why, get new insights, find out which ideas/sources/people are important in this field
- **Judge:** assess the quality of the work, identify weaknesses and limitations, rate how credible/transferable/trustworthy it is

Reading objectives

- Learn about new results and gain new insights
- Learn about useful methods and research techniques
- Learn about hot topics and active fields of research
- Discover limitations of current works and important open problems
- Find out if a work is useful/interesting/of good quality
- Understand the typical scope/form/structure of works in this area/venue

Structure of research paper

Structure of a research paper

- ① Title, authors, affiliations**
- ② Abstract**
- ③ Introduction**
- ④ The research: details, methodology, results**
- ⑤ Conclusion**
- ⑥ References**

This form is highly standardised and helps to read papers efficiently:

- the parts in bold are almost always there, and have a largely standardised function
- the middle part is specific to the research that was done

Reading strategies

Reading start-to-end is rarely effective. Instead, you might find the following order useful:

- ① Title, authors, affiliations – interesting?
- ② Abstract – what's in this work (high level)?
- ③ Introduction (skip motivation if you are already motivated) – what did they do?
- ④ Conclusion – what was achieved?
- ⑤ Main research – decide if to read further parts of the main research content

Reading strategies

Reading start-to-end is rarely effective. Instead, you might find the following order useful:

- ① Title, authors, affiliations – interesting?
- ② Abstract – what's in this work (high level)?
- ③ Introduction (skip motivation if you are already motivated) – what did they do?
- ④ Conclusion – what was achieved?
- ⑤ Main research – decide if to read further parts of the main research content

If a paper is interesting, you will likely need to read it several times:

- **Revisit** single words, sentences, paragraphs, and sections to fully understand them
- **First pass** for overarching ideas and **second pass** for details
- Read with a **goal/question** in mind

Reading output

- ① Where and when was the work published?
- ② Who are the authors, and what are their affiliations?

Reading output

- ① Where and when was the work published?
- ② Who are the authors, and what are their affiliations?
- ③ Which problem did they address? What was their research question?
- ④ What did they propose as a solution?
- ⑤ Which methods did they use to validate their research?
- ⑥ What was the outcome? What did they learn?

Reading output

- ① Where and when was the work published?
- ② Who are the authors, and what are their affiliations?
- ③ Which problem did they address? What was their research question?
- ④ What did they propose as a solution?
- ⑤ Which methods did they use to validate their research?
- ⑥ What was the outcome? What did they learn?
- ⑦ Strong points of the work?
- ⑧ Weak points of the work?
- ⑨ Where would you place this work in comparison to its area and/or your own research?
- ⑩ What did you find hard to understand? Which further information do you need?

READING AS A PROCESS

Literature search

Search strategies:

- **Citation-based**: look at a paper's citations and search for papers that cite it
- **Wikipedia-based**: find classical key references to established fields and definitions
- **Person-based**: search for what a researcher has published recently
- **Venue-based**: browse recent editions of a relevant conference or journal

Literature search

Search strategies:

- **Citation-based**: look at a paper's citations and search for papers that cite it
- **Wikipedia-based**: find classical key references to established fields and definitions
- **Person-based**: search for what a researcher has published recently
- **Venue-based**: browse recent editions of a relevant conference or journal

Tools

- **Google Scholar** is a useful service for searching research texts
- **DBLP** is the most important literature database in computer science.
- **Scopus** is a literature database and search service by Elsevier.

Literature search

Search strategies:

- **Citation-based**: look at a paper's citations and search for papers that cite it
- **Wikipedia-based**: find classical key references to established fields and definitions
- **Person-based**: search for what a researcher has published recently
- **Venue-based**: browse recent editions of a relevant conference or journal

Tools

- **Google Scholar** is a useful service for searching research texts
- **DBLP** is the most important literature database in computer science.
- **Scopus** is a literature database and search service by Elsevier.

Note

- combine techniques for best results
- interleave reading/rating and further search

Strutured literature search

A structured literature search is a process and you might find it helpful to:

- start with a concrete goal/question in mind
- read in a goal-oriented, analytical way
- take notes
- store or bookmark the actual texts so you can find them
- organise and relate papers/researchers/venues/topics/ideas as you read

Structured literature search

A structured literature search is a process and you might find it helpful to:

- start with a concrete goal/question in mind
- read in a goal-oriented, analytical way
- take notes
- store or bookmark the actual texts so you can find them
- organise and relate papers/researchers/venues/topics/ideas as you read

Tools

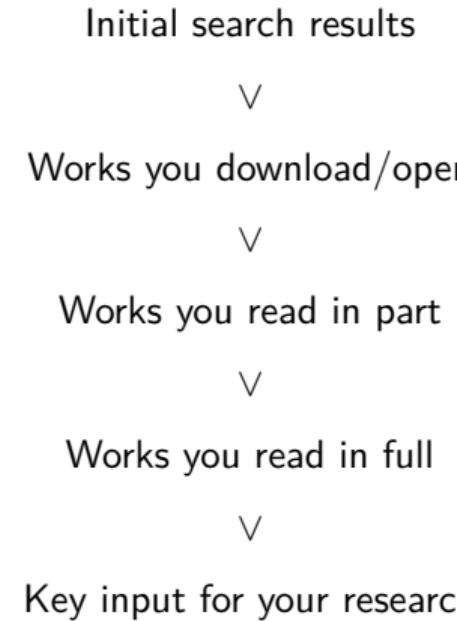
- Pen and paper
- Reference management tools,
e.g., Zotero, Citavi, Mendeley
- Note-taking applications,
e.g., Obsidian, Joplin, Evernote

Structured literature search

A structured literature search is a process and you might find it helpful to:

- start with a concrete goal/question in mind
- read in a goal-oriented, analytical way
- take notes
- store or bookmark the actual texts so you can find them
- organise and relate papers/researchers/venues/topics/ideas as you read

Tools


- Pen and paper
- Reference management tools,
e.g., Zotero, Citavi, Mendeley
- Note-taking applications,
e.g., Obsidian, Joplin, Evernote

Note

- You can have too much or too little structure.
- You have to find your own setup!

Reading process

The review of relevant literature is a process of continued focusing and selection:

