

DATABASE THEORY

Lecture 14: Datalog Evaluation

Markus Krötzsch

Knowledge-Based Systems

TU Dresden, 12th June 2023

More recent versions of this slide deck might be available. For the most current version of this course, see https://iccl.inf.tu-dresden.de/web/Database_Theory/en

Review: Datalog

A rule-based recursive query language

```
father(alice, bob)

mother(alice, carla)

Parent(x, y) \leftarrow father(x, y)

Parent(x, y) \leftarrow mother(x, y)

SameGeneration(x, x)

SameGeneration(x, y) \leftarrow Parent(x, y) \land Parent(y, w) \land SameGeneration(y, w)
```

- Datalog is more complex than FO query answering
- Datalog is more expressive than FO query answering
- · Semipositive Datalog with a successor ordering captures P
- Datalog containment is undecidable

Remaining question: How can Datalog query answering be implemented?

FO queries (and thus also CQs and UCQs) are supported by almost all DBMS \sim many specific implementation and optimisation techniques

How can Datalog queries be answered in practice? → techniques for dealing with recursion in DBMS query answering FO queries (and thus also CQs and UCQs) are supported by almost all DBMS \sim many specific implementation and optimisation techniques

How can Datalog queries be answered in practice? → techniques for dealing with recursion in DBMS query answering

There are two major paradigms for answering recursive queries:

- Bottom-up: derive conclusions by applying rules to given facts
- Top-down: search for proofs to infer results given query

Computing Datalog Query Answers Bottom-Up

We already saw a way to compute Datalog answers bottom-up: the step-wise computation of the consequence operator T_P

Bottom-up computation is known under many names:

- Forward-chaining since rules are "chained" from premise to conclusion (common in logic programming)
- Materialisation since inferred facts are stored ("materialised") (common in databases)
- Saturation since the input database is "saturated" with inferences (common in theorem proving)
- Deductive closure since we "close" the input under entailments (common in formal logic)

Naive Evaluation of Datalog Queries

A direct approach for computing T_P^{∞}

 $T_p^0 := \emptyset$ 01 i := 002 03 repeat : $T_{p}^{i+1} := \emptyset$ 04 05 for $H \leftarrow B_1 \land \ldots \land B_\ell \in P$: 06 for $\theta \in B_1 \land \ldots \land B_\ell(T_p^i)$: $T_{p}^{i+1} := T_{p}^{i+1} \cup \{H\theta\}$ 07 08 i := i + 1until $T_p^{i-1} = T_p^i$ 09 return T_p^i 10

Notation for line 06/07:

- a substitution θ is a mapping from variables to database elements
- for a formula *F*, we write *Fθ* for the formula obtained by replacing each free variable *x* in *F* by *θ*(*x*)
- for a CQ Q and database I, we write $\theta \in Q(I)$ if $I \models Q\theta$

An example Datalog program:

 $e(1,2) \quad e(2,3) \quad e(3,4) \quad e(4,5)$ (R1) $T(x,y) \leftarrow e(x,y)$ (R2) $T(x,z) \leftarrow T(x,y) \wedge T(y,z)$

$$\begin{split} T^0_P &= \emptyset \\ T^1_P &= \{\mathsf{T}(1,2),\mathsf{T}(2,3),\mathsf{T}(3,4),\mathsf{T}(4,5)\} \\ T^2_P &= T^1_P \cup \{\mathsf{T}(1,3),\mathsf{T}(2,4),\mathsf{T}(3,5)\} \\ T^3_P &= T^2_P \cup \{\mathsf{T}(1,4),\mathsf{T}(2,5),\mathsf{T}(1,5)\} \\ T^4_P &= T^3_P = T^\infty_P \end{split}$$

An example Datalog program:

 $e(1,2) \quad e(2,3) \quad e(3,4) \quad e(4,5)$ (R1) $T(x,y) \leftarrow e(x,y)$ (R2) $T(x,z) \leftarrow T(x,y) \wedge T(y,z)$

How many body matches do we need to iterate over?

$$\begin{split} T^0_P &= \emptyset & \text{initialisation} \\ T^1_P &= \{\mathsf{T}(1,2),\mathsf{T}(2,3),\mathsf{T}(3,4),\mathsf{T}(4,5)\} \\ T^2_P &= T^1_P \cup \{\mathsf{T}(1,3),\mathsf{T}(2,4),\mathsf{T}(3,5)\} \\ T^3_P &= T^2_P \cup \{\mathsf{T}(1,4),\mathsf{T}(2,5),\mathsf{T}(1,5)\} \\ T^4_P &= T^3_P = T^\infty_P \end{split}$$

An example Datalog program:

 $e(1,2) \quad e(2,3) \quad e(3,4) \quad e(4,5)$ (R1) $T(x,y) \leftarrow e(x,y)$ (R2) $T(x,z) \leftarrow T(x,y) \wedge T(y,z)$

How many body matches do we need to iterate over?

$$\begin{split} T^0_P &= \emptyset & \text{initialisation} \\ T^1_P &= \{\mathsf{T}(1,2),\mathsf{T}(2,3),\mathsf{T}(3,4),\mathsf{T}(4,5)\} & 4 \text{ matches for } (R1) \\ T^2_P &= T^1_P \cup \{\mathsf{T}(1,3),\mathsf{T}(2,4),\mathsf{T}(3,5)\} \\ T^3_P &= T^2_P \cup \{\mathsf{T}(1,4),\mathsf{T}(2,5),\mathsf{T}(1,5)\} \\ T^4_P &= T^3_P = T^\infty_P \end{split}$$

An example Datalog program:

 $e(1,2) \quad e(2,3) \quad e(3,4) \quad e(4,5)$ (R1) $T(x,y) \leftarrow e(x,y)$ (R2) $T(x,z) \leftarrow T(x,y) \wedge T(y,z)$

How many body matches do we need to iterate over?

$$\begin{split} T^0_P &= \emptyset & \text{initialisation} \\ T^1_P &= \{\mathsf{T}(1,2),\mathsf{T}(2,3),\mathsf{T}(3,4),\mathsf{T}(4,5)\} & 4 \text{ matches for } (R1) \\ T^2_P &= T^1_P \cup \{\mathsf{T}(1,3),\mathsf{T}(2,4),\mathsf{T}(3,5)\} & 4 \times (R1) + 3 \times (R2) \\ T^3_P &= T^2_P \cup \{\mathsf{T}(1,4),\mathsf{T}(2,5),\mathsf{T}(1,5)\} \\ T^4_P &= T^3_P = T^\infty_P \end{split}$$

An example Datalog program:

 $e(1,2) \quad e(2,3) \quad e(3,4) \quad e(4,5)$ (R1) $T(x,y) \leftarrow e(x,y)$ (R2) $T(x,z) \leftarrow T(x,y) \wedge T(y,z)$

How many body matches do we need to iterate over?

$$\begin{split} T^0_P &= \emptyset & \text{initialisation} \\ T^1_P &= \{\mathsf{T}(1,2),\mathsf{T}(2,3),\mathsf{T}(3,4),\mathsf{T}(4,5)\} & 4 \text{ matches for } (R1) \\ T^2_P &= T^1_P \cup \{\mathsf{T}(1,3),\mathsf{T}(2,4),\mathsf{T}(3,5)\} & 4 \times (R1) + 3 \times (R2) \\ T^3_P &= T^2_P \cup \{\mathsf{T}(1,4),\mathsf{T}(2,5),\mathsf{T}(1,5)\} & 4 \times (R1) + 8 \times (R2) \\ T^4_P &= T^3_P = T^\infty_P \end{split}$$

An example Datalog program:

 $e(1,2) \quad e(2,3) \quad e(3,4) \quad e(4,5)$ (R1) $T(x,y) \leftarrow e(x,y)$ (R2) $T(x,z) \leftarrow T(x,y) \wedge T(y,z)$

How many body matches do we need to iterate over?

$$\begin{split} T^0_P &= \emptyset & \text{initialisation} \\ T^1_P &= \{\mathsf{T}(1,2),\mathsf{T}(2,3),\mathsf{T}(3,4),\mathsf{T}(4,5)\} & 4 \text{ matches for } (R1) \\ T^2_P &= T^1_P \cup \{\mathsf{T}(1,3),\mathsf{T}(2,4),\mathsf{T}(3,5)\} & 4 \times (R1) + 3 \times (R2) \\ T^3_P &= T^2_P \cup \{\mathsf{T}(1,4),\mathsf{T}(2,5),\mathsf{T}(1,5)\} & 4 \times (R1) + 8 \times (R2) \\ T^4_P &= T^3_P &= T^\infty_P & 4 \times (R1) + 10 \times (R2) \end{split}$$

An example Datalog program:

 $e(1,2) \quad e(2,3) \quad e(3,4) \quad e(4,5)$ (R1) $T(x,y) \leftarrow e(x,y)$ (R2) $T(x,z) \leftarrow T(x,y) \wedge T(y,z)$

How many body matches do we need to iterate over?

$$\begin{split} T^0_P &= \emptyset & \text{initialisation} \\ T^1_P &= \{\mathsf{T}(1,2),\mathsf{T}(2,3),\mathsf{T}(3,4),\mathsf{T}(4,5)\} & 4 \text{ matches for } (R1) \\ T^2_P &= T^1_P \cup \{\mathsf{T}(1,3),\mathsf{T}(2,4),\mathsf{T}(3,5)\} & 4 \times (R1) + 3 \times (R2) \\ T^3_P &= T^2_P \cup \{\mathsf{T}(1,4),\mathsf{T}(2,5),\mathsf{T}(1,5)\} & 4 \times (R1) + 8 \times (R2) \\ T^4_P &= T^3_P = T^\infty_P & 4 \times (R1) + 10 \times (R2) \end{split}$$

In total, we considered 37 matches to derive 11 facts

Less Naive Evaluation Strategies

Does it really matter how often we consider a rule match? After all, each fact is added only once ...

Less Naive Evaluation Strategies

Does it really matter how often we consider a rule match? After all, each fact is added only once ...

In practice, finding applicable rules takes significant time, even if the conclusion does not need to be added – iteration takes time! ~ huge potential for optimisation

Observation:

we derive the same conclusions over and over again in each step

Idea: apply rules only to newly derived facts \sim semi-naive evaluation

Semi-Naive Evaluation

The computation yields sets $T_P^0 \subseteq T_P^1 \subseteq T_P^2 \subseteq \ldots \subseteq T_P^\infty$

- For an IDB predicate R, let Rⁱ be the "predicate" that contains exactly the R-facts in Tⁱ_P
- For $i \leq 1$, let Δ_{R}^i be the collection of facts $\mathsf{R}^i \setminus \mathsf{R}^{i-1}$

We can restrict rules to use only some computations.

Semi-Naive Evaluation

The computation yields sets $T_P^0 \subseteq T_P^1 \subseteq T_P^2 \subseteq \ldots \subseteq T_P^\infty$

- For an IDB predicate R, let Rⁱ be the "predicate" that contains exactly the R-facts in Tⁱ_P
- For $i \leq 1$, let Δ_{R}^{i} be the collection of facts $\mathsf{R}^{i} \setminus \mathsf{R}^{i-1}$

We can restrict rules to use only some computations.

Some options for the computation in step i + 1:

$$\begin{split} \mathsf{T}(x,z) &\leftarrow \mathsf{T}^{i}(x,y) \land \mathsf{T}^{i}(y,z) \\ \mathsf{T}(x,z) &\leftarrow \Delta^{i}_{\mathsf{T}}(x,y) \land \Delta^{i}_{\mathsf{T}}(y,z) \\ \mathsf{T}(x,z) &\leftarrow \Delta^{i}_{\mathsf{T}}(x,y) \land \mathsf{T}^{i}(y,z) \\ \mathsf{T}(x,z) &\leftarrow \mathsf{T}^{i}(x,y) \land \Delta^{i}_{\mathsf{T}}(y,z) \end{split}$$

same as original rule restrict to new facts partially restrict to new facts partially restrict to new facts

What to choose?

Semi-Naive Evaluation (2)

Inferences that involve new and old facts are necessary:

$$e(1,2) \quad e(2,3) \quad e(3,4) \quad e(4,5)$$
(R1)
$$T(x,y) \leftarrow e(x,y)$$
(R2)
$$T(x,z) \leftarrow T(x,y) \wedge T(y,z)$$

$$\begin{split} T^0_P &= \emptyset \\ \Delta^1_{\mathsf{T}} &= \{\mathsf{T}(1,2),\mathsf{T}(2,3),\mathsf{T}(3,4),\mathsf{T}(4,5)\} \quad T^1_P &= \Delta^1_{\mathsf{T}} \\ \Delta^2_{\mathsf{T}} &= \{\mathsf{T}(1,3),\mathsf{T}(2,4),\mathsf{T}(3,5)\} \quad T^2_P &= T^1_P \cup \Delta^2_{\mathsf{T}} \\ \Delta^3_{\mathsf{T}} &= \{\mathsf{T}(1,4),\mathsf{T}(2,5),\mathsf{T}(1,5)\} \quad T^3_P &= T^2_P \cup \Delta^3_{\mathsf{T}} \\ \Delta^4_{\mathsf{T}} &= \emptyset \quad T^4_P &= T^3_P &= T^\infty_P \end{split}$$

Semi-Naive Evaluation (2)

Inferences that involve new and old facts are necessary:

$$e(1,2) \quad e(2,3) \quad e(3,4) \quad e(4,5)$$
(R1)
$$T(x,y) \leftarrow e(x,y)$$
(R2)
$$T(x,z) \leftarrow T(x,y) \wedge T(y,z)$$

$$\begin{split} T^0_P &= \emptyset \\ \Delta^1_{\mathsf{T}} &= \{\mathsf{T}(1,2),\mathsf{T}(2,3),\mathsf{T}(3,4),\mathsf{T}(4,5)\} \quad T^1_P &= \Delta^1_{\mathsf{T}} \\ \Delta^2_{\mathsf{T}} &= \{\mathsf{T}(1,3),\mathsf{T}(2,4),\mathsf{T}(3,5)\} \quad T^2_P &= T^1_P \cup \Delta^2_{\mathsf{T}} \\ \Delta^3_{\mathsf{T}} &= \{\mathsf{T}(1,4),\mathsf{T}(2,5),\mathsf{T}(1,5)\} \quad T^3_P &= T^2_P \cup \Delta^3_{\mathsf{T}} \\ \Delta^4_{\mathsf{T}} &= \emptyset \quad T^4_P &= T^3_P &= T^\infty_P \end{split}$$

To derive T(1, 4) in Δ_T^3 , we need to combine $T(1, 3) \in \Delta_T^2$ with $T(3, 4) \in \Delta_T^1$ or $T(1, 2) \in \Delta_T^1$ with $T(2, 4) \in \Delta_T^2$

Markus Krötzsch, 12th June 2023

Semi-Naive Evaluation (2)

Inferences that involve new and old facts are necessary:

$$e(1,2) \quad e(2,3) \quad e(3,4) \quad e(4,5)$$
(R1)
$$T(x,y) \leftarrow e(x,y)$$
(R2)
$$T(x,z) \leftarrow T(x,y) \wedge T(y,z)$$

$$\begin{split} T^0_P &= \emptyset \\ \Delta^1_{\mathsf{T}} &= \{\mathsf{T}(1,2),\mathsf{T}(2,3),\mathsf{T}(3,4),\mathsf{T}(4,5)\} \quad T^1_P &= \Delta^1_{\mathsf{T}} \\ \Delta^2_{\mathsf{T}} &= \{\mathsf{T}(1,3),\mathsf{T}(2,4),\mathsf{T}(3,5)\} \quad T^2_P &= T^1_P \cup \Delta^2_{\mathsf{T}} \\ \Delta^3_{\mathsf{T}} &= \{\mathsf{T}(1,4),\mathsf{T}(2,5),\mathsf{T}(1,5)\} \quad T^3_P &= T^2_P \cup \Delta^3_{\mathsf{T}} \\ \Delta^4_{\mathsf{T}} &= \emptyset \quad T^4_P &= T^3_P &= T^\infty_P \end{split}$$

To derive T(1, 4) in Δ_T^3 , we need to combine T(1, 3) $\in \Delta_T^2$ with T(3, 4) $\in \Delta_T^1$ or T(1, 2) $\in \Delta_T^1$ with T(2, 4) $\in \Delta_T^2$ \rightarrow rule T(*x*, *z*) $\leftarrow \Delta_T^i(x, y) \land \Delta_T^i(y, z)$ is not enough

Semi-Naive Evaluation (3)

Correct approach: consider only rule application that use at least one newly derived IDB atom

For example program:

 $\begin{array}{ll} \mathsf{e}(1,2) & \mathsf{e}(2,3) & \mathsf{e}(3,4) & \mathsf{e}(4,5) \\ (R1) & \mathsf{T}(x,y) \leftarrow \mathsf{e}(x,y) \\ (R2.1) & \mathsf{T}(x,z) \leftarrow \Delta^i_\mathsf{T}(x,y) \wedge \mathsf{T}^i(y,z) \\ (R2.2) & \mathsf{T}(x,z) \leftarrow \mathsf{T}^i(x,y) \wedge \Delta^i_\mathsf{T}(y,z) \end{array}$

Semi-Naive Evaluation (3)

Correct approach: consider only rule application that use at least one newly derived IDB atom

For example program:

 $e(1,2) \quad e(2,3) \quad e(3,4) \quad e(4,5)$ $(R1) \qquad \mathsf{T}(x,y) \leftarrow \mathsf{e}(x,y)$ $(R2.1) \qquad \mathsf{T}(x,z) \leftarrow \Delta^{i}_{\mathsf{T}}(x,y) \wedge \mathsf{T}^{i}(y,z)$ $(R2.2) \qquad \mathsf{T}(x,z) \leftarrow \mathsf{T}^{i}(x,y) \wedge \Delta^{i}_{\mathsf{T}}(y,z)$

There is still redundancy here: the matches for $T(x, z) \leftarrow \Delta_T^i(x, y) \wedge \Delta_T^i(y, z)$ are covered by both (*R*2.1) and (*R*2.2)

Semi-Naive Evaluation (3)

Correct approach: consider only rule application that use at least one newly derived IDB atom

For example program:

 $e(1,2) \quad e(2,3) \quad e(3,4) \quad e(4,5)$ $(R1) \qquad \mathsf{T}(x,y) \leftarrow \mathsf{e}(x,y)$ $(R2.1) \qquad \mathsf{T}(x,z) \leftarrow \Delta^{i}_{\mathsf{T}}(x,y) \wedge \mathsf{T}^{i}(y,z)$ $(R2.2) \qquad \mathsf{T}(x,z) \leftarrow \mathsf{T}^{i}(x,y) \wedge \Delta^{i}_{\mathsf{T}}(y,z)$

There is still redundancy here: the matches for $T(x, z) \leftarrow \Delta_T^i(x, y) \land \Delta_T^i(y, z)$ are covered by both (*R*2.1) and (*R*2.2)

 \rightsquigarrow replace (*R*2.2) by the following rule:

$$(R2.2') \qquad \mathsf{T}(x,z) \leftarrow \mathsf{T}^{i-1}(x,y) \land \Delta^{i}_{\mathsf{T}}(y,z)$$

EDB atoms do not change, so their Δ would be \emptyset

 \rightsquigarrow ignore such rules after the first iteration

Markus Krötzsch, 12th June 2023

Database Theory

$$\begin{array}{ll} \mathsf{e}(1,2) & \mathsf{e}(2,3) & \mathsf{e}(3,4) & \mathsf{e}(4,5) \\ (R1) & \mathsf{T}(x,y) \leftarrow \mathsf{e}(x,y) \\ (R2.1) & \mathsf{T}(x,z) \leftarrow \Delta^i_\mathsf{T}(x,y) \wedge \mathsf{T}^i(y,z) \\ (R2.2') & \mathsf{T}(x,z) \leftarrow \mathsf{T}^{i-1}(x,y) \wedge \Delta^i_\mathsf{T}(y,z) \end{array}$$

$$\begin{split} T^0_P &= \emptyset \\ T^1_P &= \{\mathsf{T}(1,2),\mathsf{T}(2,3),\mathsf{T}(3,4),\mathsf{T}(4,5)\} \\ T^2_P &= T^1_P \cup \{\mathsf{T}(1,3),\mathsf{T}(2,4),\mathsf{T}(3,5)\} \\ T^3_P &= T^2_P \cup \{\mathsf{T}(1,4),\mathsf{T}(2,5),\mathsf{T}(1,5)\} \\ T^4_P &= T^3_P = T^\infty_P \end{split}$$

$$\begin{array}{ll} e(1,2) & e(2,3) & e(3,4) & e(4,5) \\ (R1) & \mathsf{T}(x,y) \leftarrow e(x,y) \\ (R2.1) & \mathsf{T}(x,z) \leftarrow \Delta_\mathsf{T}^i(x,y) \wedge \mathsf{T}^i(y,z) \\ R2.2') & \mathsf{T}(x,z) \leftarrow \mathsf{T}^{i-1}(x,y) \wedge \Delta_\mathsf{T}^i(y,z) \end{array}$$

How many body matches do we need to iterate over?

$$\begin{split} T^0_P &= \emptyset & \text{initialisation} \\ T^1_P &= \{\mathsf{T}(1,2),\mathsf{T}(2,3),\mathsf{T}(3,4),\mathsf{T}(4,5)\} \\ T^2_P &= T^1_P \cup \{\mathsf{T}(1,3),\mathsf{T}(2,4),\mathsf{T}(3,5)\} \\ T^3_P &= T^2_P \cup \{\mathsf{T}(1,4),\mathsf{T}(2,5),\mathsf{T}(1,5)\} \\ T^4_P &= T^3_P = T^\infty_P \end{split}$$

$$\begin{array}{ll} e(1,2) & e(2,3) & e(3,4) & e(4,5) \\ (R1) & \mathsf{T}(x,y) \leftarrow e(x,y) \\ (R2.1) & \mathsf{T}(x,z) \leftarrow \Delta_\mathsf{T}^i(x,y) \wedge \mathsf{T}^i(y,z) \\ R2.2') & \mathsf{T}(x,z) \leftarrow \mathsf{T}^{i-1}(x,y) \wedge \Delta_\mathsf{T}^i(y,z) \end{array}$$

How many body matches do we need to iterate over?

$$\begin{split} T^0_P &= \emptyset & \text{initialisation} \\ T^1_P &= \{\mathsf{T}(1,2),\mathsf{T}(2,3),\mathsf{T}(3,4),\mathsf{T}(4,5)\} & 4 \times (R1) \\ T^2_P &= T^1_P \cup \{\mathsf{T}(1,3),\mathsf{T}(2,4),\mathsf{T}(3,5)\} \\ T^3_P &= T^2_P \cup \{\mathsf{T}(1,4),\mathsf{T}(2,5),\mathsf{T}(1,5)\} \\ T^4_P &= T^3_P = T^\infty_P \end{split}$$

$$\begin{array}{ll} e(1,2) & e(2,3) & e(3,4) & e(4,5) \\ (R1) & \mathsf{T}(x,y) \leftarrow e(x,y) \\ (R2.1) & \mathsf{T}(x,z) \leftarrow \Delta_{\mathsf{T}}^{i}(x,y) \wedge \mathsf{T}^{i}(y,z) \\ R2.2') & \mathsf{T}(x,z) \leftarrow \mathsf{T}^{i-1}(x,y) \wedge \Delta_{\mathsf{T}}^{i}(y,z) \end{array}$$

How many body matches do we need to iterate over?

$$\begin{split} T^0_P &= \emptyset & \text{initialisation} \\ T^1_P &= \{\mathsf{T}(1,2),\mathsf{T}(2,3),\mathsf{T}(3,4),\mathsf{T}(4,5)\} & 4 \times (R1) \\ T^2_P &= T^1_P \cup \{\mathsf{T}(1,3),\mathsf{T}(2,4),\mathsf{T}(3,5)\} & 3 \times (R2.1) \\ T^3_P &= T^2_P \cup \{\mathsf{T}(1,4),\mathsf{T}(2,5),\mathsf{T}(1,5)\} \\ T^4_P &= T^3_P = T^\infty_P \end{split}$$

$$e(1,2) \quad e(2,3) \quad e(3,4) \quad e(4,5)$$

$$(R1) \qquad \mathsf{T}(x,y) \leftarrow \mathsf{e}(x,y)$$

$$(R2.1) \qquad \mathsf{T}(x,z) \leftarrow \Delta^{i}_{\mathsf{T}}(x,y) \wedge \mathsf{T}^{i}(y,z)$$

$$R2.2') \qquad \mathsf{T}(x,z) \leftarrow \mathsf{T}^{i-1}(x,y) \wedge \Delta^{i}_{\mathsf{T}}(y,z)$$

How many body matches do we need to iterate over?

$$\begin{split} T^0_P &= \emptyset & \text{initialisation} \\ T^1_P &= \{\mathsf{T}(1,2),\mathsf{T}(2,3),\mathsf{T}(3,4),\mathsf{T}(4,5)\} & 4 \times (R1) \\ T^2_P &= T^1_P \cup \{\mathsf{T}(1,3),\mathsf{T}(2,4),\mathsf{T}(3,5)\} & 3 \times (R2.1) \\ T^3_P &= T^2_P \cup \{\mathsf{T}(1,4),\mathsf{T}(2,5),\mathsf{T}(1,5)\} & 3 \times (R2.1), 2 \times (R2.2') \\ T^4_P &= T^3_P &= T^\infty_P \end{split}$$

$$\begin{array}{ll} \mathsf{e}(1,2) & \mathsf{e}(2,3) & \mathsf{e}(3,4) & \mathsf{e}(4,5) \\ (R1) & \mathsf{T}(x,y) \leftarrow \mathsf{e}(x,y) \\ (R2.1) & \mathsf{T}(x,z) \leftarrow \Delta^i_\mathsf{T}(x,y) \wedge \mathsf{T}^i(y,z) \\ R2.2') & \mathsf{T}(x,z) \leftarrow \mathsf{T}^{i-1}(x,y) \wedge \Delta^i_\mathsf{T}(y,z) \end{array}$$

How many body matches do we need to iterate over?

$$\begin{split} T^0_P &= \emptyset & \text{initialisation} \\ T^1_P &= \{\mathsf{T}(1,2),\mathsf{T}(2,3),\mathsf{T}(3,4),\mathsf{T}(4,5)\} & 4 \times (R1) \\ T^2_P &= T^1_P \cup \{\mathsf{T}(1,3),\mathsf{T}(2,4),\mathsf{T}(3,5)\} & 3 \times (R2.1) \\ T^3_P &= T^2_P \cup \{\mathsf{T}(1,4),\mathsf{T}(2,5),\mathsf{T}(1,5)\} & 3 \times (R2.1), 2 \times (R2.2') \\ T^4_P &= T^3_P &= T^\infty_P & 1 \times (R2.1), 1 \times (R2.2') \end{split}$$

Markus Krötzsch, 12th June 2023

$$\begin{array}{ll} e(1,2) & e(2,3) & e(3,4) & e(4,5) \\ (R1) & \mathsf{T}(x,y) \leftarrow e(x,y) \\ (R2.1) & \mathsf{T}(x,z) \leftarrow \Delta_\mathsf{T}^i(x,y) \wedge \mathsf{T}^i(y,z) \\ R2.2') & \mathsf{T}(x,z) \leftarrow \mathsf{T}^{i-1}(x,y) \wedge \Delta_\mathsf{T}^i(y,z) \end{array}$$

How many body matches do we need to iterate over?

$$\begin{split} T^0_P &= \emptyset & \text{initialisation} \\ T^1_P &= \{\mathsf{T}(1,2),\mathsf{T}(2,3),\mathsf{T}(3,4),\mathsf{T}(4,5)\} & 4 \times (R1) \\ T^2_P &= T^1_P \cup \{\mathsf{T}(1,3),\mathsf{T}(2,4),\mathsf{T}(3,5)\} & 3 \times (R2.1) \\ T^3_P &= T^2_P \cup \{\mathsf{T}(1,4),\mathsf{T}(2,5),\mathsf{T}(1,5)\} & 3 \times (R2.1), 2 \times (R2.2') \\ T^4_P &= T^3_P &= T^\infty_P & 1 \times (R2.1), 1 \times (R2.2') \end{split}$$

In total, we considered 14 matches to derive 11 facts

Markus Krötzsch, 12th June 2023

Semi-Naive Evaluation: Full Definition

In general, a rule of the form

 $\mathsf{H}(\vec{x}) \leftarrow \mathsf{e}_1(\vec{y}_1) \land \ldots \land \mathsf{e}_n(\vec{y}_n) \land \mathsf{l}_1(\vec{z}_1) \land \mathsf{l}_2(\vec{z}_2) \land \ldots \land \mathsf{l}_m(\vec{z}_m)$

is transformed into *m* rules

$$\begin{split} \mathsf{H}(\vec{x}) &\leftarrow \mathsf{e}_{1}(\vec{y}_{1}) \wedge \ldots \wedge \mathsf{e}_{n}(\vec{y}_{n}) \wedge \Delta_{\mathsf{l}_{1}}^{i}(\vec{z}_{1}) \wedge \mathsf{l}_{2}^{i}(\vec{z}_{2}) \wedge \ldots \wedge \mathsf{l}_{m}^{i}(\vec{z}_{m}) \\ \mathsf{H}(\vec{x}) &\leftarrow \mathsf{e}_{1}(\vec{y}_{1}) \wedge \ldots \wedge \mathsf{e}_{n}(\vec{y}_{n}) \wedge \mathsf{l}_{1}^{i-1}(\vec{z}_{1}) \wedge \Delta_{\mathsf{l}_{2}}^{i}(\vec{z}_{2}) \wedge \ldots \wedge \mathsf{l}_{m}^{i}(\vec{z}_{m}) \\ & \dots \\ \mathsf{H}(\vec{x}) \leftarrow \mathsf{e}_{1}(\vec{y}_{1}) \wedge \ldots \wedge \mathsf{e}_{n}(\vec{y}_{n}) \wedge \mathsf{l}_{1}^{i-1}(\vec{z}_{1}) \wedge \mathsf{l}_{2}^{i-1}(\vec{z}_{2}) \wedge \ldots \wedge \Delta_{\mathsf{l}_{m}}^{i}(\vec{z}_{m}) \end{split}$$

Advantages and disadvantages:

- Huge improvement over naive evaluation
- Some redundant computations remain (see example)
- Some overhead for implementation (store level of entailments)

Goal-Directed Datalog Evaluation

Top-Down Evaluation

Idea: we may not need to compute all derivations to answer a particular query

The answers to Query are the T-successors of 2.

However, bottom-up computation would also produce facts like T(1, 4), which are neither directly nor indirectly relevant for computing the query result.

Assumption

Assumption: For all techniques presented in this lecture, we assume that the given Datalog program is safe.

- This is without loss of generality (as shown in exercise).
- One can avoid this by adding more cases to algorithms.

Query-Subquery (QSQ)

QSQ is a technique for organising top-down Datalog query evaluation

Main principles:

- Apply backward chaining/resolution: start with query, find rules that can derive query, evaluate body atoms of those rules (subqueries) recursively
- Evaluate intermediate results "set-at-a-time" (using relational algebra on tables)
- Evaluate queries in a "data-driven" way, where operations are applied only to newly computed intermediate results (similar to idea in semi-naive evaluation)
- "Push" variable bindings (constants) from heads (queries) into bodies (subqueries)
- "Pass" variable bindings (constants) "sideways" from one body atom to the next Details can be realised in several ways.

Adornments

To guide evaluation, we distinguish free and bound parameters in a predicate.

Example 14.2: If we want to derive atom T(2, z) from the rule $T(x, z) \leftarrow T(x, y) \land T(y, z)$, then *x* will be bound to 2, while *z* is free.

Adornments

To guide evaluation, we distinguish free and bound parameters in a predicate.

Example 14.2: If we want to derive atom T(2, z) from the rule $T(x, z) \leftarrow T(x, y) \land T(y, z)$, then *x* will be bound to 2, while *z* is free.

We use adornments to denote the free/bound parameters in predicates.

Example 14.3:

$$\mathsf{T}^{bf}(x,z) \leftarrow \mathsf{T}^{bf}(x,y) \wedge \mathsf{T}^{bf}(y,z)$$

- since x is bound in the head, it is also bound in the first atom
- any match for the first atom binds *y*, so *y* is bound when evaluating the second atom (in left-to-right evaluation)

Adornments: Examples

The adornment of the head of a rule determines the adornments of the body atoms:

$$\begin{split} \mathsf{R}^{bbb}(x,y,z) &\leftarrow \mathsf{R}^{bbf}(x,y,v) \land \mathsf{R}^{bbb}(x,v,z) \\ \mathsf{R}^{fbf}(x,y,z) &\leftarrow \mathsf{R}^{fbf}(x,y,v) \land \mathsf{R}^{bbf}(x,v,z) \end{split}$$

Adornments: Examples

The adornment of the head of a rule determines the adornments of the body atoms:

$$\begin{split} \mathsf{R}^{bbb}(x,y,z) &\leftarrow \mathsf{R}^{bbf}(x,y,v) \land \mathsf{R}^{bbb}(x,v,z) \\ \mathsf{R}^{fbf}(x,y,z) &\leftarrow \mathsf{R}^{fbf}(x,y,v) \land \mathsf{R}^{bbf}(x,v,z) \end{split}$$

The order of body predicates affects the adornment:

$$\begin{split} \mathsf{S}^{\textit{ff}}(x,y,z) &\leftarrow \mathsf{T}^{\textit{ff}}(x,v) \land \mathsf{T}^{\textit{ff}}(y,w) \land \mathsf{R}^{\textit{bbf}}(v,w,z) \\ \mathsf{S}^{\textit{ff}}(x,y,z) &\leftarrow \mathsf{R}^{\textit{ff}}(v,w,z) \land \mathsf{T}^{\textit{fb}}(x,v) \land \mathsf{T}^{\textit{fb}}(y,w) \end{split}$$

 \rightsquigarrow For optimisation, some orders might be better than others

Auxiliary Relations for QSQ

To control evaluation, we store intermediate results in auxiliary relations.

When we "call" a rule with a head where some variables are bound, we need to provide the bindings as input \sim for adorned relation \mathbb{R}^{α} , we use an auxiliary relation $\operatorname{input}_{\mathbb{R}}^{\alpha}$ \sim arity of $\operatorname{input}_{\mathbb{R}}^{\alpha}$ = number of *b* in α

The result of calling a rule should be the "completed" input, with values for the unbound variables added

 \rightarrow for adorned relation R^{α} , we use an auxiliary relation output^{α}_R

 \rightsquigarrow arity of output^{α}_R = arity of R (= length of α)

Auxiliary Relations for QSQ (2)

When evaluating body atoms from left to right, we use supplementary relations $\sup_i \rightarrow$ bindings required to evaluate rest of rule after the *i*th body atom

- \rightsquigarrow the first set of bindings sup $_0$ comes from input_R^{lpha}
- \rightsquigarrow the last set of bindings sup_n go to output^{α}_B

Auxiliary Relations for QSQ (2)

When evaluating body atoms from left to right, we use supplementary relations \sup_i

 \rightarrow bindings required to evaluate rest of rule after the *i*th body atom

 \rightsquigarrow the first set of bindings sup $_0$ comes from input_B^{\alpha}

 \rightsquigarrow the last set of bindings sup_n go to output^{α}_B

Example 14.4: $T^{bf}(x,z) \leftarrow T^{bf}(x,y) \wedge T^{bf}(y,z)$ $\widehat{T} \qquad \widehat{Y} \qquad \widehat{Y}$

• $output_T^{bf}[x, z]$ is copied from $sup_2[x, z]$

(we use "named" notation like [x, y] to suggest what to join on; the relations are the same)

QSQ Evaluation

The set of all auxiliary relations is called a QSQ template (for the given set of adorned rules)

General evaluation:

- · add new tuples to auxiliary relations until reaching a fixed point
- evaluation of a rule can proceed as sketched on previous slide
- in addition, whenever new tuples are added to a sup relation that feeds into an IDB atom, the input relation of this atom is extended to include all binding given by sup (may trigger subquery evaluation)
- ightarrow there are many strategies for implementing this general scheme

QSQ Evaluation

The set of all auxiliary relations is called a QSQ template (for the given set of adorned rules)

General evaluation:

- · add new tuples to auxiliary relations until reaching a fixed point
- evaluation of a rule can proceed as sketched on previous slide
- in addition, whenever new tuples are added to a sup relation that feeds into an IDB atom, the input relation of this atom is extended to include all binding given by sup (may trigger subquery evaluation)
- ightarrow there are many strategies for implementing this general scheme

Notation:

• for an EDB atom *A*, we write *A*^{*I*} for table that consists of all matches for *A* in the database

Recursive QSQ

Recursive QSQ (QSQR) takes a "depth-first" approach to QSQ

Evaluation of single rule in QSQR:

Given: adorned rule r with head predicate R^{α} ; current values of all QSQ relations

- (1) Copy tuples input^{α} (that unify with rule head) to sup^r
- (2) For each body atom A_1, \ldots, A_n , do:
 - If A_i is an EDB atom, compute \sup_i^r as projection of $\sup_{i=1}^r \bowtie A_i^I$
 - If A_i is an IDB atom with adorned predicate S^{β} :
 - (a) Add new bindings from $\sup_{i=1}^{r}$, combined with constants in A_i , to $\operatorname{input}_{S}^{\beta}$
 - (b) If input_S^{\beta} changed, recursively evaluate all rules with head predicate S^{β}
 - (c) Compute $\sup_{i=1}^{r} \bowtie \operatorname{output}_{S}^{\beta}$

(3) Add tuples in $\sup_{n=1}^{r}$ to $\operatorname{output}_{\mathsf{B}}^{\alpha}$

QSQR Algorithm

Evaluation of query in QSQR:

Given: a Datalog program *P* and a conjunctive query $q[\vec{x}]$ (possibly with constants)

- (1) Create an adorned program P^a :
 - Turn the query $q[\vec{x}]$ into an adorned rule Query $f^{f...f}(\vec{x}) \leftarrow q[\vec{x}]$
 - Recursively create adorned rules from rules in *P* for all adorned predicates in *P^a*.
- (2) Initialise all auxiliary relations to empty sets.
- (3) Evaluate the rule Query^{ff...f}(x) ← q[x].
 Repeat until no new tuples are added to any QSQ relation.
- (4) Return $output_{Query}^{ff...f}$.

Predicates S (same generation), p (parent), h (human)

$$\begin{split} \mathsf{S}(x,x) &\leftarrow \mathsf{h}(x) \\ \mathsf{S}(x,y) &\leftarrow \mathsf{p}(x,w) \land \mathsf{S}(v,w) \land \mathsf{p}(y,v) \end{split}$$

with query S(1, x).

Predicates S (same generation), p (parent), h (human)

$$\begin{split} \mathsf{S}(x,x) &\leftarrow \mathsf{h}(x) \\ \mathsf{S}(x,y) &\leftarrow \mathsf{p}(x,w) \land \mathsf{S}(v,w) \land \mathsf{p}(y,v) \end{split}$$

with query S(1, x). \rightarrow Query rule: Query(x) \leftarrow S(1, x)

Transformed rules:

Predicates S (same generation), p (parent), h (human)

$$\begin{split} \mathsf{S}(x,x) &\leftarrow \mathsf{h}(x) \\ \mathsf{S}(x,y) &\leftarrow \mathsf{p}(x,w) \land \mathsf{S}(v,w) \land \mathsf{p}(y,v) \end{split}$$

with query S(1, x). \rightarrow Query rule: Query(x) \leftarrow S(1, x)

Transformed rules:

 $Query^f(x) \leftarrow S^{bf}(1,x)$

Predicates S (same generation), p (parent), h (human)

$$\begin{split} \mathsf{S}(x,x) &\leftarrow \mathsf{h}(x) \\ \mathsf{S}(x,y) &\leftarrow \mathsf{p}(x,w) \land \mathsf{S}(v,w) \land \mathsf{p}(y,v) \end{split}$$

with query S(1, x). \rightarrow Query rule: Query(x) \leftarrow S(1, x)

Transformed rules:

Query^{*f*}(*x*) \leftarrow S^{*bf*}(1,*x*) S^{*bf*}(*x*,*x*) \leftarrow h(*x*)

Predicates S (same generation), p (parent), h (human)

$$\begin{split} \mathsf{S}(x,x) &\leftarrow \mathsf{h}(x) \\ \mathsf{S}(x,y) &\leftarrow \mathsf{p}(x,w) \land \mathsf{S}(v,w) \land \mathsf{p}(y,v) \end{split}$$

with query S(1, x). \rightarrow Query rule: Query(x) \leftarrow S(1, x)

Transformed rules:

Query^f(x)
$$\leftarrow S^{bf}(1, x)$$

 $S^{bf}(x, x) \leftarrow h(x)$
 $S^{bf}(x, y) \leftarrow p(x, w) \land S^{fb}(v, w) \land p(y, v)$

Predicates S (same generation), p (parent), h (human)

$$\begin{split} \mathsf{S}(x,x) &\leftarrow \mathsf{h}(x) \\ \mathsf{S}(x,y) &\leftarrow \mathsf{p}(x,w) \land \mathsf{S}(v,w) \land \mathsf{p}(y,v) \end{split}$$

with query S(1, x). \rightarrow Query rule: Query(x) \leftarrow S(1, x)

Transformed rules:

Query^f(x)
$$\leftarrow S^{bf}(1, x)$$

 $S^{bf}(x, x) \leftarrow h(x)$
 $S^{bf}(x, y) \leftarrow p(x, w) \land S^{fb}(v, w) \land p(y, v)$
 $S^{fb}(x, x) \leftarrow h(x)$

Database Theory

Predicates S (same generation), p (parent), h (human)

$$\begin{split} \mathsf{S}(x,x) &\leftarrow \mathsf{h}(x) \\ \mathsf{S}(x,y) &\leftarrow \mathsf{p}(x,w) \land \mathsf{S}(v,w) \land \mathsf{p}(y,v) \end{split}$$

with query S(1, x). \rightarrow Query rule: Query(x) \leftarrow S(1, x)

Transformed rules:

Query^f(x)
$$\leftarrow S^{bf}(1, x)$$

 $S^{bf}(x, x) \leftarrow h(x)$
 $S^{bf}(x, y) \leftarrow p(x, w) \land S^{fb}(v, w) \land p(y, v)$
 $S^{fb}(x, x) \leftarrow h(x)$
 $S^{fb}(x, y) \leftarrow p(x, w) \land S^{fb}(v, w) \land p(y, v)$

Database Theory

Summary and Outlook

Datalog queries can be evaluated bottom-up or top-down

Simplest practical bottom-up technique: semi-naive evaluation

Top-down: Query-Subquery (QSQ) approach (goal-directed)

Next question:

- Can bottom-up evaluations be goal directed?
- What about practical implementations?
- Graph databases