DATABASE THEORY

Lecture 14: Datalog Evaluation

Markus Krötzsch

Knowledge-Based Systems

TU Dresden, 12th June 2023

Review: Datalog

A rule-based recursive query language

```
    father(alice, bob)
    mother(alice, carla)
        Parent (x,y)\leftarrow father (x,y)
        Parent (x,y)\leftarrow mother (x,y)
SameGeneration(x,x)
SameGeneration }(x,y)\leftarrow\operatorname{Parent}(x,v)\wedge\operatorname{Parent}(y,w)\wedge\mathrm{ SameGeneration (v,w)
```

- Datalog is more complex than FO query answering
- Datalog is more expressive than FO query answering
- Semipositive Datalog with a successor ordering captures P
- Datalog containment is undecidable

Remaining question: How can Datalog query answering be implemented?

Implementing Datalog

FO queries (and thus also CQs and UCQs) are supported by almost all DBMS
\leadsto many specific implementation and optimisation techniques
How can Datalog queries be answered in practice?
\leadsto techniques for dealing with recursion in DBMS query answering

Implementing Datalog

FO queries (and thus also CQs and UCQs) are supported by almost all DBMS
\leadsto many specific implementation and optimisation techniques
How can Datalog queries be answered in practice?
\leadsto techniques for dealing with recursion in DBMS query answering
There are two major paradigms for answering recursive queries:

- Bottom-up: derive conclusions by applying rules to given facts
- Top-down: search for proofs to infer results given query

Computing Datalog Query Answers Bottom-Up

We already saw a way to compute Datalog answers bottom-up: the step-wise computation of the consequence operator T_{P}

Bottom-up computation is known under many names:

- Forward-chaining since rules are "chained" from premise to conclusion (common in logic programming)
- Materialisation since inferred facts are stored ("materialised") (common in databases)
- Saturation since the input database is "saturated" with inferences (common in theorem proving)
- Deductive closure since we "close" the input under entailments (common in formal logic)

Naive Evaluation of Datalog Queries

A direct approach for computing T_{P}^{∞}

```
01 T
02 i:=0
03 repeat:
04 T
05 for H}\leftarrow\mp@subsup{B}{1}{}\wedge\ldots\wedge\mp@subsup{B}{\ell}{}\inP\mathrm{ :
06 for }0\in\mp@subsup{B}{1}{}\wedge\ldots\wedge\mp@subsup{B}{\ell}{}(\mp@subsup{T}{P}{i})
TP
    i:= i+1
    until T}\mp@subsup{T}{P}{i-1}=\mp@subsup{T}{P}{i
    return T}\mp@subsup{T}{P}{i
```

Notation for line 06/07:

- a substitution θ is a mapping from variables to database elements
- for a formula F, we write $F \theta$ for the formula obtained by replacing each free variable x in F by $\theta(x)$
- for a CQ Q and database I, we write $\theta \in Q(\mathcal{I})$ if $I \models Q \theta$

What's Wrong with Naive Evaluation?

An example Datalog program:

$$
\begin{array}{ll}
& \mathrm{e}(1,2) \quad \mathrm{e}(2,3) \quad \mathrm{e}(3,4) \quad \mathrm{e}(4,5) \\
(R 1) & \mathrm{T}(x, y) \leftarrow \mathrm{e}(x, y) \\
(R 2) & \mathrm{T}(x, z) \leftarrow \mathrm{T}(x, y) \wedge \mathrm{T}(y, z)
\end{array}
$$

$$
\begin{aligned}
& T_{P}^{0}=\emptyset \\
& T_{P}^{1}=\{\mathrm{T}(1,2), \mathrm{T}(2,3), \mathrm{T}(3,4), \mathrm{T}(4,5)\} \\
& T_{P}^{2}=T_{P}^{1} \cup\{\mathrm{~T}(1,3), \mathrm{T}(2,4), \mathrm{T}(3,5)\} \\
& T_{P}^{3}=T_{P}^{2} \cup\{\mathrm{~T}(1,4), \mathrm{T}(2,5), \mathrm{T}(1,5)\} \\
& T_{P}^{4}=T_{P}^{3}=T_{P}^{\infty}
\end{aligned}
$$

What's Wrong with Naive Evaluation?

An example Datalog program:

$$
\begin{array}{ll}
& \mathrm{e}(1,2) \quad \mathrm{e}(2,3) \quad \mathrm{e}(3,4) \quad \mathrm{e}(4,5) \\
(R 1) & \mathrm{T}(x, y) \leftarrow \mathrm{e}(x, y) \\
(R 2) & \mathrm{T}(x, z) \leftarrow \mathrm{T}(x, y) \wedge \mathrm{T}(y, z)
\end{array}
$$

How many body matches do we need to iterate over?

$$
\begin{array}{ll}
T_{P}^{0}=\emptyset & \text { initialisation } \\
T_{P}^{1}=\{\mathrm{T}(1,2), \mathrm{T}(2,3), \mathrm{T}(3,4), \mathrm{T}(4,5)\} & \\
T_{P}^{2}=T_{P}^{1} \cup\{\mathrm{~T}(1,3), \mathrm{T}(2,4), \mathrm{T}(3,5)\} & \\
T_{P}^{3}=T_{P}^{2} \cup\{\mathrm{~T}(1,4), \mathrm{T}(2,5), \mathrm{T}(1,5)\} & \\
T_{P}^{4}=T_{P}^{3}=T_{P}^{\infty} &
\end{array}
$$

What's Wrong with Naive Evaluation?

An example Datalog program:

$$
\begin{array}{ll}
& \mathrm{e}(1,2) \quad \mathrm{e}(2,3) \quad \mathrm{e}(3,4) \quad \mathrm{e}(4,5) \\
(R 1) & \mathrm{T}(x, y) \leftarrow \mathrm{e}(x, y) \\
(R 2) & \mathrm{T}(x, z) \leftarrow \mathrm{T}(x, y) \wedge \mathrm{T}(y, z)
\end{array}
$$

How many body matches do we need to iterate over?

$$
\begin{array}{ll}
T_{P}^{0}=\emptyset & \text { initialisation } \\
T_{P}^{1}=\{\mathrm{T}(1,2), \mathrm{T}(2,3), \mathrm{T}(3,4), \mathrm{T}(4,5)\} & \text { 4 matches for (R1) } \\
T_{P}^{2}=T_{P}^{1} \cup\{\mathrm{~T}(1,3), \mathrm{T}(2,4), \mathrm{T}(3,5)\} & \\
T_{P}^{3}=T_{P}^{2} \cup\{\mathrm{~T}(1,4), \mathrm{T}(2,5), \mathrm{T}(1,5)\} & \\
T_{P}^{4}=T_{P}^{3}=T_{P}^{\infty} &
\end{array}
$$

What's Wrong with Naive Evaluation?

An example Datalog program:

$$
\begin{array}{ll}
& \mathrm{e}(1,2) \quad \mathrm{e}(2,3) \quad \mathrm{e}(3,4) \quad \mathrm{e}(4,5) \\
(R 1) & \mathrm{T}(x, y) \leftarrow \mathrm{e}(x, y) \\
(R 2) & \mathrm{T}(x, z) \leftarrow \mathrm{T}(x, y) \wedge \mathrm{T}(y, z)
\end{array}
$$

How many body matches do we need to iterate over?

$$
\begin{array}{ll}
T_{P}^{0}=\emptyset & \text { initialisation } \\
T_{P}^{1}=\{\mathrm{T}(1,2), \mathrm{T}(2,3), \mathrm{T}(3,4), \mathrm{T}(4,5)\} & 4 \text { matches for }(R 1) \\
T_{P}^{2}=T_{P}^{1} \cup\{\mathrm{~T}(1,3), \mathrm{T}(2,4), \mathrm{T}(3,5)\} & 4 \times(R 1)+3 \times(R 2) \\
T_{P}^{3}=T_{P}^{2} \cup\{\mathrm{~T}(1,4), \mathrm{T}(2,5), \mathrm{T}(1,5)\} & \\
T_{P}^{4}=T_{P}^{3}=T_{P}^{\infty} &
\end{array}
$$

What's Wrong with Naive Evaluation?

An example Datalog program:

$$
\begin{array}{ll}
& \mathrm{e}(1,2) \quad \mathrm{e}(2,3) \quad \mathrm{e}(3,4) \quad \mathrm{e}(4,5) \\
(R 1) & \mathrm{T}(x, y) \leftarrow \mathrm{e}(x, y) \\
(R 2) & \mathrm{T}(x, z) \leftarrow \mathrm{T}(x, y) \wedge \mathrm{T}(y, z)
\end{array}
$$

How many body matches do we need to iterate over?

$$
\begin{array}{ll}
T_{P}^{0}=\emptyset & \text { initialisation } \\
T_{P}^{1}=\{\mathrm{T}(1,2), \mathrm{T}(2,3), \mathrm{T}(3,4), \mathrm{T}(4,5)\} & 4 \text { matches for }(R 1) \\
T_{P}^{2}=T_{P}^{1} \cup\{\mathrm{~T}(1,3), \mathrm{T}(2,4), \mathrm{T}(3,5)\} & 4 \times(R 1)+3 \times(R 2) \\
T_{P}^{3}=T_{P}^{2} \cup\{\mathrm{~T}(1,4), \mathrm{T}(2,5), \mathrm{T}(1,5)\} & 4 \times(R 1)+8 \times(R 2) \\
T_{P}^{4}=T_{P}^{3}=T_{P}^{\infty} &
\end{array}
$$

What's Wrong with Naive Evaluation?

An example Datalog program:

$$
\begin{array}{ll}
& \mathrm{e}(1,2) \quad \mathrm{e}(2,3) \quad \mathrm{e}(3,4) \quad \mathrm{e}(4,5) \\
(R 1) & \mathrm{T}(x, y) \leftarrow \mathrm{e}(x, y) \\
(R 2) & \mathrm{T}(x, z) \leftarrow \mathrm{T}(x, y) \wedge \mathrm{T}(y, z)
\end{array}
$$

How many body matches do we need to iterate over?

$$
\begin{array}{ll}
T_{P}^{0}=\emptyset & \text { initialisation } \\
T_{P}^{1}=\{\mathrm{T}(1,2), \mathrm{T}(2,3), \mathrm{T}(3,4), \mathrm{T}(4,5)\} & 4 \text { matches for }(R 1) \\
T_{P}^{2}=T_{P}^{1} \cup\{\mathrm{~T}(1,3), \mathrm{T}(2,4), \mathrm{T}(3,5)\} & 4 \times(R 1)+3 \times(R 2) \\
T_{P}^{3}=T_{P}^{2} \cup\{\mathrm{~T}(1,4), \mathrm{T}(2,5), \mathrm{T}(1,5)\} & 4 \times(R 1)+8 \times(R 2) \\
T_{P}^{4}=T_{P}^{3}=T_{P}^{\infty} & 4 \times(R 1)+10 \times(R 2)
\end{array}
$$

What's Wrong with Naive Evaluation?

An example Datalog program:

$$
\begin{array}{ll}
& \mathrm{e}(1,2) \quad \mathrm{e}(2,3) \quad \mathrm{e}(3,4) \quad \mathrm{e}(4,5) \\
(R 1) & \mathrm{T}(x, y) \leftarrow \mathrm{e}(x, y) \\
(R 2) & \mathrm{T}(x, z) \leftarrow \mathrm{T}(x, y) \wedge \mathrm{T}(y, z)
\end{array}
$$

How many body matches do we need to iterate over?

$$
\begin{array}{ll}
T_{P}^{0}=\emptyset & \text { initialisation } \\
T_{P}^{1}=\{\mathrm{T}(1,2), \mathrm{T}(2,3), \mathrm{T}(3,4), \mathrm{T}(4,5)\} & 4 \text { matches for }(R 1) \\
T_{P}^{2}=T_{P}^{1} \cup\{\mathrm{~T}(1,3), \mathrm{T}(2,4), \mathrm{T}(3,5)\} & 4 \times(R 1)+3 \times(R 2) \\
T_{P}^{3}=T_{P}^{2} \cup\{\mathrm{~T}(1,4), \mathrm{T}(2,5), \mathrm{T}(1,5)\} & 4 \times(R 1)+8 \times(R 2) \\
T_{P}^{4}=T_{P}^{3}=T_{P}^{\infty} & 4 \times(R 1)+10 \times(R 2)
\end{array}
$$

In total, we considered 37 matches to derive 11 facts

Less Naive Evaluation Strategies

Does it really matter how often we consider a rule match? After all, each fact is added only once ...

Less Naive Evaluation Strategies

Does it really matter how often we consider a rule match?
After all, each fact is added only once ...
In practice, finding applicable rules takes significant time, even if the conclusion does not need to be added - iteration takes time!
\leadsto huge potential for optimisation

Observation:

we derive the same conclusions over and over again in each step
Idea: apply rules only to newly derived facts
\leadsto semi-naive evaluation

Semi-Naive Evaluation

The computation yields sets $T_{P}^{0} \subseteq T_{P}^{1} \subseteq T_{P}^{2} \subseteq \ldots \subseteq T_{P}^{\infty}$

- For an IDB predicate R , let R^{i} be the "predicate" that contains exactly the R -facts in T_{P}^{i}
- For $i \leq 1$, let Δ_{R}^{i} be the collection of facts $\mathrm{R}^{i} \backslash \mathrm{R}^{i-1}$

We can restrict rules to use only some computations.

Semi-Naive Evaluation

The computation yields sets $T_{P}^{0} \subseteq T_{P}^{1} \subseteq T_{P}^{2} \subseteq \ldots \subseteq T_{P}^{\infty}$

- For an IDB predicate R , let R^{i} be the "predicate" that contains exactly the R -facts in T_{P}^{i}
- For $i \leq 1$, let Δ_{R}^{i} be the collection of facts $\mathrm{R}^{i} \backslash \mathrm{R}^{i-1}$

We can restrict rules to use only some computations.
Some options for the computation in step $i+1$:

$$
\begin{aligned}
& \mathrm{T}(x, z) \leftarrow \mathrm{T}^{i}(x, y) \wedge \mathrm{T}^{i}(y, z) \\
& \mathrm{T}(x, z) \leftarrow \Delta_{\mathrm{T}}^{i}(x, y) \wedge \Delta_{\mathrm{T}}^{i}(y, z) \\
& \mathrm{T}(x, z) \leftarrow \Delta_{\mathrm{T}}^{i}(x, y) \wedge \mathrm{T}^{i}(y, z) \\
& \mathrm{T}(x, z) \leftarrow \mathrm{T}^{i}(x, y) \wedge \Delta_{\mathrm{T}}^{i}(y, z)
\end{aligned}
$$

same as original rule restrict to new facts partially restrict to new facts partially restrict to new facts

What to choose?

Semi-Naive Evaluation (2)

Inferences that involve new and old facts are necessary:

$$
\left.\begin{array}{ll}
& \begin{array}{l}
\mathrm{e}(1,2) \\
\mathrm{T}(x, y) \leftarrow \mathrm{e}(2,3) \\
(R 1) \\
(R 2) \\
\mathrm{T}(x, y)
\end{array} \\
\mathrm{T}(x, z) \leftarrow \mathrm{T}(x, y) \wedge \mathrm{T}(y, z)
\end{array}\right] \quad \mathrm{e}(4,5)
$$

Semi-Naive Evaluation (2)

Inferences that involve new and old facts are necessary:

$$
\left.\begin{array}{llll}
& \mathrm{e}(1,2) & \mathrm{e}(2,3) & \mathrm{e}(3,4) \quad \mathrm{e}(4,5) \\
(R 1) & \mathrm{T}(x, y) \leftarrow \mathrm{e}(x, y) \\
(R 2) & \mathrm{T}(x, z) \leftarrow \mathrm{T}(x, y) \wedge \mathrm{T}(y, z)
\end{array}\right] \begin{array}{ll}
& T_{P}^{0}=\emptyset \\
& \\
\Delta_{\mathrm{T}}^{1}=\{\mathrm{T}(1,2), \mathrm{T}(2,3), \mathrm{T}(3,4), \mathrm{T}(4,5)\} & T_{P}^{1}=\Delta_{\mathrm{T}}^{1} \\
\Delta_{\mathrm{T}}^{2}=\{\mathrm{T}(1,3), \mathrm{T}(2,4), \mathrm{T}(3,5)\} & T_{P}^{2}=T_{P}^{1} \cup \Delta_{\mathrm{T}}^{2} \\
\Delta_{\mathrm{T}}^{3}=\{\mathrm{T}(1,4), \mathrm{T}(2,5), \mathrm{T}(1,5)\} & T_{P}^{3}=T_{P}^{2} \cup \Delta_{\mathrm{T}}^{3} \\
\Delta_{\mathrm{T}}^{4}=\emptyset & \\
& T_{P}^{4}=T_{P}^{3}=T_{P}^{\infty}
\end{array}
$$

To derive $\mathrm{T}(1,4)$ in Δ_{T}^{3}, we need to combine
$\mathrm{T}(1,3) \in \Delta_{\mathrm{T}}^{2}$ with $\mathrm{T}(3,4) \in \Delta_{\mathrm{T}}^{1}$ or $\mathrm{T}(1,2) \in \Delta_{\mathrm{T}}^{1}$ with $\mathrm{T}(2,4) \in \Delta_{\mathrm{T}}^{2}$

Semi-Naive Evaluation (2)

Inferences that involve new and old facts are necessary:

$$
\left.\begin{array}{llll}
& \mathrm{e}(1,2) & \mathrm{e}(2,3) & \mathrm{e}(3,4) \quad \mathrm{e}(4,5) \\
(R 1) & \mathrm{T}(x, y) & \leftarrow \mathrm{e}(x, y) \\
(R 2) & \mathrm{T}(x, z) \leftarrow \mathrm{T}(x, y) \wedge \mathrm{T}(y, z)
\end{array}\right] \begin{array}{ll}
& T_{P}^{0}=\emptyset \\
& \\
\Delta_{\mathrm{T}}^{1}=\{\mathrm{T}(1,2), \mathrm{T}(2,3), \mathrm{T}(3,4), \mathrm{T}(4,5)\} & T_{P}^{1}=\Delta_{\mathrm{T}}^{1} \\
\Delta_{\mathrm{T}}^{2}=\{\mathrm{T}(1,3), \mathrm{T}(2,4), \mathrm{T}(3,5)\} & T_{P}^{2}=T_{P}^{1} \cup \Delta_{\mathrm{T}}^{2} \\
\Delta_{\mathrm{T}}^{3}=\{\mathrm{T}(1,4), \mathrm{T}(2,5), \mathrm{T}(1,5)\} & T_{P}^{3}=T_{P}^{2} \cup \Delta_{\mathrm{T}}^{3} \\
\Delta_{\mathrm{T}}^{4}=\emptyset & \\
& T_{P}^{4}=T_{P}^{3}=T_{P}^{\infty}
\end{array}
$$

To derive $\mathrm{T}(1,4)$ in Δ_{T}^{3}, we need to combine
$\mathrm{T}(1,3) \in \Delta_{\mathrm{T}}^{2}$ with $\mathrm{T}(3,4) \in \Delta_{\mathrm{T}}^{1}$ or $\mathrm{T}(1,2) \in \Delta_{\mathrm{T}}^{1}$ with $\mathrm{T}(2,4) \in \Delta_{\mathrm{T}}^{2}$
\leadsto rule $\mathrm{T}(x, z) \leftarrow \Delta_{\mathrm{T}}^{i}(x, y) \wedge \Delta_{\mathrm{T}}^{i}(y, z)$ is not enough

Semi-Naive Evaluation (3)

Correct approach: consider only rule application that use at least one newly derived IDB atom

For example program:

$$
\begin{aligned}
& \mathrm{e}(1,2) \quad \mathrm{e}(2,3) \quad \mathrm{e}(3,4) \quad \mathrm{e}(4,5) \\
(R 1) & \mathrm{T}(x, y) \leftarrow \mathrm{e}(x, y) \\
(R 2.1) & \mathrm{T}(x, z) \leftarrow \Delta_{\mathrm{T}}^{i}(x, y) \wedge \mathrm{T}^{i}(y, z) \\
(R 2.2) & \mathrm{T}(x, z) \leftarrow \mathrm{T}^{i}(x, y) \wedge \Delta_{\mathrm{T}}^{i}(y, z)
\end{aligned}
$$

Semi-Naive Evaluation (3)

Correct approach: consider only rule application that use at least one newly derived IDB atom

For example program:

$$
\begin{aligned}
& \mathrm{e}(1,2) \quad \mathrm{e}(2,3) \quad \mathrm{e}(3,4) \quad \mathrm{e}(4,5) \\
(R 1) & \mathrm{T}(x, y) \leftarrow \mathrm{e}(x, y) \\
(R 2.1) & \mathrm{T}(x, z) \leftarrow \Delta_{\mathrm{T}}^{i}(x, y) \wedge \mathrm{T}^{i}(y, z) \\
(R 2.2) & \mathrm{T}(x, z) \leftarrow \mathrm{T}^{i}(x, y) \wedge \Delta_{\mathrm{T}}^{i}(y, z)
\end{aligned}
$$

There is still redundancy here: the matches for $\mathrm{T}(x, z) \leftarrow \Delta_{\mathrm{T}}^{i}(x, y) \wedge \Delta_{\mathrm{T}}^{i}(y, z)$ are covered by both ($R 2.1$) and ($R 2.2$)

Semi-Naive Evaluation (3)

Correct approach: consider only rule application that use at least one newly derived IDB atom

For example program:

$$
\begin{aligned}
& \mathrm{e}(1,2) \quad \mathrm{e}(2,3) \quad \mathrm{e}(3,4) \quad \mathrm{e}(4,5) \\
(R 1) & \mathrm{T}(x, y) \leftarrow \mathrm{e}(x, y) \\
(R 2.1) & \mathrm{T}(x, z) \leftarrow \Delta_{\mathrm{T}}^{i}(x, y) \wedge \mathrm{T}^{i}(y, z) \\
(R 2.2) & \mathrm{T}(x, z) \leftarrow \mathrm{T}^{i}(x, y) \wedge \Delta_{\mathrm{T}}^{i}(y, z)
\end{aligned}
$$

There is still redundancy here: the matches for $\mathrm{T}(x, z) \leftarrow \Delta_{\mathrm{T}}^{i}(x, y) \wedge \Delta_{\mathrm{T}}^{i}(y, z)$ are covered by both ($R 2.1$) and ($R 2.2$)
\rightarrow replace ($R 2.2$) by the following rule:

$$
\left(R 2.2^{\prime}\right) \quad \mathrm{T}(x, z) \leftarrow \mathrm{T}^{i-1}(x, y) \wedge \Delta_{\mathrm{T}}^{i}(y, z)
$$

EDB atoms do not change, so their Δ would be \emptyset
\leadsto ignore such rules after the first iteration

Semi-Naive Evaluation: Example

$$
\begin{aligned}
& \mathrm{e}(1,2) \quad \mathrm{e}(2,3) \quad \mathrm{e}(3,4) \quad \mathrm{e}(4,5) \\
(R 1) & \mathrm{T}(x, y) \leftarrow \mathrm{e}(x, y) \\
(R 2.1) & \mathrm{T}(x, z) \leftarrow \Delta_{\mathrm{T}}^{i}(x, y) \wedge \mathrm{T}^{i}(y, z) \\
\left(R 2.2^{\prime}\right) & \mathrm{T}(x, z) \leftarrow \mathrm{T}^{i-1}(x, y) \wedge \Delta_{\mathrm{T}}^{i}(y, z)
\end{aligned}
$$

$$
\begin{aligned}
& T_{P}^{0}=\emptyset \\
& T_{P}^{1}=\{\mathrm{T}(1,2), \mathrm{T}(2,3), \mathrm{T}(3,4), \mathrm{T}(4,5)\} \\
& T_{P}^{2}=T_{P}^{1} \cup\{\mathrm{~T}(1,3), \mathrm{T}(2,4), \mathrm{T}(3,5)\} \\
& T_{P}^{3}=T_{P}^{2} \cup\{\mathrm{~T}(1,4), \mathrm{T}(2,5), \mathrm{T}(1,5)\} \\
& T_{P}^{4}=T_{P}^{3}=T_{P}^{\infty}
\end{aligned}
$$

Semi-Naive Evaluation: Example

$$
\begin{aligned}
& \mathrm{e}(1,2) \quad \mathrm{e}(2,3) \quad \mathrm{e}(3,4) \quad \mathrm{e}(4,5) \\
(R 1) & \mathrm{T}(x, y) \leftarrow \mathrm{e}(x, y) \\
(R 2.1) & \mathrm{T}(x, z) \leftarrow \Delta_{\mathrm{T}}^{i}(x, y) \wedge \mathrm{T}^{i}(y, z) \\
\left(R 2.2^{\prime}\right) & \mathrm{T}(x, z) \leftarrow \mathrm{T}^{i-1}(x, y) \wedge \Delta_{\mathrm{T}}^{i}(y, z)
\end{aligned}
$$

How many body matches do we need to iterate over?

$$
\begin{array}{ll}
T_{P}^{0}=\emptyset & \text { initialisation } \\
T_{P}^{1}=\{\mathrm{T}(1,2), \mathrm{T}(2,3), \mathrm{T}(3,4), \mathrm{T}(4,5)\} & \\
T_{P}^{2}=T_{P}^{1} \cup\{\mathrm{~T}(1,3), \mathrm{T}(2,4), \mathrm{T}(3,5)\} & \\
T_{P}^{3}=T_{P}^{2} \cup\{\mathrm{~T}(1,4), \mathrm{T}(2,5), \mathrm{T}(1,5)\} & \\
T_{P}^{4}=T_{P}^{3}=T_{P}^{\infty} &
\end{array}
$$

Semi-Naive Evaluation: Example

$$
\begin{aligned}
& \mathrm{e}(1,2) \quad \mathrm{e}(2,3) \quad \mathrm{e}(3,4) \quad \mathrm{e}(4,5) \\
(R 1) & \mathrm{T}(x, y) \leftarrow \mathrm{e}(x, y) \\
(R 2.1) & \mathrm{T}(x, z) \leftarrow \Delta_{\mathrm{T}}^{i}(x, y) \wedge \mathrm{T}^{i}(y, z) \\
\left(R 2.2^{\prime}\right) & \mathrm{T}(x, z) \leftarrow \mathrm{T}^{i-1}(x, y) \wedge \Delta_{\mathrm{T}}^{i}(y, z)
\end{aligned}
$$

How many body matches do we need to iterate over?

$$
\begin{array}{ll}
T_{P}^{0}=\emptyset & \text { initialisation } \\
T_{P}^{1}=\{\mathrm{T}(1,2), \mathrm{T}(2,3), \mathrm{T}(3,4), \mathrm{T}(4,5)\} & 4 \times(R 1) \\
T_{P}^{2}=T_{P}^{1} \cup\{\mathrm{~T}(1,3), \mathrm{T}(2,4), \mathrm{T}(3,5)\} & \\
T_{P}^{3}=T_{P}^{2} \cup\{\mathrm{~T}(1,4), \mathrm{T}(2,5), \mathrm{T}(1,5)\} & \\
T_{P}^{4}=T_{P}^{3}=T_{P}^{\infty} &
\end{array}
$$

Semi-Naive Evaluation: Example

$$
\begin{aligned}
& \mathrm{e}(1,2) \quad \mathrm{e}(2,3) \quad \mathrm{e}(3,4) \quad \mathrm{e}(4,5) \\
(R 1) & \mathrm{T}(x, y) \leftarrow \mathrm{e}(x, y) \\
(R 2.1) & \mathrm{T}(x, z) \leftarrow \Delta_{\mathrm{T}}^{i}(x, y) \wedge \mathrm{T}^{i}(y, z) \\
\left(R 2.2^{\prime}\right) & \mathrm{T}(x, z) \leftarrow \mathrm{T}^{i-1}(x, y) \wedge \Delta_{\mathrm{T}}^{i}(y, z)
\end{aligned}
$$

How many body matches do we need to iterate over?

$$
\begin{array}{ll}
T_{P}^{0}=\emptyset & \text { initialisatio } \\
T_{P}^{1}=\{\mathrm{T}(1,2), \mathrm{T}(2,3), \mathrm{T}(3,4), \mathrm{T}(4,5)\} & 4 \times(R 1) \\
T_{P}^{2}=T_{P}^{1} \cup\{\mathrm{~T}(1,3), \mathrm{T}(2,4), \mathrm{T}(3,5)\} & 3 \times(R 2.1) \\
T_{P}^{3}=T_{P}^{2} \cup\{\mathrm{~T}(1,4), \mathrm{T}(2,5), \mathrm{T}(1,5)\} & \\
T_{P}^{4}=T_{P}^{3}=T_{P}^{\infty} &
\end{array}
$$

Semi-Naive Evaluation: Example

$$
\begin{aligned}
& \mathrm{e}(1,2) \quad \mathrm{e}(2,3) \quad \mathrm{e}(3,4) \quad \mathrm{e}(4,5) \\
(R 1) & \mathrm{T}(x, y) \leftarrow \mathrm{e}(x, y) \\
(R 2.1) & \mathrm{T}(x, z) \leftarrow \Delta_{\mathrm{T}}^{i}(x, y) \wedge \mathrm{T}^{i}(y, z) \\
\left(R 2.2^{\prime}\right) & \mathrm{T}(x, z) \leftarrow \mathrm{T}^{i-1}(x, y) \wedge \Delta_{\mathrm{T}}^{i}(y, z)
\end{aligned}
$$

How many body matches do we need to iterate over?

$$
\begin{array}{rll}
T_{P}^{0} & =\emptyset & \text { initialisation } \\
T_{P}^{1} & =\{\mathrm{T}(1,2), \mathrm{T}(2,3), \mathrm{T}(3,4), \mathrm{T}(4,5)\} & 4 \times(R 1) \\
T_{P}^{2} & =T_{P}^{1} \cup\{\mathrm{~T}(1,3), \mathrm{T}(2,4), \mathrm{T}(3,5)\} & 3 \times(R 2.1) \\
T_{P}^{3} & =T_{P}^{2} \cup\{\mathrm{~T}(1,4), \mathrm{T}(2,5), \mathrm{T}(1,5)\} & 3 \times(R 2.1), 2 \times\left(R 2.2^{\prime}\right) \\
T_{P}^{4} & =T_{P}^{3}=T_{P}^{\infty} &
\end{array}
$$

Semi-Naive Evaluation: Example

$$
\begin{aligned}
& \mathrm{e}(1,2) \quad \mathrm{e}(2,3) \quad \mathrm{e}(3,4) \quad \mathrm{e}(4,5) \\
(R 1) & \mathrm{T}(x, y) \leftarrow \mathrm{e}(x, y) \\
(R 2.1) & \mathrm{T}(x, z) \leftarrow \Delta_{\mathrm{T}}^{i}(x, y) \wedge \mathrm{T}^{i}(y, z) \\
\left(R 2.2^{\prime}\right) & \mathrm{T}(x, z) \leftarrow \mathrm{T}^{i-1}(x, y) \wedge \Delta_{\mathrm{T}}^{i}(y, z)
\end{aligned}
$$

How many body matches do we need to iterate over?

$$
\begin{array}{ll}
T_{P}^{0}=\emptyset & \text { initialisation } \\
T_{P}^{1}=\{\mathrm{T}(1,2), \mathrm{T}(2,3), \mathrm{T}(3,4), \mathrm{T}(4,5)\} & 4 \times(R 1) \\
T_{P}^{2}=T_{P}^{1} \cup\{\mathrm{~T}(1,3), \mathrm{T}(2,4), \mathrm{T}(3,5)\} & 3 \times(R 2.1) \\
T_{P}^{3}=T_{P}^{2} \cup\{\mathrm{~T}(1,4), \mathrm{T}(2,5), \mathrm{T}(1,5)\} & 3 \times(R 2.1), 2 \times\left(R 2.2^{\prime}\right) \\
T_{P}^{4}=T_{P}^{3}=T_{P}^{\infty} & 1 \times(R 2.1), 1 \times\left(R 2.2^{\prime}\right)
\end{array}
$$

Semi-Naive Evaluation: Example

$$
\begin{aligned}
& \mathrm{e}(1,2) \quad \mathrm{e}(2,3) \quad \mathrm{e}(3,4) \quad \mathrm{e}(4,5) \\
(R 1) & \mathrm{T}(x, y) \leftarrow \mathrm{e}(x, y) \\
(R 2.1) & \mathrm{T}(x, z) \leftarrow \Delta_{\mathrm{T}}^{i}(x, y) \wedge \mathrm{T}^{i}(y, z) \\
\left(R 2.2^{\prime}\right) & \mathrm{T}(x, z) \leftarrow \mathrm{T}^{i-1}(x, y) \wedge \Delta_{\mathrm{T}}^{i}(y, z)
\end{aligned}
$$

How many body matches do we need to iterate over?

$$
\begin{array}{ll}
T_{P}^{0}=\emptyset & \text { initialisation } \\
T_{P}^{1}=\{\mathrm{T}(1,2), \mathrm{T}(2,3), \mathrm{T}(3,4), \mathrm{T}(4,5)\} & 4 \times(R 1) \\
T_{P}^{2}=T_{P}^{1} \cup\{\mathrm{~T}(1,3), \mathrm{T}(2,4), \mathrm{T}(3,5)\} & 3 \times(R 2.1) \\
T_{P}^{3}=T_{P}^{2} \cup\{\mathrm{~T}(1,4), \mathrm{T}(2,5), \mathrm{T}(1,5)\} & 3 \times(R 2.1), 2 \times\left(R 2.2^{\prime}\right) \\
T_{P}^{4}=T_{P}^{3}=T_{P}^{\infty} & 1 \times(R 2.1), 1 \times\left(R 2.2^{\prime}\right)
\end{array}
$$

In total, we considered 14 matches to derive 11 facts

Semi-Naive Evaluation: Full Definition

In general, a rule of the form

$$
\mathrm{H}(\vec{x}) \leftarrow \mathrm{e}_{1}\left(\vec{y}_{1}\right) \wedge \ldots \wedge \mathrm{e}_{n}\left(\vec{y}_{n}\right) \wedge \mathrm{I}_{1}\left(\vec{z}_{1}\right) \wedge \mathrm{I}_{2}\left(\vec{z}_{2}\right) \wedge \ldots \wedge \mathrm{I}_{m}\left(\vec{z}_{m}\right)
$$

is transformed into m rules

$$
\begin{aligned}
\mathrm{H}(\vec{x}) & \leftarrow \mathrm{e}_{1}\left(\vec{y}_{1}\right) \wedge \ldots \wedge \mathrm{e}_{n}\left(\vec{y}_{n}\right) \wedge \Delta_{1_{1}}^{i}\left(\vec{z}_{1}\right) \wedge I_{2}^{i}\left(\vec{z}_{2}\right) \wedge \ldots \wedge I_{m}^{i}\left(\vec{z}_{m}\right) \\
\mathrm{H}(\vec{x}) & \leftarrow \mathrm{e}_{1}\left(\vec{y}_{1}\right) \wedge \ldots \wedge \mathrm{e}_{n}\left(\vec{y}_{n}\right) \wedge \mathrm{I}_{1}^{i-1}\left(\vec{z}_{1}\right) \wedge \Delta_{1_{2}}^{i}\left(\vec{z}_{2}\right) \wedge \ldots \wedge I_{m}^{i}\left(\vec{z}_{m}\right) \\
& \ldots \\
\mathrm{H}(\vec{x}) & \leftarrow \mathrm{e}_{1}\left(\vec{y}_{1}\right) \wedge \ldots \wedge \mathrm{e}_{n}\left(\vec{y}_{n}\right) \wedge I_{1}^{i-1}\left(\vec{z}_{1}\right) \wedge I_{2}^{i-1}\left(\vec{z}_{2}\right) \wedge \ldots \wedge \Delta_{\mathrm{I}_{m}}^{i}\left(\vec{z}_{m}\right)
\end{aligned}
$$

Advantages and disadvantages:

- Huge improvement over naive evaluation
- Some redundant computations remain (see example)
- Some overhead for implementation (store level of entailments)

Goal-Directed Datalog Evaluation

Top-Down Evaluation

Idea: we may not need to compute all derivations to answer a particular query

Example 14.1:

$$
\begin{aligned}
& \mathrm{e}(1,2) \quad \mathrm{e}(2,3) \quad \mathrm{e}(3,4) \quad \mathrm{e}(4,5) \\
& \text { (R1) } \quad \mathrm{T}(x, y) \leftarrow \mathrm{e}(x, y) \\
& \text { (R2) } \quad \mathrm{T}(x, z) \leftarrow \mathrm{T}(x, y) \wedge \mathrm{T}(y, z) \\
& \text { Query }(z) \leftarrow \mathrm{T}(2, z)
\end{aligned}
$$

The answers to Query are the T-successors of 2.
However, bottom-up computation would also produce facts like $\mathrm{T}(1,4)$, which are neither directly nor indirectly relevant for computing the query result.

Assumption

Assumption: For all techniques presented in this lecture, we assume that the given Datalog program is safe.

- This is without loss of generality (as shown in exercise).
- One can avoid this by adding more cases to algorithms.

Query-Subquery (QSQ)

QSQ is a technique for organising top-down Datalog query evaluation

Main principles:

- Apply backward chaining/resolution: start with query, find rules that can derive query, evaluate body atoms of those rules (subqueries) recursively
- Evaluate intermediate results "set-at-a-time" (using relational algebra on tables)
- Evaluate queries in a "data-driven" way, where operations are applied only to newly computed intermediate results (similar to idea in semi-naive evaluation)
- "Push" variable bindings (constants) from heads (queries) into bodies (subqueries)
- "Pass" variable bindings (constants) "sideways" from one body atom to the next

Details can be realised in several ways.

Adornments

To guide evaluation, we distinguish free and bound parameters in a predicate.

Example 14.2: If we want to derive atom $\mathrm{T}(2, z)$ from the rule $\mathrm{T}(x, z) \leftarrow \mathrm{T}(x, y) \wedge$ $\mathrm{T}(y, z)$, then x will be bound to 2 , while z is free.

Adornments

To guide evaluation, we distinguish free and bound parameters in a predicate.

Example 14.2: If we want to derive atom $\mathrm{T}(2, z)$ from the rule $\mathrm{T}(x, z) \leftarrow \mathrm{T}(x, y) \wedge$ $\mathrm{T}(y, z)$, then x will be bound to 2 , while z is free.

We use adornments to denote the free/bound parameters in predicates.

Example 14.3:

$$
\mathrm{T}^{b f}(x, z) \leftarrow \mathrm{T}^{b f}(x, y) \wedge \mathrm{T}^{b f}(y, z)
$$

- since x is bound in the head, it is also bound in the first atom
- any match for the first atom binds y, so y is bound when evaluating the second atom (in left-to-right evaluation)

Adornments: Examples

The adornment of the head of a rule determines the adornments of the body atoms:

$$
\left.\begin{array}{rl}
\mathrm{R}^{b b b}(x, y, z) & \leftarrow \mathrm{R}^{b b f}(x, y, v)
\end{array}\right) \mathrm{R}^{b b b}(x, v, z),
$$

Adornments: Examples

The adornment of the head of a rule determines the adornments of the body atoms:

$$
\left.\begin{array}{rl}
\mathrm{R}^{b b b}(x, y, z) & \leftarrow \mathrm{R}^{b b f}(x, y, v)
\end{array}\right) \mathrm{R}^{b b b}(x, v, z),
$$

The order of body predicates affects the adornment:

$$
\begin{aligned}
& \mathrm{S}^{f f}(x, y, z) \leftarrow \mathrm{T}^{f f}(x, v) \wedge \mathrm{T}^{f f}(y, w) \wedge \mathrm{R}^{b b f}(v, w, z) \\
& \mathrm{S}^{f f}(x, y, z) \leftarrow \mathrm{R}^{\mathrm{fff}}(v, w, z) \wedge \mathrm{T}^{f b}(x, v) \wedge \mathrm{T}^{f b}(y, w)
\end{aligned}
$$

\leadsto For optimisation, some orders might be better than others

Auxiliary Relations for QSQ

To control evaluation, we store intermediate results in auxiliary relations.

When we "call" a rule with a head where some variables are bound, we need to provide the bindings as input
\leadsto for adorned relation R^{α}, we use an auxiliary relation input ${ }_{\mathrm{R}}^{\alpha}$
\leadsto arity of input ${ }_{\mathrm{R}}^{\alpha}=$ number of b in α

The result of calling a rule should be the "completed" input, with values for the unbound variables added
\leadsto for adorned relation R^{α}, we use an auxiliary relation output ${ }_{\mathrm{R}}^{\alpha}$
\leadsto arity of output ${ }_{\mathrm{R}}^{\alpha}=$ arity of $\mathrm{R}(=$ length of α)

Auxiliary Relations for QSQ (2)

When evaluating body atoms from left to right, we use supplementary relations sup ${ }_{i}$
\sim bindings required to evaluate rest of rule after the i th body atom
\leadsto the first set of bindings sup ${ }_{0}$ comes from input ${ }_{\mathrm{R}}^{\alpha}$
\leadsto the last set of bindings $\sup _{n}$ go to output ${ }_{R}^{\alpha}$

Auxiliary Relations for QSQ (2)

When evaluating body atoms from left to right, we use supplementary relations sup ${ }_{i}$
\sim bindings required to evaluate rest of rule after the i th body atom
\leadsto the first set of bindings sup ${ }_{0}$ comes from input ${ }_{R}^{\alpha}$
\leadsto the last set of bindings $\sup _{n}$ go to output ${ }_{R}^{\alpha}$

Example 14.4:

$$
\begin{aligned}
& \mathrm{T}^{b f}(x, z) \leftarrow \mathrm{T}^{b f}(x, y) \wedge \mathrm{T}^{b f}(y, z) \\
& \Uparrow \\
& \operatorname{input}_{\mathrm{T}}^{b f} \Rightarrow \sup _{0}[x] \quad \sup _{1}[x, y] \quad \sup _{2}[x, z] \Rightarrow \text { output }_{\mathrm{T}}^{b f}
\end{aligned}
$$

- $\sup _{0}[x]$ is copied from input ${ }_{T}^{b f}[x]$ (with some exceptions, see exercise)
- $\sup _{1}[x, y]$ is obtained by joining tables $\sup _{0}[x]$ and output ${ }_{T}^{b f}[x, y]$
- $\sup _{2}[x, z]$ is obtained by joining tables $\sup _{1}[x, y]$ and output ${ }_{T}^{b f}[y, z]$
- output ${ }_{T}^{b f}[x, z]$ is copied from $\sup _{2}[x, z]$

[^0]
QSQ Evaluation

The set of all auxiliary relations is called a QSQ template (for the given set of adorned rules)

General evaluation:

- add new tuples to auxiliary relations until reaching a fixed point
- evaluation of a rule can proceed as sketched on previous slide
- in addition, whenever new tuples are added to a sup relation that feeds into an IDB atom, the input relation of this atom is extended to include all binding given by sup (may trigger subquery evaluation)
\leadsto there are many strategies for implementing this general scheme

QSQ Evaluation

The set of all auxiliary relations is called a QSQ template (for the given set of adorned rules)

General evaluation:

- add new tuples to auxiliary relations until reaching a fixed point
- evaluation of a rule can proceed as sketched on previous slide
- in addition, whenever new tuples are added to a sup relation that feeds into an IDB atom, the input relation of this atom is extended to include all binding given by sup (may trigger subquery evaluation)
\leadsto there are many strategies for implementing this general scheme

Notation:

- for an EDB atom A, we write A^{I} for table that consists of all matches for A in the database

Recursive QSQ

Recursive QSQ (QSQR) takes a "depth-first" approach to QSQ

Evaluation of single rule in QSQR:

Given: adorned rule r with head predicate R^{α}; current values of all QSQ relations
(1) Copy tuples input ${ }_{\mathrm{R}}^{\alpha}$ (that unify with rule head) to $\sup _{0}^{r}$
(2) For each body atom A_{1}, \ldots, A_{n}, do:

- If A_{i} is an EDB atom, compute $\sup _{i}^{r}$ as projection of $\sup _{i-1}^{r} \bowtie A_{i}^{I}$
- If A_{i} is an IDB atom with adorned predicate S^{β} :
(a) Add new bindings from sup ${ }_{i-1}^{r}$, combined with constants in A_{i}, to input ${ }_{S}^{\beta}$
(b) If input ${ }_{s}^{\beta}$ changed, recursively evaluate all rules with head predicate S^{β}
(c) Compute $\sup _{i}^{r}$ as projection of $\sup _{i-1}^{r} \bowtie$ output ${ }_{S}^{\beta}$
(3) Add tuples in sup $_{n}^{r}$ to output ${ }_{R}^{\alpha}$

QSQR Algorithm

Evaluation of query in QSQR:

Given: a Datalog program P and a conjunctive query $q[\vec{x}]$ (possibly with constants)
(1) Create an adorned program P^{a} :

- Turn the query $q[\vec{x}]$ into an adorned rule Query ${ }^{f f \cdots f}(\vec{x}) \leftarrow q[\vec{x}]$
- Recursively create adorned rules from rules in P for all adorned predicates in P^{a}.
(2) Initialise all auxiliary relations to empty sets.
(3) Evaluate the rule Query ${ }^{f f \cdots f}(\vec{x}) \leftarrow q[\vec{x}]$.

Repeat until no new tuples are added to any QSQ relation.
(4) Return output ${ }_{\text {Query }}^{f \cdot-f}$.

QSQR Transformation: Example

Predicates S (same generation), p (parent), h (human)

$$
\begin{aligned}
& \mathrm{S}(x, x) \leftarrow \mathrm{h}(x) \\
& \mathrm{S}(x, y) \leftarrow \mathrm{p}(x, w) \wedge \mathrm{S}(v, w) \wedge \mathrm{p}(y, v)
\end{aligned}
$$

with query $\mathrm{S}(1, x)$.

QSQR Transformation: Example

Predicates S (same generation), p (parent), h (human)

$$
\begin{aligned}
& \mathrm{S}(x, x) \leftarrow \mathrm{h}(x) \\
& \mathrm{S}(x, y) \leftarrow \mathrm{p}(x, w) \wedge \mathrm{S}(v, w) \wedge \mathrm{p}(y, v)
\end{aligned}
$$

with query $\mathrm{S}(1, x)$.
\leadsto Query rule: Query $(x) \leftarrow \mathrm{S}(1, x)$
Transformed rules:

QSQR Transformation: Example

Predicates S (same generation), p (parent), h (human)

$$
\begin{aligned}
& \mathrm{S}(x, x) \leftarrow \mathrm{h}(x) \\
& \mathrm{S}(x, y) \leftarrow \mathrm{p}(x, w) \wedge \mathrm{S}(v, w) \wedge \mathrm{p}(y, v)
\end{aligned}
$$

with query $\mathrm{S}(1, x)$.
\leadsto Query rule: Query $(x) \leftarrow \mathrm{S}(1, x)$
Transformed rules:

$$
\text { Query }^{f}(x) \leftarrow S^{b f}(1, x)
$$

QSQR Transformation: Example

Predicates S (same generation), p (parent), h (human)

$$
\begin{aligned}
& \mathrm{S}(x, x) \leftarrow \mathrm{h}(x) \\
& \mathrm{S}(x, y) \leftarrow \mathrm{p}(x, w) \wedge \mathrm{S}(v, w) \wedge \mathrm{p}(y, v)
\end{aligned}
$$

with query $\mathrm{S}(1, x)$.
\leadsto Query rule: Query $(x) \leftarrow \mathrm{S}(1, x)$
Transformed rules:

$$
\begin{aligned}
\text { Query }^{f}(x) & \leftarrow \mathrm{S}^{b f}(1, x) \\
\mathrm{S}^{b f}(x, x) & \leftarrow \mathrm{h}(x)
\end{aligned}
$$

QSQR Transformation: Example

Predicates S (same generation), p (parent), h (human)

$$
\begin{aligned}
& \mathrm{S}(x, x) \leftarrow \mathrm{h}(x) \\
& \mathrm{S}(x, y) \leftarrow \mathrm{p}(x, w) \wedge \mathrm{S}(v, w) \wedge \mathrm{p}(y, v)
\end{aligned}
$$

with query $\mathrm{S}(1, x)$.
\leadsto Query rule: Query $(x) \leftarrow \mathrm{S}(1, x)$
Transformed rules:

$$
\begin{aligned}
\text { Query }^{f}(x) & \leftarrow \mathrm{S}^{b f}(1, x) \\
\mathrm{S}^{b f}(x, x) & \leftarrow \mathrm{h}(x) \\
\mathrm{S}^{b f}(x, y) & \leftarrow \mathrm{p}(x, w) \wedge \mathrm{S}^{f b}(v, w) \wedge \mathrm{p}(y, v)
\end{aligned}
$$

QSQR Transformation: Example

Predicates S (same generation), p (parent), h (human)

$$
\begin{aligned}
& \mathrm{S}(x, x) \leftarrow \mathrm{h}(x) \\
& \mathrm{S}(x, y) \leftarrow \mathrm{p}(x, w) \wedge \mathrm{S}(v, w) \wedge \mathrm{p}(y, v)
\end{aligned}
$$

with query $\mathrm{S}(1, x)$.
\leadsto Query rule: Query $(x) \leftarrow \mathrm{S}(1, x)$
Transformed rules:

$$
\begin{aligned}
\text { Query }^{f}(x) & \leftarrow \mathrm{S}^{b f}(1, x) \\
\mathrm{S}^{b f}(x, x) & \leftarrow \mathrm{h}(x) \\
\mathrm{S}^{b f}(x, y) & \leftarrow \mathrm{p}(x, w) \wedge \mathrm{S}^{f b}(v, w) \wedge \mathrm{p}(y, v) \\
\mathrm{S}^{f b}(x, x) & \leftarrow \mathrm{h}(x)
\end{aligned}
$$

QSQR Transformation: Example

Predicates S (same generation), p (parent), h (human)

$$
\begin{aligned}
& \mathrm{S}(x, x) \leftarrow \mathrm{h}(x) \\
& \mathrm{S}(x, y) \leftarrow \mathrm{p}(x, w) \wedge \mathrm{S}(v, w) \wedge \mathrm{p}(y, v)
\end{aligned}
$$

with query $\mathrm{S}(1, x)$.
\leadsto Query rule: Query $(x) \leftarrow \mathrm{S}(1, x)$
Transformed rules:

$$
\begin{aligned}
\text { Query }^{f}(x) & \leftarrow \mathrm{S}^{b f}(1, x) \\
\mathrm{S}^{b f}(x, x) & \leftarrow \mathrm{h}(x) \\
\mathrm{S}^{b f}(x, y) & \leftarrow \mathrm{p}(x, w) \wedge \mathrm{S}^{f b}(v, w) \wedge \mathrm{p}(y, v) \\
\mathrm{S}^{f b}(x, x) & \leftarrow \mathrm{h}(x) \\
\mathrm{S}^{f b}(x, y) & \leftarrow \mathrm{p}(x, w) \wedge \mathrm{S}^{f b}(v, w) \wedge \mathrm{p}(y, v)
\end{aligned}
$$

Summary and Outlook

Datalog queries can be evaluated bottom-up or top-down

Simplest practical bottom-up technique: semi-naive evaluation

Top-down: Query-Subquery (QSQ) approach (goal-directed)

Next question:

- Can bottom-up evaluations be goal directed?
- What about practical implementations?
- Graph databases

[^0]: (we use "named" notation like $[x, y]$ to suggest what to join on; the relations are the same)

