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Der 1. Gédelsche Unvollstandigkeitssatz

Satz (Godel, 1931): Jedes konsistente formale System, in dem eine gewisse Menge
elementarer Arithmetik dargestellt werden kann, ist unvollstandig in Bezug auf die Be-
weisbarkeit von Satzen der elementaren Arithmetik.

Relevante Begriffe:
® Formales System: Ein implementierbares Verfahren, mit dem man Theoreme
endlich beweisen kann.

e Konsistent: Man kann niemals eine Aussage und ihr Gegenteil beweisen.

® Gewisse Menge Arithmetik: Kodierung konkreter nattrlicher Zahlen und deren
korrekte Addition, Subtraktion, Multiplikation und Vergleich.

* Unvollstandig: Es gibt Satze, die weder bewiesen noch widerlegt werden kénnen.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 24 Folie 3 von 23


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beispiele

Beispiel: Natlrliche Zahlen und einfache Rechenregeln kénnen mit einer pradikaten-
logischen Theorie definiert werden. Mit Resolution kann man daraus korrekte neue
Schlisse ziehen. Laut Gédels erstem Satz kann man auf diese Art aber niemals alle
wahren Aussagen der Arithmetik beweisen, auf3er wenn die Theorie widersprtchlich
ist.

Keine pradikatenlogische Theorie kann die elementare Arithmetik vollstandig
beschreiben.
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Beispiele

Beispiel: Natlrliche Zahlen und einfache Rechenregeln kénnen mit einer pradikaten-
logischen Theorie definiert werden. Mit Resolution kann man daraus korrekte neue
Schlisse ziehen. Laut Gédels erstem Satz kann man auf diese Art aber niemals alle
wahren Aussagen der Arithmetik beweisen, auBer wenn die Theorie widersprlchlich
ist.

Keine pradikatenlogische Theorie kann die elementare Arithmetik vollstandig
beschreiben.

Beispiel: Die moderne Mathematik basiert auf der Mengenlehre von Zermelo-
Fraenkel unter Hinzunahme des Auswahlaxioms. Dieses formale System heif3t ZFC.
Es ist klar definiert, was ein korrekter mathematischer Beweis in ZFC ist. Laut Goédels
erstem Satz gibt es also wahre Aussagen (iber elementare Arithmetik, die nicht in ZFC
bewiesen werden kénnen.
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Gddels 2. Unvollstandigkeitssatz

Goddel kam direkt zu einer weiteren Schlussfolgerung:

Satz: Jedes konsistente formale System, in dem eine gewisse Menge elementarer
Arithmetik dargestellt werden kann, kann nicht seine eigene Konsistenz beweisen.

Auch hier gibt es einige vage Punkte:
® Was ist ,eine gewisse Menge elementarer Arithmetik*?
® Was genau bedeutet ,seine eigene Konsistenz beweisen?
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Konsistenz beweisen

Konsistenz bedeutet formal:

,Fur alle Satze F gilt: Es gibt keinen Beweis fiir F' oder es gibt keinen Beweis fur —F."

® Um das ausdriicken zu kdnnen, muss das System Uber die im eigenen System
maglichen Beweise reflektieren kénnen.

® Diese Idee ist verwandt mit der Intuition, dass man in Arithmetik universelle
Turingmaschinen kodieren kann: Die Beweise eines Systems sind letztlich die
akzeptierenden Laufe einer TM.

® Man benétigt dazu etwas mehr Arithmetik als flr den Beweis des
1. Unvollstandigkeitssatzes. (Details sparen wir uns.)
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Beweis des 2. Unvollstandigkeitssatzes

Godels Argument flr seinen 1. Unvollstédndigkeitssatz (vereinfacht):
Sei S ein korrektes, konsistentes Formales System. Definiere Formel F mittels:
LF ist in System & nicht beweisbar.”

® Wenn F beweisbar ware, dann ware F wahr und daher nicht beweisbar —
Widerspruch.

® Also ist F nicht beweisbar, und damit wahr.

Es stellt sich heraus: Mit einer ,gewissen Menge Arithmetik“ kann man diese
Argumentation komplett im System S selbst darstellen.
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Beweis des 2. Unvollstandigkeitssatzes

Godels Argument flr seinen 1. Unvollstédndigkeitssatz (vereinfacht):
Sei S ein korrektes, konsistentes Formales System. Definiere Formel F mittels:
LF ist in System & nicht beweisbar.”

® Wenn F beweisbar ware, dann ware F wahr und daher nicht beweisbar —
Widerspruch.

® Also ist F nicht beweisbar, und damit wahr. O

Es stellt sich heraus: Mit einer ,gewissen Menge Arithmetik“ kann man diese
Argumentation komplett im System S selbst darstellen.

Warum ist diese Argumentation dann nicht schon ein Beweis fir F?
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Beweis des 2. Unvollstandigkeitssatzes

Godels Argument flr seinen 1. Unvollstédndigkeitssatz (vereinfacht):

Sei S ein korrektes, konsistentes Formales System. Definiere Formel F mittels:

LF ist in System & nicht beweisbar.”
® Wenn F beweisbar ware, dann ware F wahr und daher nicht beweisbar —
Widerspruch.
® Also ist F nicht beweisbar, und damit wahr.
Es stellt sich heraus: Mit einer ,gewissen Menge Arithmetik“ kann man diese
Argumentation komplett im System S selbst darstellen.
Warum ist diese Argumentation dann nicht schon ein Beweis fir F?
Weil wir die Annahme verwenden, dass das System S konsistent ist.
* Wenn wir dies beweisen kénnten, so ware auch F beweisbar.
e Aber laut dem 1. Unvollstandigkeitssatz ist F' nicht beweisbar.
Also kann die Konsistenz des Systems S nicht beweisbar sein.

O
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Beispiele

Beispiel: Es gibt keinen elementaren arithmetischen Beweis fir die Widerspruchsfrei-
heit der Peano-Arithmetik. Man kann deren Konsistenz aber leicht im starkeren Sys-
tem ZFC beweisen.
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Beispiele

Beispiel: Es gibt keinen elementaren arithmetischen Beweis fir die Widerspruchsfrei-
heit der Peano-Arithmetik. Man kann deren Konsistenz aber leicht im starkeren Sys-
tem ZFC beweisen.

Beispiel: Es ist nicht moglich, die Widerspruchsfreiheit der modernen Mathematik
(ZFC) aus sich selbst heraus zu beweisen. Auch das kann man allerdings in méachti-
geren Systemen erreichen.
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Beispiele

Beispiel: Es gibt keinen elementaren arithmetischen Beweis fir die Widerspruchsfrei-
heit der Peano-Arithmetik. Man kann deren Konsistenz aber leicht im starkeren Sys-
tem ZFC beweisen.

Beispiel: Es ist nicht moglich, die Widerspruchsfreiheit der modernen Mathematik
(ZFC) aus sich selbst heraus zu beweisen. Auch das kann man allerdings in méachti-
geren Systemen erreichen.

Anmerkung: Dadurch wird die Mathematik nicht in eine Sinnkrise gestirzt. Selbst wenn
man die Konsistenz von ZFC in ZFC beweisen kénnte, ware dies sicherlich kein starkes
Argument fiir ZFC. Mathematische Systeme erhalten ihre Bedeutung niemals aus sich
selbst heraus.
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Der universelle elektronische Mathematiker

Oder: ,Hilberts Programm als Turingmaschine*®

Skizze einer Turingmaschine:
* Bilde systematisch der Reihe nach alle mdglichen Beweise der modernen
Mathematik (System ZFC).
® Halte, sobald ein Beweis fir die Aussage ,0 = 1“ auftaucht.

Halt diese Turingmaschine?
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Der universelle elektronische Mathematiker

Oder: ,Hilberts Programm als Turingmaschine*®

Skizze einer Turingmaschine:
* Bilde systematisch der Reihe nach alle mdglichen Beweise der modernen
Mathematik (System ZFC).
® Halte, sobald ein Beweis fir die Aussage ,0 = 1“ auftaucht.
Halt diese Turingmaschine?
® Ja, falls ZFC inkonsistent ist.
® Nein, falls ZFC konsistent ist.
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Der universelle elektronische Mathematiker

Oder: ,Hilberts Programm als Turingmaschine*®

Skizze einer Turingmaschine:
* Bilde systematisch der Reihe nach alle mdglichen Beweise der modernen
Mathematik (System ZFC).

® Halte, sobald ein Beweis fir die Aussage ,0 = 1“ auftaucht.
Halt diese Turingmaschine?

® Ja, falls ZFC inkonsistent ist.

® Nein, falls ZFC konsistent ist.

~> Vermutlich halt die TM nicht, aber die moderne Mathematik kann das nicht beweisen.
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Der universelle elektronische Mathematiker

Oder: ,Hilberts Programm als Turingmaschine*®

Skizze einer Turingmaschine:

* Bilde systematisch der Reihe nach alle mdglichen Beweise der modernen
Mathematik (System ZFC).

® Halte, sobald ein Beweis fir die Aussage ,0 = 1“ auftaucht.
Halt diese Turingmaschine?

® Ja, falls ZFC inkonsistent ist.

® Nein, falls ZFC konsistent ist.

~> Vermutlich halt die TM nicht, aber die moderne Mathematik kann das nicht beweisen.

Anmerkung: Es gibt eine bekannte TM mit 7910 Zustanden, die sich so verhalt [Yedidia
& Aaronson 2016] und sogar eine mit nur 1919 Zustanden [O’Rear, 2016].
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Konsequenzen

Wir haben Turing-Machtigkeit und Unentscheidbarkeit in vielen Formalismen gezeigt —
jedes davon erlaubt die Konstruktion universeller Mathematiker!

Es gibt konkrete Beispiele fiir
®* WHILE-Programme,
® Rust-Programme,
® Typ-0-Grammatiken,

PCP-Instanzen,
e diophantische Gleichungen,
e pradikatenlogische Theorien,

deren Halten/Nichtleerheit/Ldsbarkeit/Unerflillbarkeit nicht durch die ,lbliche
Mathematik” (ZFC) bewiesen oder widerlegt werden kann.

Zumindest, falls die ,bliche Mathematik“ konsistent ist.
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Hilberts 10. Problem, revisited

Hilbert: ... man soll ein Verfahren angeben, nach welchem sich mittels einer endlichen
Anzahl von Operationen entscheiden lasst, ob die Gleichung in ganzen rationalen
Zahlen lésbar ist.”
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Hilberts 10. Problem, revisited

Hilbert: ... man soll ein Verfahren angeben, nach welchem sich mittels einer endlichen
Anzahl von Operationen entscheiden lasst, ob die Gleichung in ganzen rationalen
Zahlen lésbar ist.”

Turing: Es gibt Probleme, die durch kein automatisches Verfahren l6sbar sind.
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Hilberts 10. Problem, revisited

Hilbert: ... man soll ein Verfahren angeben, nach welchem sich mittels einer endlichen
Anzahl von Operationen entscheiden lasst, ob die Gleichung in ganzen rationalen
Zahlen lésbar ist.”

Turing: Es gibt Probleme, die durch kein automatisches Verfahren l6sbar sind.

Godel: Es gibt konstruierbare Beispiele konkreter arithmetischer Satze, deren Glltigkeit
nicht in der modernen Mathematik bewiesen oder widerlegt werden kann.
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Hilberts 10. Problem, revisited

Hilbert: ... man soll ein Verfahren angeben, nach welchem sich mittels einer endlichen
Anzahl von Operationen entscheiden lasst, ob die Gleichung in ganzen rationalen
Zahlen lésbar ist.”

Turing: Es gibt Probleme, die durch kein automatisches Verfahren l6sbar sind.

Godel: Es gibt konstruierbare Beispiele konkreter arithmetischer Satze, deren Glltigkeit
nicht in der modernen Mathematik bewiesen oder widerlegt werden kann.

Matiyasevich/Robinson/Davis/Putnam: Die Lésbarkeit diophantischer Gleichungen ist
unentscheidbar.
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Hilberts 10. Problem, revisited

Hilbert: ... man soll ein Verfahren angeben, nach welchem sich mittels einer endlichen
Anzahl von Operationen entscheiden lasst, ob die Gleichung in ganzen rationalen
Zahlen lésbar ist.”

Turing: Es gibt Probleme, die durch kein automatisches Verfahren l6sbar sind.

Godel: Es gibt konstruierbare Beispiele konkreter arithmetischer Satze, deren Glltigkeit
nicht in der modernen Mathematik bewiesen oder widerlegt werden kann.

Matiyasevich/Robinson/Davis/Putnam: Die Lésbarkeit diophantischer Gleichungen ist
unentscheidbar.

Alle zusammen: Es gibt also sogar konkrete diophantische Gleichungen, deren
Ldésbarkeit nicht in der modernen Mathematik bewiesen oder widerlegt werden kann.
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Hilberts 10. Problem, revisited

Hilbert: ... man soll ein Verfahren angeben, nach welchem sich mittels einer endlichen
Anzahl von Operationen entscheiden lasst, ob die Gleichung in ganzen rationalen
Zahlen lésbar ist.”

Turing: Es gibt Probleme, die durch kein automatisches Verfahren l6sbar sind.

Godel: Es gibt konstruierbare Beispiele konkreter arithmetischer Satze, deren Glltigkeit
nicht in der modernen Mathematik bewiesen oder widerlegt werden kann.

Matiyasevich/Robinson/Davis/Putnam: Die Lésbarkeit diophantischer Gleichungen ist
unentscheidbar.

Alle zusammen: Es gibt also sogar konkrete diophantische Gleichungen, deren
Ldésbarkeit nicht in der modernen Mathematik bewiesen oder widerlegt werden kann.

Aber: Die Losbarkeit jeder konkreten diophantischen Gleichung wird durch irgendein Programm entschieden (wir wissen nur oft nicht, welches,
bzw. kénnen seine Korrektheit nicht in ZFC mathematisch beweisen).
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Ausblick
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Komplexitatstheorie

Wesentliche Grundlagen der klassischen Komplexitatslehre haben wir hier schon
behandelt.

Weiterflihrende Themen (Beispiele):
® Hierarchietheoreme: Kann man mit mehr Zeit/Speicher wirklich mehr berechnen?
® Relative Komplexitat: Orakel
e Komplexitaten unterhalb von P: Schaltkreise als Rechenmodell
® Rechnen mit Zufall: Randomisierte Komplexitat
e Einfihrung in Quantencomputer

~» siehe Vorlesung Complexity Theory (Wintersemester)
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Datenbanktheorie

Die Theorie der Datenbanken ist ein wichtiges Anwendungsgebiet fir viele Themen aus
theoretischer Informatik und Logik.

Weiterfiihrende Themen (Beispiele):
* Anfragesprachen vergleichen bzgl. Komplexitat und Ausdrucksstérke
® Relationales Kalkil (=Pradikatenlogik)
* Datalog: rekursive Anfragesprache, Fragment der Logik zweiter Stufe

Graph-Anfragen: Erreichbarkeit und Co. berechnen
® Anfragen unter Berlicksichtigung von Constraints

~» siehe Vorlesung Database Theory (Sommersemester)
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Verifikation

Programm- und Hardwareverifikation ist eine wichtige Anwendung logischer Methoden.

Weiterflihrende Themen (Beispiele):
® Modellierung reaktiver Systeme: Transaktionssysteme
* Automatenmodelle zur Darstellung verifizierbarer Eigenschaften
® |ogiken mit linearer und verzweigender Zeit (LTL, CTL, CTL")
® Probabilistische und zeitgesteuerte Automaten

~» siehe Vorlesung Model Checking
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Symbolische Wissensreprasentation

Anwendungsgebiet der formalen Logik, bei dem menschliches Wissen logisch kodiert
und automatisch ausgewertet wird.

Weiterfiihrende Themen (Beispiele):
® Entwicklung logischer Sprachen, fiir die Schlussfolgerung (effizient) entscheidbar
ist
® Meist durch Einschréankung auf Teilmengen der Pradikatenlogik, z.B. bei
Beschreibungslogiken
® Ontologien: logische Wissensmodelle
* Entwicklung effizienter Ableitungsalgorithmen und Implementierungen

~» verschiedene Vorlesungen, z.B. Foundations of Knowledge Representation
(Wintersemester), Description Logics
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Semantic Web & Datenaustausch

Anwendungsgebiet zwischen Datenbanken, Wissensreprasentation und
Webtechnologie.

Weiterflihrende Themen (Beispiele):
e Standards zur Kodierung von Fakten und Schemainformationen: RDF, OWL, ...

Informationsintegration in (Web)Graphdatenbanken
* Anfragesprachen: SPARQL und ontologiebasierte Anfragen
* Anwendungen (z.B. Wikidata)

~» siehe z.B. Vorlesung Knowledge Graphs (Wintersemester)
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Zusammenfassung
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Ubersicht

Berechenbarkeit: Turingmaschinen, LOOP/WHILE, Entscheidbarkeit, Beispielprobleme
(Halten, PCP)

Komplexitat: NP, PSpace, Many-One-Reduktionen, Ubersicht weiterer wichtiger
Klassen

Logik: Aussagenlogik (SAT), QBF, Pradikatenlogik, Resolution (mit vielen Teilschritten),
Herbrand-Interpretationen, Datalog

Bonusmaterial: Godel, Metamathematik, Euklid, SQL, Geschichte und Geschichten
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Komplexitat: Ubersicht

Sebastian Rudolph, TU Dresden

RE, Typ 0

(semi-entscheidbar, Turing-erkennbar)

Exp
‘ PSpace | = ‘ NPSpace
~ ~
NP || coNP |
| NL | =]  coNL

]

Theoretische Informatik und Logik, VL 24
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Komplexitat: Ubersicht mit Hierarchie

RE, Typ 0

(semi-entscheidbar, Turing-erkennbar)

NPSpace
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Komplexitat: Typische Probleme

PCP RE, Typ 0 [ Halteproblem fir Turingmaschinen]

[ Schnittproblem kontextfreier Grammatiken ((Semi-entscheidbar, Turing-erkennbar)| Unerfiillbarkeit der Prédikatenlogik}

Logische Konsequenz in Datalog }

Exp
[jigégﬁgﬁig PSpace |=| NPSpace |
O
SAT NP | | coNP

I
{ Unerfullbarkeit der Aussagenlogik

NL

| coNL

{ Erreichbarkeit in gerichteten Graphen }

[ Erreichbarkeit in ungerichteten Graphen
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Querschnittsthemen

Informatik ist Gberall dort, wo gerechnet wird.
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Querschnittsthemen

Informatik ist Gberall dort, wo gerechnet wird.

Rechnen = Schlussfolgern
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Querschnittsthemen

Informatik ist Gberall dort, wo gerechnet wird.

Rechnen = Schlussfolgern

Beweisen — Nachvollziehen — Verstehen
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The End

Fragen?
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