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Kurt Gödel

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 24 Folie 2 von 23

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Der 1. Gödelsche Unvollständigkeitssatz

Satz (Gödel, 1931): Jedes konsistente formale System, in dem eine gewisse Menge
elementarer Arithmetik dargestellt werden kann, ist unvollständig in Bezug auf die Be-
weisbarkeit von Sätzen der elementaren Arithmetik.

Relevante Begriffe:

• Formales System: Ein implementierbares Verfahren, mit dem man Theoreme
endlich beweisen kann.

• Konsistent: Man kann niemals eine Aussage und ihr Gegenteil beweisen.

• Gewisse Menge Arithmetik: Kodierung konkreter natürlicher Zahlen und deren
korrekte Addition, Subtraktion, Multiplikation und Vergleich.

• Unvollständig: Es gibt Sätze, die weder bewiesen noch widerlegt werden können.
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Beispiele

Beispiel: Natürliche Zahlen und einfache Rechenregeln können mit einer prädikaten-
logischen Theorie definiert werden. Mit Resolution kann man daraus korrekte neue
Schlüsse ziehen. Laut Gödels erstem Satz kann man auf diese Art aber niemals alle
wahren Aussagen der Arithmetik beweisen, außer wenn die Theorie widersprüchlich
ist.

Keine prädikatenlogische Theorie kann die elementare Arithmetik vollständig
beschreiben.

Beispiel: Die moderne Mathematik basiert auf der Mengenlehre von Zermelo-
Fraenkel unter Hinzunahme des Auswahlaxioms. Dieses formale System heißt ZFC.
Es ist klar definiert, was ein korrekter mathematischer Beweis in ZFC ist. Laut Gödels
erstem Satz gibt es also wahre Aussagen über elementare Arithmetik, die nicht in ZFC
bewiesen werden können.
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Gödels 2. Unvollständigkeitssatz

Gödel kam direkt zu einer weiteren Schlussfolgerung:

Satz: Jedes konsistente formale System, in dem eine gewisse Menge elementarer
Arithmetik dargestellt werden kann, kann nicht seine eigene Konsistenz beweisen.

Auch hier gibt es einige vage Punkte:

• Was ist „eine gewisse Menge elementarer Arithmetik“?

• Was genau bedeutet „seine eigene Konsistenz beweisen“?
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Konsistenz beweisen

Konsistenz bedeutet formal:

„Für alle Sätze F gilt: Es gibt keinen Beweis für F oder es gibt keinen Beweis für ¬F.“

• Um das ausdrücken zu können, muss das System über die im eigenen System
möglichen Beweise reflektieren können.

• Diese Idee ist verwandt mit der Intuition, dass man in Arithmetik universelle
Turingmaschinen kodieren kann: Die Beweise eines Systems sind letztlich die
akzeptierenden Läufe einer TM.

• Man benötigt dazu etwas mehr Arithmetik als für den Beweis des
1. Unvollständigkeitssatzes. (Details sparen wir uns.)
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Beweis des 2. Unvollständigkeitssatzes

Gödels Argument für seinen 1. Unvollständigkeitssatz (vereinfacht):

Sei S ein korrektes, konsistentes Formales System. Definiere Formel F mittels:

„F ist in System S nicht beweisbar.“

• Wenn F beweisbar wäre, dann wäre F wahr und daher nicht beweisbar –
Widerspruch.

• Also ist F nicht beweisbar, und damit wahr. □

Es stellt sich heraus: Mit einer „gewissen Menge Arithmetik“ kann man diese
Argumentation komplett im System S selbst darstellen.

Warum ist diese Argumentation dann nicht schon ein Beweis für F?

Weil wir die Annahme verwenden, dass das System S konsistent ist.

• Wenn wir dies beweisen könnten, so wäre auch F beweisbar.

• Aber laut dem 1. Unvollständigkeitssatz ist F nicht beweisbar.

Also kann die Konsistenz des Systems S nicht beweisbar sein. □
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Beispiele

Beispiel: Es gibt keinen elementaren arithmetischen Beweis für die Widerspruchsfrei-
heit der Peano-Arithmetik. Man kann deren Konsistenz aber leicht im stärkeren Sys-
tem ZFC beweisen.

Beispiel: Es ist nicht möglich, die Widerspruchsfreiheit der modernen Mathematik
(ZFC) aus sich selbst heraus zu beweisen. Auch das kann man allerdings in mächti-
geren Systemen erreichen.

Anmerkung: Dadurch wird die Mathematik nicht in eine Sinnkrise gestürzt. Selbst wenn
man die Konsistenz von ZFC in ZFC beweisen könnte, wäre dies sicherlich kein starkes
Argument für ZFC. Mathematische Systeme erhalten ihre Bedeutung niemals aus sich
selbst heraus.
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Der universelle elektronische Mathematiker

Oder: „Hilberts Programm als Turingmaschine“

Skizze einer Turingmaschine:

• Bilde systematisch der Reihe nach alle möglichen Beweise der modernen
Mathematik (System ZFC).

• Halte, sobald ein Beweis für die Aussage „0 = 1“ auftaucht.

Hält diese Turingmaschine?

• Ja, falls ZFC inkonsistent ist.

• Nein, falls ZFC konsistent ist.

{ Vermutlich hält die TM nicht, aber die moderne Mathematik kann das nicht beweisen.

Anmerkung: Es gibt eine bekannte TM mit 7910 Zuständen, die sich so verhält [Yedidia
& Aaronson 2016] und sogar eine mit nur 1919 Zuständen [O’Rear, 2016].
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Konsequenzen

Wir haben Turing-Mächtigkeit und Unentscheidbarkeit in vielen Formalismen gezeigt –
jedes davon erlaubt die Konstruktion universeller Mathematiker!

Es gibt konkrete Beispiele für

• WHILE-Programme,

• Rust-Programme,

• Typ-0-Grammatiken,

• PCP-Instanzen,

• diophantische Gleichungen,

• prädikatenlogische Theorien,

• . . .

deren Halten/Nichtleerheit/Lösbarkeit/Unerfüllbarkeit nicht durch die „übliche
Mathematik“ (ZFC) bewiesen oder widerlegt werden kann.
Zumindest, falls die „übliche Mathematik“ konsistent ist.
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Hilberts 10. Problem, revisited

Hilbert: „. . . man soll ein Verfahren angeben, nach welchem sich mittels einer endlichen
Anzahl von Operationen entscheiden lässt, ob die Gleichung in ganzen rationalen
Zahlen lösbar ist.“

Turing: Es gibt Probleme, die durch kein automatisches Verfahren lösbar sind.

Gödel: Es gibt konstruierbare Beispiele konkreter arithmetischer Sätze, deren Gültigkeit
nicht in der modernen Mathematik bewiesen oder widerlegt werden kann.

Matiyasevich/Robinson/Davis/Putnam: Die Lösbarkeit diophantischer Gleichungen ist
unentscheidbar.

Alle zusammen: Es gibt also sogar konkrete diophantische Gleichungen, deren
Lösbarkeit nicht in der modernen Mathematik bewiesen oder widerlegt werden kann.
Aber: Die Lösbarkeit jeder konkreten diophantischen Gleichung wird durch irgendein Programm entschieden (wir wissen nur oft nicht, welches,
bzw. können seine Korrektheit nicht in ZFC mathematisch beweisen).
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Ausblick
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Komplexitätstheorie

Wesentliche Grundlagen der klassischen Komplexitätslehre haben wir hier schon
behandelt.

Weiterführende Themen (Beispiele):

• Hierarchietheoreme: Kann man mit mehr Zeit/Speicher wirklich mehr berechnen?

• Relative Komplexität: Orakel

• Komplexitäten unterhalb von P: Schaltkreise als Rechenmodell

• Rechnen mit Zufall: Randomisierte Komplexität

• Einführung in Quantencomputer

• . . .

{ siehe Vorlesung Complexity Theory (Wintersemester)
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Datenbanktheorie

Die Theorie der Datenbanken ist ein wichtiges Anwendungsgebiet für viele Themen aus
theoretischer Informatik und Logik.

Weiterführende Themen (Beispiele):

• Anfragesprachen vergleichen bzgl. Komplexität und Ausdrucksstärke

• Relationales Kalkül (=Prädikatenlogik)

• Datalog: rekursive Anfragesprache, Fragment der Logik zweiter Stufe

• Graph-Anfragen: Erreichbarkeit und Co. berechnen

• Anfragen unter Berücksichtigung von Constraints

• . . .

{ siehe Vorlesung Database Theory (Sommersemester)
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Verifikation

Programm- und Hardwareverifikation ist eine wichtige Anwendung logischer Methoden.

Weiterführende Themen (Beispiele):

• Modellierung reaktiver Systeme: Transaktionssysteme

• Automatenmodelle zur Darstellung verifizierbarer Eigenschaften

• Logiken mit linearer und verzweigender Zeit (LTL, CTL, CTL∗)

• Probabilistische und zeitgesteuerte Automaten

• . . .

{ siehe Vorlesung Model Checking
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Symbolische Wissensrepräsentation

Anwendungsgebiet der formalen Logik, bei dem menschliches Wissen logisch kodiert
und automatisch ausgewertet wird.

Weiterführende Themen (Beispiele):

• Entwicklung logischer Sprachen, für die Schlussfolgerung (effizient) entscheidbar
ist

• Meist durch Einschränkung auf Teilmengen der Prädikatenlogik, z.B. bei
Beschreibungslogiken

• Ontologien: logische Wissensmodelle

• Entwicklung effizienter Ableitungsalgorithmen und Implementierungen

• . . .

{ verschiedene Vorlesungen, z.B. Foundations of Knowledge Representation
(Wintersemester), Description Logics
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Semantic Web & Datenaustausch

Anwendungsgebiet zwischen Datenbanken, Wissensrepräsentation und
Webtechnologie.

Weiterführende Themen (Beispiele):

• Standards zur Kodierung von Fakten und Schemainformationen: RDF, OWL, . . .

• Informationsintegration in (Web)Graphdatenbanken

• Anfragesprachen: SPARQL und ontologiebasierte Anfragen

• Anwendungen (z.B. Wikidata)

• . . .

{ siehe z.B. Vorlesung Knowledge Graphs (Wintersemester)
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Zusammenfassung
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Übersicht

Berechenbarkeit: Turingmaschinen, LOOP/WHILE, Entscheidbarkeit, Beispielprobleme
(Halten, PCP)

Komplexität: NP, PSpace, Many-One-Reduktionen, Übersicht weiterer wichtiger
Klassen

Logik: Aussagenlogik (SAT), QBF, Prädikatenlogik, Resolution (mit vielen Teilschritten),
Herbrand-Interpretationen, Datalog

Bonusmaterial: Gödel, Metamathematik, Euklid, SQL, Geschichte und Geschichten
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Komplexität: Übersicht

NExp

Exp

PSpace = NPSpace

NP coNP

P

NL = coNL

L

RE, Typ 0
(semi-entscheidbar, Turing-erkennbar)
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Komplexität: Übersicht mit Hierarchie

NExp

Exp

PSpace = NPSpace

NP coNP

P

NL = coNL

L

RE, Typ 0
(semi-entscheidbar, Turing-erkennbar)

⊊

⊊

⊊
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Komplexität: Typische Probleme

NExp

Exp

PSpace = NPSpace

NP coNP

P

NL = coNL

L

RE, Typ 0
(semi-entscheidbar, Turing-erkennbar)

Halteproblem für Turingmaschinen

Unerfüllbarkeit der Prädikatenlogik

PCP
Schnittproblem kontextfreier Grammatiken

Logische Konsequenz in Datalog

TrueQBF

SAT
Unerfüllbarkeit der Aussagenlogik

HornSAT

Erreichbarkeit in gerichteten Graphen

Erreichbarkeit in ungerichteten Graphen
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Querschnittsthemen

Informatik ist überall dort, wo gerechnet wird.

Rechnen = Schlussfolgern

Beweisen – Nachvollziehen – Verstehen
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The End

Fragen?
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