The Class NP
Beyond PTime

- We have seen that the class PTime provides a useful model of “tractable” problems
- This includes 2-Sat and 2-Colourability
- But what about 3-Sat and 3-Colourability?
- No polynomial time algorithms for these problems are known
- On the other hand . . .
Verifying Solutions

For many seemingly difficult problems, it is easy to verify the correctness of a “solution” if given.

- **Satisfiability** – a satisfying assignment
- **k- Colourability** – a k-colouring
- **Sudoku** – a completed puzzle
Verifiers

Definition 6.1: A Turing machine \mathcal{M} which halts on all inputs is called a verifier for a language L if

$$L = \{w \mid \mathcal{M} \text{ accepts } (w\#c) \text{ for some string } c\}$$

The string c is called a certificate (or witness) for w.

Notation: # is a new separator symbol not used in words or certificates.
Definition 6.1: A Turing machine \(M \) which halts on all inputs is called a **verifier** for a language \(L \) if

\[
L = \{ w \mid M \text{ accepts } (w#c) \text{ for some string } c \}
\]

The string \(c \) is called a **certificate** (or **witness**) for \(w \).

Notation: \# is a new separator symbol not used in words or certificates.

Definition 6.2: A Turing machine \(M \) is a **polynomial-time verifier** for \(L \) if \(M \) is polynomially time bounded and

\[
L = \{ w \mid M \text{ accepts } (w#c) \text{ for some string } c \text{ with } |c| \leq p(|w|) \}
\]

for some fixed polynomial \(p \).
The Class NP

NP: “The class of dashed hopes and idle dreams.”¹

¹https://complexityzoo.uwaterloo.ca/Complexity_Zoo:N#np
The Class NP

NP: “The class of dashed hopes and idle dreams.”\(^1\)

More formally:
the class of problems for which a possible solution can be verified in P

Definition 6.3: The class of languages that have polynomial-time verifiers is called **NP**.

\(^1\)https://complexityzoo.uwaterloo.ca/Complexity_Zoo:N#np

Markus Krötzsch, 7th Nov 2017
Complexity Theory

slide 6 of 26
The Class NP

NP: “The class of dashed hopes and idle dreams.”

More formally:
the class of problems for which a possible solution can be verified in P

Definition 6.3: The class of languages that have polynomial-time verifiers is called NP.

In other words: NP is the class of all languages L such that:

- for every $w \in L$, there is a certificate $c_w \in \Sigma^*$, where
- the length of c_w is polynomial in the length of w, and
- the language $\{(w#c_w) | w \in L\}$ is in P

1https://complexityzoo.uwaterloo.ca/Complexity_Zoo:N#np
More Examples of Problems in NP

Hamiltonian Path

Input: An undirected graph G

Problem: Is there a path in G that contains each vertex exactly once?

k-Clique

Input: An undirected graph G

Problem: Does G contain a fully connected graph (clique) with k vertices?
More Examples of Problems in NP

Subset Sum

Input: A collection of positive integers

\[S = \{ a_1, \ldots, a_k \} \] and a target integer \(t \).

Problem: Is there a subset \(T \subseteq S \) such that \(\sum_{a_i \in T} a_i = t \)?

Travelling Salesperson

Input: A weighted graph \(G \) and a target number \(t \).

Problem: Is there a simple path in \(G \) with weight \(\leq t \)?
Complements of NP are often not known to be in NP

No Hamiltonian Path
- **Input:** An undirected graph G
- **Problem:** Is there no path in G that contains each vertex exactly once?

Whereas it is easy to certify that a graph has a Hamiltonian path, there does not seem to be a polynomial certificate that it has not.

But we may just not be clever enough to find one.
More Examples

Composite (non-prime) Number

- **Input:** A positive integer $n > 1$
- **Problem:** Are there integers $u, v > 1$ such that $u \cdot v = n$?

Prime Number

- **Input:** A positive integer $n > 1$
- **Problem:** Is n a prime number?
More Examples

Composite (non-prime) Number

- **Input:** A positive integer $n > 1$
- **Problem:** Are there integers $u, v > 1$ such that $u \cdot v = n$?

Prime Number

- **Input:** A positive integer $n > 1$
- **Problem:** Is n a prime number?

Surprisingly: both are in NP (see Wikipedia “Primality certificate”)

Markus Krötzsch, 7th Nov 2017
More Examples

Composite (Non-Prime) Number

- **Input:** A positive integer \(n > 1 \)
- **Problem:** Are there integers \(u, v > 1 \) such that \(u \cdot v = n \)?

Prime Number

- **Input:** A positive integer \(n > 1 \)
- **Problem:** Is \(n \) a prime number?

Surprisingly: both are in NP (see Wikipedia “Primality certificate”)

In fact: Composite Number (and thus Prime Number) was shown to be in P
N is for Nondeterministic
A nondeterministic Turing Machine (NTM) $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}})$ consists of

- a finite set Q of states,
- an input alphabet Σ not containing \square,
- a tape alphabet Γ such that $\Gamma \supseteq \Sigma \cup \{\square\}$,
- a transition function $\delta : Q \times \Gamma \rightarrow 2^{Q \times \Gamma \times \{L,R\}}$,
- an initial state $q_0 \in Q$,
- an accepting state $q_{\text{accept}} \in Q$.

Note

An NTM can halt in any state if there are no options to continue
\leadsto no need for a special rejecting state
Reprise: Runs of NTMs

An (N)TM configuration can be written as a word uqv where $q \in Q$ is a state and $uv \in \Gamma^*$ is the current tape contents.

NTMs produce configuration trees that contain all possible runs:

- **accept:**
 - Start state
 - Transition to accepting state
 - Terminates

- **reject:**
 - Start state
 - Transition to non-accepting state
 - Terminates

- **reject (not halting):**
 - Start state
 - Transition to non-accepting state
 - Non-terminating run
Example: Multi-Tape NTM

Consider the NTM $M = (Q, \{0, 1\}, \{0, 1, \Box\}, q_0, \Delta, q_{\text{accept}})$ where

$$\Delta = \left\{ \begin{array}{l} (q_0, \Box, q_0, (0)_R) \\ (q_0, \Box, q_0, (1)_R) \\ (q_0, \Box, q_{\text{check}}, \Box, (N)_N) \\ \ldots \end{array} \right\}$$

transition rules for M_{check}

and where M_{check} is a deterministic TM deciding whether number on second tape is > 1 and divides the number on the first.
Example: Multi-Tape NTM

Consider the NTM $M = (Q, \{0, 1\}, \{0, 1, □\}, q_0, \Delta, q_{\text{accept}})$ where

$$\Delta = \begin{cases} (q_0, (\text{□}), q_0, (\text{□})_0, (\text{□})_R) \\ (q_0, (\text{□}), q_0, (\text{□})_1, (\text{□})_R) \\ (q_0, (\text{□}), q_{\text{check}}, (\text{□}), (\text{□})_N) \\ \ldots \\ \text{transition rules for } M_{\text{check}} \end{cases}$$

and where M_{check} is a deterministic TM deciding whether number on second tape is > 1 and divides the number on the first.
Example: Multi-Tape NTM

Consider the NTM $M = (Q, \{0, 1\}, \{0, 1, \square\}, q_0, \Delta, q_{\text{accept}})$ where

$$\Delta = \begin{cases}
(q_0, \ _, q_0, (0), (N)) \\
(q_0, \ _, q_0, (1), (N)) \\
(q_0, \ _, q_{\text{check}}, \ _, (N)) \\
\ldots \\
\text{transition rules for } M_{\text{check}}
\end{cases}$$

and where M_{check} is a deterministic TM deciding whether number on second tape is > 1 and divides the number on the first.

Markus Krötzsch, 7th Nov 2017

Complexity Theory
Example: Multi-Tape NTM

Consider the NTM $\mathcal{M} = (Q, \{0, 1\}, \{0, 1, \square\}, q_0, \Delta, q_{\text{accept}})$ where

$$\Delta = \begin{cases}
(q_0, _), q_0, (_), (N) \\
(q_0, _), q_0, (1), (N) \\
(q_0, _), q_{\text{check}}, (_), (N) \\
\ldots \\
\text{transition rules for } M_{\text{check}}
\end{cases}$$

and where M_{check} is a deterministic TM deciding whether number on second tape is > 1 and divides the number on the first.

1 1 0 0 1

1 0 1

q_0
Example: Multi-Tape NTM

Consider the NTM $\mathcal{M} = (Q, \{0, 1\}, \{0, 1, \square\}, q_0, \Delta, q_{\text{accept}})$ where

$$\Delta = \begin{cases} (q_0, (_), q_0, (0), (N)_R) \\ (q_0, (_), q_0, (1), (N)_R) \\ (q_0, (_), q_{\text{check}}, (_), (N)_N) \\ \ldots \\ \text{transition rules for } \mathcal{M}_{\text{check}} \end{cases}$$

and where $\mathcal{M}_{\text{check}}$ is a deterministic TM deciding whether number on second tape is > 1 and divides the number on the first.

The machine \mathcal{M} decides if the input is a composite number:

- guess a number on the second tape
- check if it divides the number on the first tape
- accept if a suitable number exists
Q: Which of the nondeterministic runs do time/space bounds apply to?

Definition 6.4:

Let M be a nondeterministic Turing machine and let $f : \mathbb{N} \to \mathbb{R}^+$ be a function.

1. M is f-time bounded if it halts on every input $w \in \Sigma^*$ and on every computation path after $\leq f(|w|)$ steps.

2. M is f-space bounded if it halts on every input $w \in \Sigma^*$ and on every computation path using $\leq f(|w|)$ cells on its tapes.

(Here we typically assume that Turing machines have a separate input tape that we do not count in measuring space complexity.)
Q: Which of the nondeterministic runs do time/space bounds apply to?
A: To all of them!

Definition 6.4: Let M be a nondeterministic Turing machine and let $f : \mathbb{N} \to \mathbb{R}^+$ be a function.

1. M is f-time bounded if it halts on every input $w \in \Sigma^*$ and on every computation path after $\leq f(|w|)$ steps.
2. M is f-space bounded if it halts on every input $w \in \Sigma^*$ and on every computation path using $\leq f(|w|)$ cells on its tapes.

(Here we typically assume that Turing machines have a separate input tape that we do not count in measuring space complexity.)
Definition 6.5: Let $f : \mathbb{N} \to \mathbb{R}^+$ be a function.

1. $\text{NTime}(f(n))$ is the class of all languages L for which there is an $O(f(n))$-time bounded nondeterministic Turing machine deciding L.

2. $\text{NSpace}(f(n))$ is the class of all languages L for which there is an $O(f(n))$-space bounded nondeterministic Turing machine deciding L.
All Complexity Classes Have a Nondeterministic Variant

\[\text{NPTime} = \bigcup_{d \geq 1} \text{NTime}(n^d)\]
nondet. polynomial time

\[\text{NExp} = \text{NExpTime} = \bigcup_{d \geq 1} \text{NTime}(2^{n^d})\]
nondet. exponential time

\[\text{N2Exp} = \text{N2ExpTime} = \bigcup_{d \geq 1} \text{NTime}(2^{2^{n^d}})\]
nond. double-exponential time

\[\text{NL} = \text{NLogSpace} = \text{NSpace}(\log n)\]
nondet. logarithmic space

\[\text{NSpace} = \bigcup_{d \geq 1} \text{NSpace}(n^d)\]
nondet. polynomial space

\[\text{NExpSpace} = \bigcup_{d \geq 1} \text{NSpace}(2^{n^d})\]
nondet. exponential space
Theorem 6.6: NP = NPTime.

Proof:

We first show NP \supseteq NPTime:

• Suppose $L \in$ NPTime.
 • Then there is an NTM M such that $w \in L \iff$ there is an accepting run of M of length $O(n^d)$ for some d.
 • This path can be used as a certificate for w.
 • A DTM can check in polynomial time that a candidate certificate is a valid accepting run.

Therefore NP \supseteq NPTime.
Equivalence of NP and NPTIME

Theorem 6.6: NP = NPTIME.

Proof: We first show NP ⊇ NPTIME:

- Suppose \(L \in \text{NPTime} \).
- Then there is an NTM \(M \) such that \(w \in L \iff \) there is an accepting run of \(M \) of length \(O(n^d) \) for some \(d \).
- This path can be used as a certificate for \(w \).
- A DTM can check in polynomial time that a candidate certificate is a valid accepting run.

Therefore NP ⊇ NPTIME.
Theorem 6.6: $\text{NP} = \text{NPTime}$.

Proof: We first show $\text{NP} \supseteq \text{NPTime}$:

- Suppose $L \in \text{NPTime}$.
- Then there is an NTM M such that

 $$w \in L \iff \text{there is an accepting run of } M \text{ of length } O(n^d)$$

 for some d.

Markus Krötzsch, 7th Nov 2017
Theorem 6.6: NP = NPTime.

Proof: We first show \(\text{NP} \supseteq \text{NPTime} \):

- Suppose \(L \in \text{NPTime} \).
- Then there is an NTM \(M \) such that
 \[w \in L \iff \text{there is an accepting run of } M \text{ of length } O(n^d) \]
 for some \(d \).
- This path can be used as a certificate for \(w \).
Equivalence of NP and NPTime

Theorem 6.6: NP = NPTime.

Proof: We first show NP ⊇ NPTime:

- Suppose \(L \in \text{NPTime}. \)
- Then there is an NTM \(M \) such that
 \[
 w \in L \iff \text{there is an accepting run of } M \text{ of length } O(n^d)
 \]
 for some \(d \).
- This path can be used as a certificate for \(w \).
- A DTM can check in polynomial time that a candidate certificate is a valid accepting run.

Therefore NP ⊇ NPTime.
Theorem 6.6: NP = \text{NPTime}.

Proof: We now show NP \subseteq \text{NPTime}:

1. Assume \(L \) has a polynomial-time verifier \(M \) with certificates of length at most \(p(n) \) for a polynomial \(p \).
2. Then we can construct an NTM \(M^* \) deciding \(L \) as follows:
 - \(M^* \) guesses a string of length \(p(n) \).
 - \(M^* \) checks in deterministic polynomial time if this is a certificate.

Therefore NP \subseteq \text{NPTime}. \[\square \]
Theorem 6.6: NP = NPTime.

Proof: We now show $NP \subseteq NPTime$:

- Assume L has a polynomial-time verifier M with certificates of length at most $p(n)$ for a polynomial p.
Theorem 6.6: NP = NPTime.

Proof: We now show NP \subseteq NPTime:

- Assume L has a polynomial-time verifier M with certificates of length at most $p(n)$ for a polynomial p.
- Then we can construct an NTM M^* deciding L as follows:
 1. M^* guesses a string of length $p(n)$
 2. M^* checks in deterministic polynomial time if this is a certificate.

Therefore NP \subseteq NPTime. □
NP and coNP

Note: the definition of NP is not symmetric

- there does not seem to be any polynomial certificate for Sudoku unsolvability or propositional logic unsatisfiability . . .
- converse of an NP problem is coNP
- similar for NExpTime and N2ExpTime

Other complexity classes are symmetric:

- Deterministic classes (coP = P etc.)
- Space classes mentioned above (esp. coNL = NL)
Theorem 6.7: $P \subseteq NP$, and also $P \subseteq coNP$.

(Clear since DTMs are a special case of NTMs)

It is not known to date if the converse is true or not.

- Put differently: “If it is easy to check a candidate solution to a problem, is it also easy to find one?”
- Exaggerated: “Can creativity be automated?” (Wigderson, 2006)
- Unresolved since over 35 years of effort
- One of the major problems in computer science and math of our time
- 1,000,000 USD prize for resolving it (“Millenium Problem”)
 (might not be much money at the time it is actually solved)
Many people believe that $P \neq NP$

- Main argument: “If $NP = P$, someone ought to have found some polynomial algorithm for an NP-complete problem by now.”

- “This is, in my opinion, a very weak argument. The space of algorithms is very large and we are only at the beginning of its exploration.” (Moshe Vardi, 2002)

- Another source of intuition: Humans find it hard to solve NP-problems, and hard to imagine how to make them simpler – possibly “human chauvinistic bravado” (Zeilenberger, 2006)

- There are better arguments, but none more than an intuition
Many outcomes conceivable:

• $P = NP$ could be shown with a non-constructive proof
• The question might be independent of standard mathematics (ZFC)
• Even if $NP \neq P$, it is unclear if NP problems require exponential time in a strict sense – many super-polynomial functions exist...
• The problem might never be solved
Status of P vs. NP

Many outcomes conceivable:

- P = NP could be shown with a non-constructive proof
Status of P vs. NP

Many outcomes conceivable:

- $P = NP$ could be shown with a non-constructive proof
- The question might be independent of standard mathematics (ZFC)
Many outcomes conceivable:

- \(P = NP \) could be shown with a non-constructive proof
- The question might be independent of standard mathematics (ZFC)
- Even if \(NP \neq P \), it is unclear if NP problems require exponential time in a strict sense – many super-polynomial functions exist . . .
Status of P vs. NP

Many outcomes conceivable:

- $P = \text{NP}$ could be shown with a non-constructive proof
- The question might be independent of standard mathematics (ZFC)
- Even if $\text{NP} \neq P$, it is unclear if NP problems require exponential time in a strict sense – many super-polynomial functions exist . . .
- The problem might never be solved
Status of P vs. NP

Current status in research:

- Results of a poll among 152 experts [Gasarch 2012]:
 - $P \neq NP$: 126 (83%)
 - $P = NP$: 12 (9%)
 - Don’t know or don’t care: 7 (4%)
 - Independent: 5 (3%)
 - And 1 person (0.6%) answered: “I don’t want it to be equal.”

- Experts have guessed wrongly in other major questions before

- Over 100 “proofs” show $P = NP$ to be true/false/both/neither:
 https://www.win.tue.nl/~gwoegi/P-versus-NP.htm
A Simple Proof for P = NP

Clearly
therefore
hence
that is
using coP = P
and hence
so by P ⊆ NP

L ∈ P implies L ∈ NP
L ∉ NP implies L ∉ P
L ∈ coNP implies coNP ⊆ coP
L ∈ coP

using coP = P
coNP ⊆ P
NP ⊆ P
NP = P

q.e.d.
A Simple Proof for $P = NP$

Clearly
therefore
hence
that is
using $\text{coP} = P$
and hence
so by $P \subseteq \text{NP}$

$L \in P$ implies $L \in \text{NP}$
$L \notin \text{NP}$ implies $L \notin P$
$L \in \text{coNP}$ implies $\text{coNP} \subseteq \text{coP}$
$L \in \text{coNP}$ implies $\text{coNP} \subseteq P$
$L \in \text{coP}$ implies $\text{NP} \subseteq P$
$\text{NP} = P$

$q.e.d.$?
Summary and Outlook

NP can be defined using polynomial-time verifiers or polynomial-time nondeterministic Turing machines.

Many problems are easily seen to be in NP.

NTM acceptance is not symmetric: coNP as complement class, which is assumed to be unequal to NP.

What's next?

- NP hardness and completeness
- More examples of problems
- Space complexities