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Abstract. Modern SAT solvers are extremely powerful and solve many
problems in industry and academia. Yet, these systems are highly com-
plex and incorporate many research results from recent years, so that
details can only be taught by experts. We present an abstract and simple
visualization of solving the SAT problem – finding an exit in a maze –
that models many techniques of modern solvers, ranging from simple
search over verifying unsatisfiability proofs and formula simplification to
parallel search techniques that include sharing of knowledge.

1 Introduction

The satisfiability testing (SAT) problem is one of the most relevant problems of
computer science, as SAT is the representative problem for the complexity class
NP [14]. Due to the numerous improvements to SAT solvers, many industrial
problems are successfully reduced to SAT [10,12,20,22,24,43,61], because using
highly optimized and specialized SAT solvers makes all these improvements ac-
cessible. However, keeping track with all developments in SAT solving is quite
hard, as the complexity of award winning SAT solvers increases continuously
over the years [1, 2]. Still, many ideas from SAT solving are very valuable and
might also be interesting to grasp, even without giving all the formal details.

Related work on abstract descriptions of SAT technology focused on formal
aspects.DPLL(T) [50] and similar systems [3,46] focusses on the search of a SAT
solver without formula simplification, which is included in the system Generic
CDCL [31]. Heule et al. look more on the soundness of formula modifications
and omit the search process [39]. From all these abstract descriptions it is hard
to intuitively understand how a SAT solver behaves in the search space, and how
other techniques like formula simplifications modify the search space.

With this work, we provide an abstract visualization of SAT solving as an
intuitive and easy entry that covers most modern techniques without requiring
too much details. Instead of constructing a model for a given formula, we show
how an exit can be found in a maze. With this visualization we can show the
difference between the DPLL [17] and the CDCL algorithm [47], and further-
more can motivate restarts [7, 11, 23,33,54], clause removal [5, 6] and additional
reasoning during search. Parallel solving approaches [30,48,57] like parallel port-
folio solving can be modelled as well as search space partitioning. Finally, also



emitting unsatisfiability proofs based on reverse unit propagation [21,26,60] and
verifying these proofs can be done in the maze visualization.

Obviously, such a visualization is not meant to cover all modern solving tech-
niques, but we believe that supporting known results with a visualization is very
useful. Especially for introducing SAT solving to unexperienced persons, or when
presenting search algorithm extensions, this work is considered very valuable. By
looking at specific situations when finding an exit in the maze, the motivation for
certain developed SAT techniques, for example clause learning or clause removal,
can be recognized. Furthermore, other problems of the search of modern SAT
solvers might become visible when more methods are translated to the maze vi-
sualization. Besides the mediated intuition, this work also provides a large list of
references that facilitates entering the the research field of satisfiability testing.

In the following section the preliminaries of SAT solving are given. Next, in
Section 3 the visualization is introduced by using the plain search algorithms.
Additionally, the visualization of exemplary techniques is presented. Section 4
parallel SAT solving approaches are modelled in the maze visualization. Finally,
in Section 5 a conclusion is given.

2 Preliminaries

We consider a fixed infinite set V of Boolean variables. A literal is a variable
v (positive literal) or a negated variable v (negative literal). The complement
x of a positive (negative, resp.) literal x is the negative (positive, resp.) literal
with the same variable as x. The complement of a set of literals S, denoted by
S is defined as S := {x | x ∈ S}. A clause C is a finite set of literals, and is
understood as disjunction of literals. Formulas are finite multisets of clauses, and
are understood as conjunction of clauses. A sequence of literals M is consistent,
if whenever x ∈ M , then x /∈ M . A consistent sequence M is also treated as a set
whenever convenient. The set of variables that occur in a formula F is denoted
with vars(F ). Likewise, we apply vars to sets and sequences of formulas.

An interpretation I is a consistent sequence of literals, and is called total, if
vars(I) = V. The reduct F |I of a formula F with respect to an interpretation
I represents the resulting formula after the reducing F with respect to I. The
reduct removes all satisfied clauses and all falsified literals, and is defined as

F |I := {C \ I | C ∈ F,C ∩ I = ∅}.

An interpretation I satisfies a formula F , if all clauses of a formula are satisfied
by the interpretation, i.e. F |I = ∅.

A set of formulas M entails a formula G, in symbols M |= G, if all total
interpretations I that satisfy all formulas F ∈ M also satisfy G. Let I be an
interpretation, F be a formula, and M be the set of all literals in the sequence I.
Then I models F , in symbols I |= F , if the set M entails F . Then, I is called
model of F . A formula is called satisfiable, if there exists a model of F . Otherwise,
F is called unsatisfiable. The satisfiability testing (SAT) problem is to answer
the question whether a given propositional formula F is satisfiable. More details
and background on satisfiability testing can be found in [14].
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3 Visualizing Modern SAT Solving

Modern SAT solvers are extremely powerful due to the improvements of the
last 20 years, starting with the conflict driven clause learning (CDCL) algo-
rithm [47]. Only due to novel reasoning and simplifications [15, 18, 58], heuris-
tics [23,33,49,62] and data structures [32,49,55], these systems are used exten-
sively in both academia and industry to solve NP problems [14]. However, in
most universities only the old DPLL algorithm from the 1960s is taught [17],
which, besides the termination rules to determine satisfiability, basically uses
search, unit propagation and backtracking. Nowadays, SAT solvers are parallel
software systems [30, 48, 57] which furthermore allow to print traces such that
the unsatisfiability answer can be verified [21,26,60]. This work is not meant to
present an abstraction that can be linked directly to all modern developments1.
Instead, the presented abstraction is believed to be useful to built a first intu-
ition, which might built a good starting point for diving into the all the formal
necessities and little details.

3.1 Visualization Based on the DPLL Algorithm

Teaching all the ideas behind the novel algorithms is difficult, as most of these
algorithms are quite complex. Hence, we propose an abstract visualization of
solving the SAT problem which can help to get a good intuition of modern
SAT solving before starting to look into the details. The visualization compares
solving the SAT problem with finding an exit in a maze by an agent. While
modern SAT solvers construct an interpretation iteratively, the maze constructs
the path to the exit. Similarly to the DPLL algorithm [17] that uses rules to
modify the interpretation, there are a few rules to follow in the maze:

1. when moving left, backtracking has to be applied
2. when moving right, search decisions can be made

Essentially, the agent is not allowed to make search decisions when moving right.
A move of the agent in the maze is based on columns, and not in fields. Hence,
all fields in a column that can be reached from the current location of the agent
without leaving the column and without jumping over bars are considered to be
reached without making a step. This way, in the maze in Fig. 1a the agent can
access field (b6) from field (a2) in a single step. There is another major difference
between the maze visualization and solving propositional formulas: while in the
maze multiple search decisions to continue the search path are possible, variables
of propositional formulas can be assigned only two truth values.

With these constraints, a satisfiable formula corresponds to a maze whose
exit can be found with a path that crosses each column only in one block, i.e.
by never moving left.

1 We would be happy, if such a direct connection, i.e. a translation from a maze to
CNF would exist such that all steps on the CNF can be represented in the maze and
vice versa. However, the maze example would correspond to solving an MDD.
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(a) Starting Point (b) First Decision (c) Second Decision

Fig. 1: Stage of sequential search

A maze is given in Fig. 1a, where the starting point is marked with a cross.
For now, let the agent who searches the exit in the maze be called Sam. In the
illustration, the agent will always be located at the end of the current path.
Assume Sams search heuristic chooses to start the search as high as possible, so
that Sam visits the field (b6) next, as shown in Fig. 1b. Afterwards, he visits
the field (c6), as presented in Fig. 1c.

Once Sam is located in field (c6), there is no choice, so that propagation is
performed, as depicted in Fig. 2a. However, after propagation Sam notices that
there is no exit and no possibility to move forward. This situation is called a
conflict. In the SAT solving world, the corresponding partial interpretation would
remove all literals from a clause, resulting in the empty clause that cannot be
satisfied by extending the interpretation further. Once a conflict is found, the
DPLL algorithm performs backtracking by undoing the last decision. Likewise,
Sam returns to (b6), as shown in Fig. 2a, and does not choose (c6) this time
again.

Note that the order how decisions are taken is ordered based on the path
that is constructed by the agent. In a SAT solver, the order of the variables that
are chosen to construct the partial interpretation is not fixed [13,19,47,49].

3.2 The CDCL Algorithm

The major difference between the CDCL algorithm and the former DPLL al-
gorithm is the following: After finding a conflict, we do not only perform back-
tracking, but furthermore create a learned clause, and add this learned clause
(temporarily [5, 6, 56]) to the formula [47, 62]. This learned clause is illustrated
with the bar between fields (c6) and (d5) in Fig. 2c – where we could argue that
the bar might block any other part of the path from the last decision to the found
dead end, but creating a link between different locations of the bar and different
kinds of learned clauses is beyond the scope of the work2. Once the bar is added
to the maze, this bar avoids entering the same unsolvable subspace again. Like-
wise, in the SAT world, the learned clause prevents the search to enter the same

2 For an analysis of different SAT algorithms see [62].
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(c) Analysis and Learning

Fig. 2: Stages of sequential search in presence of a conflict

search space. To correctly handle the backtracking information, the choice that
failed in the maze is also closed with a small auxiliary bar.3 In the illustration,
this auxiliary bar is thinner than the bar that represents the learned clause. In
the extreme case, adding these learned clauses can result in an exponentially
superior behavior of the CDCL algorithm over the DPLL algorithm [53].

To illustrate the effect, let Sam continue his search in quick motion. From
(b6) he visits field (d7), tests all possibilities and adds a few bars to the maze.
After concluding that he cannot find the exit from there, he visits (8c) without
success and finally returns to the very first row. All these steps are added to the
maze in Fig. 3a in a light fashion. Next, Sam enters the field (b5), as shown in
Fig. 3b. By propagation, he quickly finds his first learned bar, as in Fig. 3c, and
he can continue with backtracking instead of further search.

In this small example the maze behind the first learned bar is rather simple,
so that not too many search steps are saved. However, assume behind that bar
multiple other learned clauses are necessary to prove that there is no exit in this
part of the maze. Without learning, Sam would have to repeat the exact steps
again. Likewise, the DPLL procedure would perform these redundant search
steps. Learning the clause has hence the potential to save a lot of work. Similarly,
the CDCL algorithm is stronger than the DPLL algorithm in solving formulas.

3.3 Visualizing Modern Solving Techniques

Modern SAT solvers include a set of algorithm extensions that make them effec-
tive on large industrial problems. While the maze cannot show the importance
of good data structures – e.g. the Two Watched Literal data structure [49] –
heuristics like restarts, learned clause removal and formula simplification can be
illustrated. This section gives an example for each of these techniques.

3 While in SAT there are only two possible truth assignments, the maze actually rep-
resents multiple choices, so that backtracking has to be made clear explicitly, while
in the binary case it is clear where to continue. Hence, this additional clause becomes
necessary, essentially to be able to verify unsatisfiability proofs (see Section 3.4).
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(b) Next Decision
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(c) Exploit Learning

Fig. 3: Exploiting the learned clauses in future search

Restarts By adding restarts to SAT solvers, their behavior became much more
stable [23]. A restart means to clear the interpretation while keeping all the other
information that has been gathered during search. In the maze, this means that
Sam simply needs to go back from his current position to the starting point and
start search over from there. Since the values within the search heuristic might
have changed, it is likely that Sam enters another part of the maze next. In SAT
solvers, the assigned truth values for the next search decisions is tried to be the
same as before the restart – however, the order of the search decisions will be
different [51].

Clause Removal From a completeness point of view, keeping some of the
learned clauses until the exit is found is necessary. Otherwise Sam might enter
the same part of the maze again and again without making progress. On the
other hand, there are many learned clauses that are redundant. This effect is
shown in the maze in Fig. 4a. The solid learned clauses are necessary, whereas
the dashed learned clauses are not reachable any more and can be removed.
Learned clause removal simply removes some learned clauses. As this removal
is driven by a heuristic, sometimes clauses are removed that are not redundant.
On the other hand, the illustration shows nicely that most of the learned clauses
are actually not useful for the search any more after a few more clauses are
learned [56]. In modern SAT solvers heuristics have been added to identify the
clauses that are actually useful and to remove other clauses [5, 6].

Formula Simplification The maze in Fig. 4b shows how a maze might be
modified by simplification. In general, modifications are feasible if they keep at
least one valid path to the exit, if there exists one, and otherwise to not create
a path to the exit if reaching the exit was not possible before4. One of the
most effective formula simplification techniques [9], variables elimination [18,
59] can be visualized by merging neighboring columns. In the example, this
simplification is possible for the columns e and f. In Fig. 4c these two columns

4 Again, a valid path to the exit cannot move left.

6



a b c d e f g h

1

2

3

4

5

6

7

8

(a) Clause Removal

a b c d ef g h

1

2

3

4

5

6

7

8

(b) Simplification

a b c d ef g h

1

2

3

4

5

6

7

8

(c) Model Construction

Fig. 4: Advanced solving techniques

are merged. Furthermore, some of the walls of the maze became light grey. This
modification is feasible, because removing vertical walls that have a free end
is sound. This technique could be related with blocked clause elimination [38],
or redundant clauses in general [27, 39]. When removing blocked clauses from
a formula additional models are possible for the modified formula, which might
not be valid for the original formula any more. Likewise, other techniques like
forcing paths to fields that are located on all possible solution paths would be
possible. Such a modification would correspond to looking for backbones via
probing [42] or look-ahead techniques [29].

Now, Sam can find a path to the exit in the modified maze, as added to
the maze in 4b. For simplification techniques that keep equivalence in SAT, the
solution path does not have to be modified to become a valid solution path for
the original maze. However, once the walls become solid again, the path has to be
corrected, if the solution path crossed these walls. This correction is illustrated
in Fig. 4c. When the columns (e) and (f) are separated again, the path might
be modified once more to result in a valid solution. In SAT solving, fixing the
path corresponds to changing the solution for the modified formula to obtain a
solution for the original formula [37,39].

Learning UIP Clauses SAT solvers learn empowering clauses [52], which are
clauses that improve the strength of unit propagation compared to the current
state of the formula. After backtracking, these clauses lead to unit propagation,
because they are created such that there is exactly one literal in the learned
clause that becomes unassigned alone during backtracking. During conflict anal-
ysis, these literals refer to unique implication points (UIPs). It is believed that
learning a certain type of these UIP clauses – namely 1st-UIP-clauses – is a good
strategy [62]. The visualization supports this believe that learning 1st-UIP [49]
clauses is stronger than learning clauses related to other UIPs: the clause learned
in Fig. 2c corresponds to the 1st-UIP clause, because this bar is the closest branch
on the path when backtracking from the conflict. Another possible learned clause
would be located between the fields (b6) and (c6), which in the given step is
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(b) Intermediate Proof
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(c) Unsatisfiability Check

Fig. 5: Verifying the unsatisfiability answer of a run

the bar that is added to memorize backtracking. If only the latter clause (the
2nd-UIP) would be learned, then Sam would enter the same search space again.

3.4 Verifying Unsatisfiability Proofs

Modern SAT solvers are used in many applications, including safety critical
applications as hardware verification or software verification [14]. In verification,
if a formula is satisfiable, then the model corresponds to a counter-example of
the described statement. On the other hand, if a SAT solver returns the answer
“unsatisfiable”, then the property is assumed to hold. While testing whether
a given interpretation satisfies a formula is simple, verifying unsatisfiability is
rather difficult. Recent developments made it possible to generate proofs during
a run of a CDCL solver with low overhead, while checking the proof remains
efficient [21,26,60].

In the maze abstraction, both the (clausal) proof and the proof verification
process can be illustrated. As we have to trust the verification, the verification
task should be as simple as possible: given a starting field (x), then the verifi-
cation has to check whether a dead-end is reached from this field by using only
propagation. This operation is very close to the reverse unit propagation, which
is used in modern proof verification tools [21]. Consider the maze in Fig. 5a5:
from (c5) we find a dead-end by propagation (as in Section 3.2). On the other
hand, starting from (c7) propagation does not reach a dead-end, because there
is choice involved, namely visiting field (d6), (d7) or (d8).

Now for the example given in Fig. 5b, the clauses that have been learned
can be verified in exactly the order they have been added to the maze. In the
final maze 5c we can see that by the simple verification check it can be verified
that there is no path to the exit of the maze, even though intermediate learned
clauses have been removed already. This removal corresponds to clauses proofs
with deletion information [26].

5 Note, the exit has been closed to turn the maze into an unsatisfiable maze.
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(b) Clause Sharing
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(c) Partitioning

Fig. 6: Finding an exit in parallel

4 Parallel Solving Algorithms

Due to parallel computing resources, parallel SAT solving techniques have been
presented [30, 48, 57]. The maze shows why unit propagation cannot be paral-
lelized easily [40]: Sam does not know in advance where he will be going, and
parallel tasks might be redundant due to the bars that are added to the maze
over time.

As this low level parallelization is not effective, high-level parallelization is
used with two flavors: parallel portfolio solvers [4,25] solve the same formula with
differently configured sequential solvers, and search space partitioning solvers [28,
34, 36] partition the search space and afterwards solve the partitions and the
whole formula. Additionally, the performance is improved by knowledge sharing.

Parallel Portfolio Solvers Assume we have four computing resources. This
corresponds to searching with four agents in the maze, where each agent adds
private bars to the maze as in the CDCL algorithm. Such a situation is illustrated
in Fig. 6a. As in portfolio SAT solvers, these private bars can be shared with all
agents as long as only simple simplification of the maze – simplifications that
exactly preserve all path to the exit – are used. Likewise, clause sharing is sound
in portfolio SAT solvers as long as all solvers only apply equivalence preserving
simplification techniques [45].

By making the additional bars public, solvers usually benefit. Furthermore,
it can be seen that there also exist redundant bars which should not be shared as
they do not help the search process of other agents, for example all the bars that
have been removed in the sequential example in Fig. 5a. Hence, modern solvers
do not share all clauses, and also filter shared clauses before these clauses are
received [8].

Search Space Partitioning Solvers Search space partitioning of a formula F
is done by adding partitioning constraints K, which are formulas as well [34,36].
For creating n disjoint partitions Fi, 1 ≤ i ≤ n, n constraints Ki are created
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(c) Re-Partitioning

Fig. 7: Clause sharing in search space partitioning solvers, and re-partitioning

such that the following conditions hold: Ki ∧ Kj ≡ ⊥ for 1 ≤ i < j ≤ n, andn
i=1 Ki ≡ ⊤. The formula of partition i is created as Fi := F ∧Ki.

This partitioning can be illustrated as follows: One column of the maze is
partitioned. Then, the path of an agent has to be located in a position of the
partition that is assigned to the agent. For simplicity, this column is chosen to
be on the most right column. Then, each agent is allowed to find a solution only
in his partition – an agent can only leave the maze if the exit is located behind
a field of the partition of the agent. Fig. 6c illustrates this partitioning for four
agents, where the exit can be reached only for the blue agent, i.e. the fourth
partition from the top of the maze.

Clause sharing in partitioning solvers is more restrictive than for the port-
folio approach, because now the shared clauses also depend on the partitioning
column [35, 36]. Fig. 7a shows how the first agent (i.e. the red agent, with the
lowest start in the maze) added a bar in the lower half of the maze. Without
much analysis it is clear that this bar is also valid for the agent whose partition
contains the rows (8) and (7). With a little more effort, it is also clear that
sharing this bar with the agent whose partition contains rows (6) and (5) is
sound (see Fig. 7b). The sharing of learned clauses in partitioning based SAT
solvers has been improved similarly [41].

Further parallelism can be added by allowing another agent to solve the whole
maze, so that this agent is allowed to cross the partitioning column anywhere.
Adding such a fifth agent illustrates the difference between plain partitioning
and iterative partitioning [34]. Likewise, once an agent found that his partition
does not lead to the exit, he becomes idle. This idle agent can be re-used by re-
partitioning an existing partition. Either, the partition is split, such that the two
agents work on disjoint parts of the search space, or the new partition becomes
a sub-partition of the original partition. Splitting corresponds to plain partition-
ing [28, 34], and the latter approach is related to iterative partitioning [34, 36].
Re-using idle agents is illustrated in Fig. 7c: the partition with rows (5) and (6)
is now solved by three agents. Before an agent starts to find a valid path for the
new partition, his privately added bars have to be removed. Otherwise, these
agents might not find an exit any more and hence might not find the global

10



exit at all. Naturally, if the learned bars have been shared correctly, some of
the previously private bars might remain valid (e.g. the bar in the upper half of
the maze). On the other hand, bars that are valid for the new partition and its
parent partition can be used safely, for example the bars in the lower part of the
maze.

5 Conclusion

We present a very abstract, yet adequate, visualization of solving the SAT prob-
lem that is capable of modelling many modern techniques. This visualization is
based on finding the exit in a maze. The covered techniques range from sim-
ple heuristic search with clause learning over verifying unsatisfiability proofs
and formula simplification to parallel search techniques that include sharing of
knowledge. We believe that this form of representation helps to understand the
way SAT solvers work, and makes reasons for design decisions clearer. Addition-
ally, while presenting modern SAT solving algorithms, this work also provides
pointers to literature that might be helpful for learning more about the formal
aspects of SAT solving.

In this paper, the basic search process with clause learning, restarts and
simple formula simplifications are covered. Furthermore, verifying unsatisfiability
proofs is shown with the maze visualization. Finally, we present how parallel
solving methods work and how clause sharing is performed. There are many
more techniques that can be modelled, but that have not been presented here, for
example finding all solutions, incremental SAT solving or simplifying the formula
during search. On the other hand, there are also techniques, that cannot be
easily explained based on the maze, for example formula simplification techniques
that are based on extended resolution [44] or cutting planes reasoning [15, 16].
Nevertheless, we believe that the presented abstraction – finding an exit in a
maze – provides an easy entry to SAT technology, before starting with all the
formal details.
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